Supported Recyclable Metal-free Frustrated Lewis Pair Catalyst for Catalytic Hydrogenation of Substituted Pyridines to Piperidines

Shaohua Ma, Zhiyong Tang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 682-689. DOI: 10.1007/s40242-024-4129-y
Article

Supported Recyclable Metal-free Frustrated Lewis Pair Catalyst for Catalytic Hydrogenation of Substituted Pyridines to Piperidines

Author information +
History +

Abstract

The construction of heterogeneous frustrated Lewis pairs (FLPs) catalysts is crucial for realizing highly efficient and recyclable pyridines catalytic hydrogenation. In this work, we prepared a recyclable heterogenous FLPs catalyst CMP-BF with conjugated microporous polymer CMP-ethynyl as the support via self-catalyzed 1,1-carboboration reaction with commercial Lewis acid B(C6F5)3. The as-synthesized CMP-BF demonstrates superior heterogenous catalytic hydrogenation performance (conversion>99%), and considerable stability (84% conversion after three cycles) in recyclable hydrogenation of 2,6-phenylpyridine. This work provides insights into the fabrication and catalytic application of recyclable heterogenous FLP catalysts.

Keywords

Pyridine hydrogenation / Frustrated Lewis pair / Conjugated microporous polymer

Cite this article

Download citation ▾
Shaohua Ma, Zhiyong Tang. Supported Recyclable Metal-free Frustrated Lewis Pair Catalyst for Catalytic Hydrogenation of Substituted Pyridines to Piperidines. Chemical Research in Chinese Universities, 2024, 40(4): 682‒689 https://doi.org/10.1007/s40242-024-4129-y

References

[[1]]
Vitaku E, Smith D T, Njardarson J T. . J. Med. Chem., 2014, 57: 10257,
CrossRef Pubmed Google scholar
[[2]]
Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna P K, Bhutani H, Paul A T, Kumar R. . J. Med. Chem., 2021, 64: 2339,
CrossRef Pubmed Google scholar
[[3]]
Gunasekar R, Goodyear R L, Silvestri I P, Xiao J L. . Org. Biomol. Chem., 2022, 20: 1794,
CrossRef Pubmed Google scholar
[[4]]
Stephan D W, Erker G. . Angew. Chem. Int. Ed., 2010, 49: 46,
CrossRef Google scholar
[[5]]
Mahdi T, del Castillo J N, Stephan D W. . Organometallics, 2013, 32: 1971,
CrossRef Google scholar
[[6]]
Geier S J, Gille A L, Gilbert T M, Stephan D W. . Inorg. Chem., 2009, 48: 10466,
CrossRef Pubmed Google scholar
[[7]]
Liu Y B, Du H F. . J. Am. Chem. Soc., 2013, 135: 12968,
CrossRef Pubmed Google scholar
[[8]]
Scott D J, Simmons T R, Lawrence E J, Wildgoose G G, Fuchter M J, Ashley A E. . ACS Catal., 2015, 5: 5540, pmcid: 4613738
CrossRef Pubmed Google scholar
[[9]]
Ma Y Y, Zhang S, Chang C R, Huang Z Q, Ho J C, Qu Y Q. . Chem. Soc. Rev., 2018, 47: 5541,
CrossRef Pubmed Google scholar
[[10]]
Zhang Y, Guo J, VanNatta P, Jiang Y, Phipps J, Roknuzzaman R, Rabaa H, Tan K, AlShahrani T, Ma S Q. . J. Am. Chem. Soc., 2024, 146: 979,
CrossRef Pubmed Google scholar
[[11]]
Zhang Y, Chen S B, Al-Enizi A M, Nafady A, Tang Z Y, Ma S Q. . Angew. Chem. Int. Ed. Engl., 2022, 62: e202213399,
CrossRef Pubmed Google scholar
[[12]]
Niu Z, Gunatilleke W D C B, Sun Q, Lan P C, Perman J, Ma J-G, Cheng Y C, Aguila B, Ma S Q. . Chem, 2018, 4: 2587,
CrossRef Google scholar
[[13]]
Niu Z, Zhang W J, Lan P C, Aguila B, Ma S Q. . Angew. Chem. Int. Ed., 2019, 58: 7420,
CrossRef Google scholar
[[14]]
Jiang J-X, Su F B, Trewin A, Wood C D, Niu H J, Jones J T A, Khimyak Y Z, Cooper A I. . J. Am. Chem. Soc., 2008, 130: 7710,
CrossRef Pubmed Google scholar
[[15]]
Zhou Y B, Wang Y Q, Ning L C, Ding Z C, Wang W L, Ding C K, Li R H, Chen J J, Lu X, Ding Y J, Zhan Z P. . J. Am. Chem. Soc., 2017, 139: 3966,
CrossRef Pubmed Google scholar
[[16]]
Chernichenko K, Madarasz A, Papai I, Nieger M, Leskela M, Repo T. . Nat. Chem., 2013, 5: 718,
CrossRef Pubmed Google scholar
[[17]]
Ye J Y, McEwen M. . J. Phys. Chem. A, 2022, 126: 18605,
CrossRef Google scholar
[[18]]
Bergquist C, Bridgewater B M, Harlan C J, Norton J R, Friesner R A, Parkin G. . J. Am. Chem. Soc., 2000, 122: 10581,
CrossRef Google scholar
[[19]]
Mahdi T, Stephan D W. . J. Am. Chem. Soc., 2014, 136: 15809,
CrossRef Pubmed Google scholar
[[20]]
Marques L R, Ando R A. . Chemphyschem, 2023, 24: e202200715,
CrossRef Pubmed Google scholar
[[21]]
Ran Y, Yu X L, Liu J Q, Cui J Y, Wang J P, Wang L, Zhang Y H, Xiang X, Ye J H. . J. Mater. Chem. A, 2020, 8: 13292,
CrossRef Google scholar
[[22]]
Caputo C B, Geier S J, Winkelhaus D, Mitzel N W, Vukotic V N, Loeb S J, Stephan D W. . Dalton Trans., 2012, 41: 2131,
CrossRef Pubmed Google scholar
[[23]]
özgün T, Ye K Y, Daniliuc C G, Wibbeling B, Liu L, Grimme S, Kehr G, Erker G. . Chem. Eur. J., 2016, 22: 5988,
CrossRef Pubmed Google scholar
[[24]]
Sivaev I B, Bregadze V I. . Coord. Chem. Rev., 2014, 270/271: 75,
CrossRef Google scholar
[[25]]
Beringhelli T, Donghi D, Maggioni D, D’Alfonso G. . Coord. Chem. Rev., 2008, 252: 2292,
CrossRef Google scholar
[[26]]
Reddy J S, Xu B-H, Mahdi T, Froehlich R, Kehr G, Stephan D W, Erker G. . Organometallics, 2012, 31: 5638,
CrossRef Google scholar
[[27]]
Wang J H, Wang G, Wang W Q, Zhang Z S, Liu Z T, Hao Z P. . J. Mater. Chem. A, 2014, 2: 14028,
CrossRef Google scholar
[[28]]
Ou J L, Zhao T X, Xiong W J, Liang H, Liu Q, Hu X B. . Chem. Eng. J., 2023, 477: 147248,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/