Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts

Jinrong Li , Xianghui Yu , Qi Sun , Yong Peng , Shuang Cao , Chun-Chao Hou , Qiang Xu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 753 -760.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 753 -760. DOI: 10.1007/s40242-024-4133-2
Article

Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts

Author information +
History +
PDF

Abstract

PtCo nanoalloys (NAs) deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction (ORR). However, developing a simple and low-cost method to synthesize PtCo/C with excellent performance is still a great challenge. In this work, a one-pot method was used to successfully obtain the PtCo NAs on commercial carbon supports of acetylene black and Ketjenblack ECP600JD, respectively. Compared with those grown on Ketjenblack ECP600JD, the PtCo NAs grown on acetylene black exhibited higher electrochemical surface area (ECSA) and mass activity (MA), which may be attributed to the different particle sizes of PtCo NAs, distinct hydrophilicity, electroconductivity and charge distribution between the carbon supports and PtCo NAs. Our study provides valuable insights into the optimal design of carbon-supported ORR electrocatalysts with exceptional activity and durability.

Keywords

Oxygen reduction reaction / PtCo nanoalloy / Carbon-supported nanostructure / Acetylene black

Cite this article

Download citation ▾
Jinrong Li, Xianghui Yu, Qi Sun, Yong Peng, Shuang Cao, Chun-Chao Hou, Qiang Xu. Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts. Chemical Research in Chinese Universities, 2024, 40(4): 753-760 DOI:10.1007/s40242-024-4133-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu H, Zhong H C, Pan Y Z, Li H B, Peng Y, Yang L J, Luo S S, Banham D, Zeng J H. Colloids Surf. A Physicochem. Eng. Asp., 2023, 656: 130341.

[2]

Luo Z C, Zhong G Y, Meng Z, Fu X B, Liao W B, Zheng S N, Xu Y J, Luo S J. Colloids Surf. A Physicochem. Eng. Asp., 2023, 671: 131631.

[3]

Cao S, Sun T, Li Q Z, Piao L Y, Chen X B. Trends Chem., 2023, 5: 947.

[4]

Li J R, Liu M Xu, Liu X, Yu X H, Li Q Z, Sun Q, Sun T, Cao S, Hou C C. Small Methods, 2024, 8: 2301249.

[5]

Huang Z X, Wu D H, Chen M T, Feng J J, Wang A. Colloids Surf. A Physicochem. Eng. Asp., 2023, 679: 132567.

[6]

Zhao Z P, Chen C L, Liu Z Y, Huang J, Wu M H, Liu H T, Li Y J, Huang Y. Adv. Mater., 2019, 31: 1808115.

[7]

Sui S, Wang X Y, Zhou X t, Su Y h, Riffat S, Liu C J. J. Mater. Chem. A, 2017, 5: 1808.

[8]

Hussain S, Erikson H, Kongi N, Sarapuu A, Solla-Gullón J, Maia G, Kannan A M, Alonso-Vante N, Tammeveski K. Int. J. Hydrogen Energy, 2020, 45: 31775.

[9]

Zhang W. H., Wang M. L., Jia A. K., Deng W., Bai S. X., Acta Phys.-Chim. Sin., 2024, 2309043.

[10]

Guo M R, Zhan J, Wang Z K, Wang X R, Dai Z, Wang T. Chin. Chem. Lett., 2023, 34: 107709.

[11]

Lyu X, Jia Y, Mao X, Li D H, Li G, Zhuang L Z, Wang X, Yang D J, Wang Q, Du A J. Adv. Mater., 2020, 32: 2003493.

[12]

Xie M H, Lyu Z H, Chen R H, Shen M, Cao Z M, Xia Y N. J. Am. Chem. Soc., 2021, 22: 8509.

[13]

Liang J S, Li N, Zhao Z L, Ma L, Wang X M, Li S Z, Liu X, Wang T Y, Du Y P, Lu G. Angew. Chem. Int. Ed., 2019, 58: 15471.

[14]

Li J R, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z Y, Shen B. J. Am. Chem. Soc., 2018, 8: 2926.

[15]

Yoo T Y, Yoo J M, Sinha A K, Bootharaju M S, Jung E, Lee H S, Lee B H, Kim J, Antink W H, Kim Y M. J. Am. Chem. Soc., 2020, 33: 14190.

[16]

Show Y, Ueno Y. J. Nanomaterials, 2017, 7: 31.

[17]

Show Y, Hirai A, Almowarai A, Ueno Y. Thin Solid Films, 2015, 596: 198.

[18]

Fraga M, Jordao E, Mendes M, Freitas M, Faria J, Figueiredo J. J. Catal., 2002, 209: 355.

[19]

Hasa B, Martino E, Vakros J, Trakakis G, Galiotis C, Katsaounis A. ChemElectroChem., 2019, 6: 4970.

