MOF-derived 1D CGO Cathode for Efficient Solid Oxide Electrolysis Cells

Jiayu Tian , Qi Sun , Pei Liu , Jiuyi Dai , Yezheng Cai , Miao Xu , Tian-Nan Ye , Jie-Sheng Chen

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 737 -746.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 737 -746. DOI: 10.1007/s40242-024-4126-1
Article

MOF-derived 1D CGO Cathode for Efficient Solid Oxide Electrolysis Cells

Author information +
History +
PDF

Abstract

Solid oxide electrolysis cells (SOECs) provide a promising way for converting renewable energy into chemical fuels. Traditionally, NiO/CGO (nickel-gadolinium doped ceria) cermet has shown its excellent properties in ionic and electronic conductivity under reducing conditions. Herein, we developed a novel 1D NiO/CGO cathode through a cerium metal-organic framework (MOF) derived process. The cathode’s 1D nanostructure integrated with a microchannel scaffold facilitates enhanced mass transport, providing vertically aligned pathways for CO2 and H2O diffusion. Additionally, the 1D framework increases the number of interfacial sites and reduces ion diffusion distances, thereby simplifying electron/ion transport. Consequently, this advanced cathode achieved a significant breakthrough in SOEC performance, maintaining efficient CO2 and H2O electrolysis at an extraordinary current density of 1.41 A/cm2 at 1.5 V and excellent stability over 24 h at 850 °C. The enhanced performance of this newly developed cathode not only achieves a remarkable 100% improvement compared to those of NiO/CGO cathodes with varying geometrical configurations but also surpasses those of commercial NiO/CGO catalysts by an outstanding 40% when tested under identical conditions. The development of the 1D NiO/CGO enhances the efficiency and durability of ceramic cathodes for CO2 and H2O co-electrolysis in SOECs and improves the scalability and effectiveness of SOECs in renewable energy applications.

Keywords

Cerium metal-organic framework / One-dimensional structure / Gadolinium doped ceria / CO2 activation / co-Electrolysis

Cite this article

Download citation ▾
Jiayu Tian, Qi Sun, Pei Liu, Jiuyi Dai, Yezheng Cai, Miao Xu, Tian-Nan Ye, Jie-Sheng Chen. MOF-derived 1D CGO Cathode for Efficient Solid Oxide Electrolysis Cells. Chemical Research in Chinese Universities, 2024, 40(4): 737-746 DOI:10.1007/s40242-024-4126-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hauch A, Kungas R, Blennow P, Hansen A B, Hansen J B, Mathiesen B V. Science, 2020, 370: 186.

[2]

Song Y, Zhang X, Xie K, Wang G, Bao X. Adv. Mater., 2019, 31: e1902033.

[3]

Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J. Chem. Soc. Rev., 2017, 46: 1427.

[4]

Graves C, Ebbesen S D, Jensen S H, Simonsen S B, Mogensen M B. Nat. Mater., 2015, 14: 239.

[5]

Lv H, Lin L, Zhang X, Li R, Song Y, Matsumoto H. Nat. Commun., 2021, 12: 5665.

[6]

Xu H, Zhang Z, Liu J, Do-Thanh C L, Chen H, Xu S. Nat. Commun., 2020, 11: 3908.

[7]

Shimada H, Yamaguchi T, Kishimoto H, Sumi H, Yamaguchi Y, Nomura K. Nat. Commun., 2019, 10: 5432.

[8]

Chen Y., Bu Y., Zhang Y., Yan R., Ding D., Zhao B., Adv. Energy Mater., 2016, 7

[9]

Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C. Adv. Mater., 2020, 32: e1906193.

[10]

Lee S, Kim M, Lee K T, Irvine J T S, Shin T H. Adv. Energy Mater., 2021, 11: 2100339.

[11]

Li Y, Li Y, Wan Y, Xie Y, Zhu J, Pan H. Adv. Energy Mater., 2018, 9: 1803156.

[12]

Song Y, Zhou S, Dong Q, Li Y, Zhang X, Ta N. Angew.Chem.Int. Ed. Engl., 2019, 58: 4617.

[13]

Song Y, Min J, Guo Y, Li R, Zou G, Li M. Angew.Chem.Int. Ed. Engl., 2024, 63(5): e202313361.

[14]

O’Leary W, Giordano L, Park J, Nonnenmann S S, Shao-Horn Y, Rupp J L M. J. Am. Chem. Soc., 2023, 145: 13768.

[15]

Tan T, Wang Z, Qin M, Zhong W, Hu J, Yang C. Adv. Funct. Mater., 2022, 32: 2202878.

[16]

Li T, Wang T, Wei T, Hu X, Ye Z, Wang Z. Small, 2021, 17: e2007211.

[17]

Anelli S, Baiutti F, Hornés A, Bernadet L, Torrell M, Tarancón A. J. Mater. Chem. A, 2019, 7: 27458.

[18]

Tan Z, Song J T, Takagaki A, Ishihara T. J. Mater. Chem. A, 2021, 9: 1530.

[19]

Shaur A, Drazkowski M, Zhu S, Boukamp B, Bouwmeester H J M. J. Mater. Chem. A, 2023, 11: 25020.

[20]

Luo Y, Liu T, Wang Y, Ding M. Chem. Catal., 2023, 3: 100815.

