Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts

Jinrong Li, Xianghui Yu, Qi Sun, Yong Peng, Shuang Cao, Chun-Chao Hou, Qiang Xu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 753-760. DOI: 10.1007/s40242-024-4133-2
Article

Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts

Author information +
History +

Abstract

PtCo nanoalloys (NAs) deposited on carbon black are emerging as robust electrocatalysts for addressing the sluggish kinetic issue of oxygen reduction reaction (ORR). However, developing a simple and low-cost method to synthesize PtCo/C with excellent performance is still a great challenge. In this work, a one-pot method was used to successfully obtain the PtCo NAs on commercial carbon supports of acetylene black and Ketjenblack ECP600JD, respectively. Compared with those grown on Ketjenblack ECP600JD, the PtCo NAs grown on acetylene black exhibited higher electrochemical surface area (ECSA) and mass activity (MA), which may be attributed to the different particle sizes of PtCo NAs, distinct hydrophilicity, electroconductivity and charge distribution between the carbon supports and PtCo NAs. Our study provides valuable insights into the optimal design of carbon-supported ORR electrocatalysts with exceptional activity and durability.

Keywords

Oxygen reduction reaction / PtCo nanoalloy / Carbon-supported nanostructure / Acetylene black

Cite this article

Download citation ▾
Jinrong Li, Xianghui Yu, Qi Sun, Yong Peng, Shuang Cao, Chun-Chao Hou, Qiang Xu. Exploring the Predominant Factors Influencing the Oxygen Reduction Performance of PtCo/C Catalysts. Chemical Research in Chinese Universities, 2024, 40(4): 753‒760 https://doi.org/10.1007/s40242-024-4133-2