[20]

Fang B Z, Chaudhari N K, Kim M S, Kim J H, Yu J S. J. Am. Chem. Soc., 2009, 131: 15330.

[21]

Ortíz-Herrera J C, Tellez-Cruz M M, Solorza-Feria O, Medina D I. Catalysts., 2022, 12: 477.

[22]

Antolini E. Appl. Catal. B: Environ., 2009, 88: 1.

[23]

Auer E, Freund A, Pietsch J, Tacke T. Appl. Catal. A Gen., 1998, 173: 259.

[24]

Singh P, Sharma R, Khalid M, Goyal R, Sarı A, Tyagi V. Sol. Energy Mater. Sol. Cells, 2022, 246: 111896.

[25]

Tang J, Liu J, Torad N L, Kimura T, Yamauchi Y. Nano Today, 2014, 9: 305.

[26]

You P, Kamarudin S. Chem. Eng. J., 2017, 309: 489.

[27]

Zaman S, Wang M, Liu H J, Sun F M, Yu Y, Shui J l, Chen M, Wang H J. Trends Chem., 2022, 2: 886.

[28]

Minsuk K, Nam P J, Hyuk K. J. Power Sources, 200, 163: 93.

[29]

Gerber I C, Serp P. Chem. Rev., 2022, 120: 1250.

[30]

Huang Z N, Yao Y G, Pang Z Q, Yuan Y F, Li T Y, He K, Hu X B, Cheng J, Yao W T, Liu Y Z. Nat. Commun., 2020, 11: 6373.

[31]

Wang Y J, Fang B Z, Li H, Bi X T T, Wang H J. Prog. Mater. Sci., 201, 82: 445.

[32]

Liao S J, Hou S Y, Zou H B, Dang D, Tian X L, Nan H X, Shu T, Du L. Int. J. Hydrogen Energy, 201, 41: 9191.

[33]

Chen Y Z, Zhang S M, Jung J C Y, Zhang J J. Prog. Energy Combust. Sci., 2023, 98: 101101.

[34]

Xie M H, Shi Y F, Wang C X, Chen R H, Shen M, Xia Y N. ACS Appl. Mater. Interfaces., 2021, 13: 51988.

[35]

Zhang S, Liu S, Huang J, Zhou H, Liu X, Tan P, Chen H, Liang Y, Pan J. J. Energy Chem., 2023, 84: 486.

[36]

Deng X T, Yin S F, Wu X B, Sun M, Xie Z Y, Huang Q Z. Electrochim. Acta, 2018, 283: 987.

[37]

Suh W K, Ganesan P, Son B, Kim H, Shanmugam S. Int. J. Hydrogen Energy, 201, 41: 12983.

[38]

Deng Z P, Pang W Y, Gong M X, Jin Z H, Wang X L. J. Energy Chem., 2022, 66: 16.

[39]

Bai P, Wang P, Mu J R, Xie Z N, Du C F, Su Y G. ACS Appl. Mater. Interfaces, 2023, 15: 35117.

[40]

Pullamsetty A, Sundara R. J. Colloid Interface Sci., 201, 479: 260.

[41]

Nesselberger M, Ashton S, Meier J C, Katsounaros I, Mayrhofer K J, Arenz M. J. Am. Chem. Soc., 2011, 133: 17428.

[42]

Hou H I, Shao G, Yang W Y, Wong W Y. J. Mater. Sci., 2020, 113: 100671.

[43]

Garlyyev B, Fichtner J, Piqué O, Schneider O, Bandarenka A S, Calle-Vallejo F. Chem. Sci., 2019, 10: 8060.

[44]

Mohebali A, Abdouss M, Zahedi P. Chem. Pap., 2018, 72: 3005.

[45]

Hu Y M, Zhu M Z, Luo X, Wu G, Chao T T, Qu Y T, Zhou F Y, Sun R B, Han X, Li H. Angew. Chem. Int. Ed., 2021, 60: 6533.

[46]

Zhang L B, Wang X R, Zhu H. Prog. Nat. Sci. Mater. Int., 2020, 30: 890.

[47]

Liu Y, Chen N J, Wang F H, Cai Y Z, Zhu H. New J. Chem., 2017, 41: 6585.

[48]

Gahtori J, Tucker C L, Khan T S, De S C C, Rocha T, Bordoloi A. ACS Appl. Mater. Interfaces, 2022, 14: 38905.

[49]

Xiang Z H, Xue Y H, Cao D P, Huang L, Chen J F, Dai L M. Angew. Chem. Int. Ed., 2014, 53: 2433.

[50]

Qiu J J, Duan Y, Li S Y, Zhao H P, Ma W H, Shi W D, Lei Y. Nano-Micro Lett., 2024, 16: 130.

[51]

Dai Y Q, Lu P, Cao Z M, Campbell C T, Xia Y N. Chem. Soc. Rev., 2018, 47: 4314.

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/