Supported Recyclable Metal-free Frustrated Lewis Pair Catalyst for Catalytic Hydrogenation of Substituted Pyridines to Piperidines

Shaohua Ma, Zhiyong Tang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 682-689.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 682-689. DOI: 10.1007/s40242-024-4129-y
Article

Supported Recyclable Metal-free Frustrated Lewis Pair Catalyst for Catalytic Hydrogenation of Substituted Pyridines to Piperidines

Author information +
History +

Abstract

The construction of heterogeneous frustrated Lewis pairs (FLPs) catalysts is crucial for realizing highly efficient and recyclable pyridines catalytic hydrogenation. In this work, we prepared a recyclable heterogenous FLPs catalyst CMP-BF with conjugated microporous polymer CMP-ethynyl as the support via self-catalyzed 1,1-carboboration reaction with commercial Lewis acid B(C6F5)3. The as-synthesized CMP-BF demonstrates superior heterogenous catalytic hydrogenation performance (conversion>99%), and considerable stability (84% conversion after three cycles) in recyclable hydrogenation of 2,6-phenylpyridine. This work provides insights into the fabrication and catalytic application of recyclable heterogenous FLP catalysts.

Keywords

Pyridine hydrogenation / Frustrated Lewis pair / Conjugated microporous polymer

Cite this article

Download citation ▾
Shaohua Ma, Zhiyong Tang. Supported Recyclable Metal-free Frustrated Lewis Pair Catalyst for Catalytic Hydrogenation of Substituted Pyridines to Piperidines. Chemical Research in Chinese Universities, 2024, 40(4): 682‒689 https://doi.org/10.1007/s40242-024-4129-y
This is a preview of subscription content, contact us for subscripton.

References

[1]
Vitaku E, Smith D T, Njardarson J T. J. Med. Chem., 2014, 57: 10257.
CrossRef Google scholar
[2]
Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna P K, Bhutani H, Paul A T, Kumar R. J. Med. Chem., 2021, 64: 2339.
CrossRef Google scholar
[3]
Gunasekar R, Goodyear R L, Silvestri I P, Xiao J L. Org. Biomol. Chem., 2022, 20: 1794.
CrossRef Google scholar
[4]
Stephan D W, Erker G. Angew. Chem. Int. Ed., 2010, 49: 46.
CrossRef Google scholar
[5]
Mahdi T, del Castillo J N, Stephan D W. Organometallics, 2013, 32: 1971.
CrossRef Google scholar
[6]
Geier S J, Gille A L, Gilbert T M, Stephan D W. Inorg. Chem., 2009, 48: 10466.
CrossRef Google scholar
[7]
Liu Y B, Du H F. J. Am. Chem. Soc., 2013, 135: 12968.
CrossRef Google scholar
[8]
Scott D J, Simmons T R, Lawrence E J, Wildgoose G G, Fuchter M J, Ashley A E. ACS Catal., 2015, 5: 5540.
CrossRef Google scholar
[9]
Ma Y Y, Zhang S, Chang C R, Huang Z Q, Ho J C, Qu Y Q. Chem. Soc. Rev., 2018, 47: 5541.
CrossRef Google scholar
[10]
Zhang Y, Guo J, VanNatta P, Jiang Y, Phipps J, Roknuzzaman R, Rabaa H, Tan K, AlShahrani T, Ma S Q. J. Am. Chem. Soc., 2024, 146: 979.
CrossRef Google scholar
[11]
Zhang Y, Chen S B, Al-Enizi A M, Nafady A, Tang Z Y, Ma S Q. Angew. Chem. Int. Ed. Engl., 2022, 62: e202213399.
CrossRef Google scholar
[12]
Niu Z, Gunatilleke W D C B, Sun Q, Lan P C, Perman J, Ma J-G, Cheng Y C, Aguila B, Ma S Q. Chem, 2018, 4: 2587.
CrossRef Google scholar
[13]
Niu Z, Zhang W J, Lan P C, Aguila B, Ma S Q. Angew. Chem. Int. Ed., 2019, 58: 7420.
CrossRef Google scholar
[14]
Jiang J-X, Su F B, Trewin A, Wood C D, Niu H J, Jones J T A, Khimyak Y Z, Cooper A I. J. Am. Chem. Soc., 2008, 130: 7710.
CrossRef Google scholar
[15]
Zhou Y B, Wang Y Q, Ning L C, Ding Z C, Wang W L, Ding C K, Li R H, Chen J J, Lu X, Ding Y J, Zhan Z P. J. Am. Chem. Soc., 2017, 139: 3966.
CrossRef Google scholar
[16]
Chernichenko K, Madarasz A, Papai I, Nieger M, Leskela M, Repo T. Nat. Chem., 2013, 5: 718.
CrossRef Google scholar
[17]
Ye J Y, McEwen M. J. Phys. Chem. A, 2022, 126: 18605.
CrossRef Google scholar
[18]
Bergquist C, Bridgewater B M, Harlan C J, Norton J R, Friesner R A, Parkin G. J. Am. Chem. Soc., 2000, 122: 10581.
CrossRef Google scholar
[19]
Mahdi T, Stephan D W. J. Am. Chem. Soc., 2014, 136: 15809.
CrossRef Google scholar
[20]
Marques L R, Ando R A. Chemphyschem, 2023, 24: e202200715.
CrossRef Google scholar
[21]
Ran Y, Yu X L, Liu J Q, Cui J Y, Wang J P, Wang L, Zhang Y H, Xiang X, Ye J H. J. Mater. Chem. A, 2020, 8: 13292.
CrossRef Google scholar
[22]
Caputo C B, Geier S J, Winkelhaus D, Mitzel N W, Vukotic V N, Loeb S J, Stephan D W. Dalton Trans., 2012, 41: 2131.
CrossRef Google scholar
[23]
özgün T, Ye K Y, Daniliuc C G, Wibbeling B, Liu L, Grimme S, Kehr G, Erker G. Chem. Eur. J., 201, 22: 5988.
CrossRef Google scholar
[24]
Sivaev I B, Bregadze V I. Coord. Chem. Rev., 2014, 270/271: 75.
CrossRef Google scholar
[25]
Beringhelli T, Donghi D, Maggioni D, D’Alfonso G. Coord. Chem. Rev., 2008, 252: 2292.
CrossRef Google scholar
[26]
Reddy J S, Xu B-H, Mahdi T, Froehlich R, Kehr G, Stephan D W, Erker G. Organometallics, 2012, 31: 5638.
CrossRef Google scholar
[27]
Wang J H, Wang G, Wang W Q, Zhang Z S, Liu Z T, Hao Z P. J. Mater. Chem. A, 2014, 2: 14028.
CrossRef Google scholar
[28]
Ou J L, Zhao T X, Xiong W J, Liang H, Liu Q, Hu X B. Chem. Eng. J., 2023, 477: 147248.
CrossRef Google scholar

53

Accesses

0

Citations

Detail

Sections
Recommended

/