References

[1]
Wu H, Zhong H C, Pan Y Z, Li H B, Peng Y, Yang L J, Luo S S, Banham D, Zeng J H. . Colloids Surf. A Physicochem. Eng. Asp., 2023, 656: 130341,
CrossRef Google scholar
[2]
Luo Z C, Zhong G Y, Meng Z, Fu X B, Liao W B, Zheng S N, Xu Y J, Luo S J. . Colloids Surf. A Physicochem. Eng. Asp., 2023, 671: 131631,
CrossRef Google scholar
[3]
Cao S, Sun T, Li Q Z, Piao L Y, Chen X B. . Trends Chem., 2023, 5: 947,
CrossRef Google scholar
[4]
Li J R, Liu M Xu, Liu X, Yu X H, Li Q Z, Sun Q, Sun T, Cao S, Hou C C. . Small Methods, 2024, 8: 2301249,
CrossRef Google scholar
[5]
Huang Z X, Wu D H, Chen M T, Feng J J, Wang A. . Colloids Surf. A Physicochem. Eng. Asp., 2023, 679: 132567,
CrossRef Google scholar
[6]
Zhao Z P, Chen C L, Liu Z Y, Huang J, Wu M H, Liu H T, Li Y J, Huang Y. . Adv. Mater., 2019, 31: 1808115,
CrossRef Google scholar
[7]
Sui S, Wang X Y, Zhou X t, Su Y h, Riffat S, Liu C J. . J. Mater. Chem. A, 2017, 5: 1808,
CrossRef Google scholar
[8]
Hussain S, Erikson H, Kongi N, Sarapuu A, Solla-Gullón J, Maia G, Kannan A M, Alonso-Vante N, Tammeveski K. . Int. J. Hydrogen Energy, 2020, 45: 31775,
CrossRef Google scholar
[9]
Zhang W. H., Wang M. L., Jia A. K., Deng W., Bai S. X., Acta Phys.-Chim. Sin., 2024, 2309043.
[10]
Guo M R, Zhan J, Wang Z K, Wang X R, Dai Z, Wang T. . Chin. Chem. Lett., 2023, 34: 107709,
CrossRef Google scholar
[11]
Lyu X, Jia Y, Mao X, Li D H, Li G, Zhuang L Z, Wang X, Yang D J, Wang Q, Du A J. . Adv. Mater., 2020, 32: 2003493,
CrossRef Google scholar
[12]
Xie M H, Lyu Z H, Chen R H, Shen M, Cao Z M, Xia Y N. . J. Am. Chem. Soc., 2021, 22: 8509,
CrossRef Google scholar
[13]
Liang J S, Li N, Zhao Z L, Ma L, Wang X M, Li S Z, Liu X, Wang T Y, Du Y P, Lu G. . Angew. Chem. Int. Ed., 2019, 58: 15471,
CrossRef Google scholar
[14]
Li J R, Xi Z, Pan Y T, Spendelow J S, Duchesne P N, Su D, Li Q, Yu C, Yin Z Y, Shen B. . J. Am. Chem. Soc., 2018, 8: 2926,
CrossRef Google scholar
[15]
Yoo T Y, Yoo J M, Sinha A K, Bootharaju M S, Jung E, Lee H S, Lee B H, Kim J, Antink W H, Kim Y M. . J. Am. Chem. Soc., 2020, 33: 14190,
CrossRef Google scholar
[16]
Show Y, Ueno Y. . J. Nanomaterials, 2017, 7: 31,
CrossRef Google scholar
[17]
Show Y, Hirai A, Almowarai A, Ueno Y. . Thin Solid Films, 2015, 596: 198,
CrossRef Google scholar
[18]
Fraga M, Jordao E, Mendes M, Freitas M, Faria J, Figueiredo J. . J. Catal., 2002, 209: 355,
CrossRef Google scholar
[19]
Hasa B, Martino E, Vakros J, Trakakis G, Galiotis C, Katsaounis A. . ChemElectroChem., 2019, 6: 4970,
CrossRef Google scholar
[20]
Fang B Z, Chaudhari N K, Kim M S, Kim J H, Yu J S. . J. Am. Chem. Soc., 2009, 131: 15330,
CrossRef Google scholar
[21]
Ortíz-Herrera J C, Tellez-Cruz M M, Solorza-Feria O, Medina D I. . Catalysts., 2022, 12: 477,
CrossRef Google scholar
[22]
Antolini E. . Appl. Catal. B: Environ., 2009, 88: 1,
CrossRef Google scholar
[23]
Auer E, Freund A, Pietsch J, Tacke T. . Appl. Catal. A Gen., 1998, 173: 259,
CrossRef Google scholar
[24]
Singh P, Sharma R, Khalid M, Goyal R, Sarı A, Tyagi V. . Sol. Energy Mater. Sol. Cells, 2022, 246: 111896,
CrossRef Google scholar
[25]
Tang J, Liu J, Torad N L, Kimura T, Yamauchi Y. . Nano Today, 2014, 9: 305,
CrossRef Google scholar
[26]
You P, Kamarudin S. . Chem. Eng. J., 2017, 309: 489,
CrossRef Google scholar
[27]
Zaman S, Wang M, Liu H J, Sun F M, Yu Y, Shui J l, Chen M, Wang H J. . Trends Chem., 2022, 2: 886,
CrossRef Google scholar
[28]
Minsuk K, Nam P J, Hyuk K. . J. Power Sources, 2006, 163: 93,
CrossRef Google scholar
[29]
Gerber I C, Serp P. . Chem. Rev., 2022, 120: 1250,
CrossRef Google scholar
[30]
Huang Z N, Yao Y G, Pang Z Q, Yuan Y F, Li T Y, He K, Hu X B, Cheng J, Yao W T, Liu Y Z. . Nat. Commun., 2020, 11: 6373,
CrossRef Google scholar
[31]
Wang Y J, Fang B Z, Li H, Bi X T T, Wang H J. . Prog. Mater. Sci., 2016, 82: 445,
CrossRef Google scholar
[32]
Liao S J, Hou S Y, Zou H B, Dang D, Tian X L, Nan H X, Shu T, Du L. . Int. J. Hydrogen Energy, 2016, 41: 9191,
CrossRef Google scholar
[33]
Chen Y Z, Zhang S M, Jung J C Y, Zhang J J. . Prog. Energy Combust. Sci., 2023, 98: 101101,
CrossRef Google scholar
[34]
Xie M H, Shi Y F, Wang C X, Chen R H, Shen M, Xia Y N. . ACS Appl. Mater. Interfaces., 2021, 13: 51988,
CrossRef Google scholar
[35]
Zhang S, Liu S, Huang J, Zhou H, Liu X, Tan P, Chen H, Liang Y, Pan J. . J. Energy Chem., 2023, 84: 486,
CrossRef Google scholar
[36]
Deng X T, Yin S F, Wu X B, Sun M, Xie Z Y, Huang Q Z. . Electrochim. Acta, 2018, 283: 987,
CrossRef Google scholar
[37]
Suh W K, Ganesan P, Son B, Kim H, Shanmugam S. . Int. J. Hydrogen Energy, 2016, 41: 12983,
CrossRef Google scholar
[38]
Deng Z P, Pang W Y, Gong M X, Jin Z H, Wang X L. . J. Energy Chem., 2022, 66: 16,
CrossRef Google scholar
[39]
Bai P, Wang P, Mu J R, Xie Z N, Du C F, Su Y G. . ACS Appl. Mater. Interfaces, 2023, 15: 35117,
CrossRef Google scholar
[40]
Pullamsetty A, Sundara R. . J. Colloid Interface Sci., 2016, 479: 260,
CrossRef Google scholar
[41]
Nesselberger M, Ashton S, Meier J C, Katsounaros I, Mayrhofer K J, Arenz M. . J. Am. Chem. Soc., 2011, 133: 17428,
CrossRef Google scholar
[42]
Hou H I, Shao G, Yang W Y, Wong W Y. . J. Mater. Sci., 2020, 113: 100671
[43]
Garlyyev B, Fichtner J, Piqué O, Schneider O, Bandarenka A S, Calle-Vallejo F. . Chem. Sci., 2019, 10: 8060,
CrossRef Google scholar
[44]
Mohebali A, Abdouss M, Zahedi P. . Chem. Pap., 2018, 72: 3005,
CrossRef Google scholar
[45]
Hu Y M, Zhu M Z, Luo X, Wu G, Chao T T, Qu Y T, Zhou F Y, Sun R B, Han X, Li H. . Angew. Chem. Int. Ed., 2021, 60: 6533,
CrossRef Google scholar
[46]
Zhang L B, Wang X R, Zhu H. . Prog. Nat. Sci. Mater. Int., 2020, 30: 890,
CrossRef Google scholar
[47]
Liu Y, Chen N J, Wang F H, Cai Y Z, Zhu H. . New J. Chem., 2017, 41: 6585,
CrossRef Google scholar
[48]
Gahtori J, Tucker C L, Khan T S, De S C C, Rocha T, Bordoloi A. . ACS Appl. Mater. Interfaces, 2022, 14: 38905,
CrossRef Google scholar
[49]
Xiang Z H, Xue Y H, Cao D P, Huang L, Chen J F, Dai L M. . Angew. Chem. Int. Ed., 2014, 53: 2433,
CrossRef Google scholar
[50]
Qiu J J, Duan Y, Li S Y, Zhao H P, Ma W H, Shi W D, Lei Y. . Nano-Micro Lett., 2024, 16: 130,
CrossRef Google scholar
[51]
Dai Y Q, Lu P, Cao Z M, Campbell C T, Xia Y N. . Chem. Soc. Rev., 2018, 47: 4314,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/