[21]

Hu S, Li H, Dong X, Cao Z, Pang B, Zhang L. J. Energy Chem., 2022, 66: 603.

[22]

Aitbekova A, Wu L, Wrasman C J, Boubnov A, Hoffman A S, Goodman E D. J.Am.Chem.Soc., 2018, 140: 13736.

[23]

Liu K, Zhao X, Ren G, Yang T, Ren Y, Lee A F. Nat. Commun., 2020, 11: 1263.

[24]

Tong J, Ni N, Zhou B, Yang C, Reddy K M, Tu H. ACS Catal., 2024, 14: 2897.

[25]

Zhang L., Jiang Y., Zhu K., Shi N., Rehman Z. U., Peng R., Small Methods, 2024, e2301686.

[26]

Jiang Y, Ye L, Zhang S, Xia C. J. Mater. Chem. A, 2022, 10: 9380.

[27]

Tong X, Hendriksen P V, Hauch A, Sun X, Chen M. J. Electrochem. Soc., 2020, 167: 024519.

[28]

Neofytidis C, Ioannidou E, Sygellou L, Kollia M, Niakolas D K. J. Catal., 2019, 373: 260.

[29]

Yatoo M A, Habib F, Malik A H, Qazi M J, Ahmad S, Ganayee M A. MRS Commun., 2023, 13: 378.

[30]

Lu L, Liu W, Wang J, Wang Y, Xia C, Zhou X-D. Appl. Energy, 2020, 259: 114130.

[31]

Grimes J, Hong J, Barnett S A. J. Power Sources, 2022, 551: 232189.

[32]

Chen H, Wang J, Xu X. J. Therm. Sci., 2023, 32: 1973.

[33]

Sun C, Bian L, Qi J, Yu W, Li S, Hou Y. J. Power Sources, 2022, 521: 230984.

[34]

Li P, Xuan Y, Jiang B, Zhang S, Xia C. Electrochem. Commun., 2022, 134: 107188.

[35]

Zhou Y, Liu T, Song Y, Lv H, Liu Q, Ta N. Chinese J. Catal., 2022, 43: 1710.

[36]

Qi J, Bian L, Ting T, Liu C, Yang L, Xu Y. J. Power Sources, 2023, 570: 233032.

[37]

Seo J, Gowda A, Babu S V. ECS J. Solid State Sci. Technol., 2018, 7: 243.

[38]

Huang Z, Shang L, Qi H, Zhao Z, Tu B, Yang W. ChemElectroChem, 2019, 6: 1668.

[39]

Singh V, Muroyama H, Matsui T, Hashigami S, Inagaki T, Eguchi K. J. Power Sources, 2015, 293: 642.

[40]

Sun W, Li X, Sun C, Huang Z, Xu H, Shen W. Catalysts, 2019, 9: 682.

[41]

Jacobsen J, Ienco A, D’Amato R, Costantino F, Stock N. Dalton Trans., 2020, 49: 16551.

[42]

Farrag M. Microporous Mesoporous Mater., 2021, 312: 110783.

[43]

Zhou Y, Zhou Z, Song Y, Zhang X, Guan F, Lv H. Nano Energy, 2018, 50: 43.

[44]

Yassin J M, Taddesse A M, Sánchez-Sánchez M. Microporous Mesoporous Mater., 2021, 324: 111303.

[45]

Pervez M N, Chen C, Li Z, Naddeo V, Zhao Y. Chemosphere, 2022, 303(Pt1): 134934.

[46]

Bogolowski N, Iwanschitz B, Drillet J F. Fuel Cells, 2015, 15: 711.

[47]

Ishibashi Y, Matsumoto K, Futamura S, Tachikawa Y, Matsuda J, Lyth S M. J. Electrochem. Soc., 2020, 167: 124517.

[48]

Cho C-K, Choi B-H, Lee K-T. J. Alloys Compd., 2012, 541: 433.

[49]

Lee S-I, Vohs J M, Gorte R J. J. Electrochem. Soc., 2004, 151: A1319.

[50]

Lu X C, Zhu J H, Bi Z H. Solid State Ionics, 2009, 180: 265.

[51]

Nikolla E, Schwank J, Linic S. J. Electrochem. Soc., 2009, 156: B1312.

[52]

Hou X, Zhao K, Marina O A, Grant Norton M, Ha S. Appl. Catal. B-Environ., 2019, 242: 31.

[53]

Tian Y, Zhang L, Jia L, Wang X, Yang J, Chi B. J. CO2 Util., 2019, 31: 43.

[54]

Li P., Dong R., Jiang X., Zhang S., Liu T., Wang R., J. Electroanal. Chem., 2020, 873

[55]

Peng X, Tian Y, Liu Y, Wang W, Jia L, Pu J. J. CO2 Util., 2020, 36: 18.

[56]

Tian Y, Zheng H, Zhang L, Chi B, Pu J, Li J. J. Electrochem. Soc., 2018, 165: F17.

[57]

Wang Y, Yang Z, Han M, Chang J. RSC Adv., 201, 6: 112253.

[58]

Yang C, Lu Y, Zhang L, Kong Z, Yang T, Tao L. Small Struct., 2021, 2: 2100058.

[59]

Kullgren J, Hermansson K, Castleton C. J Chem Phys, 2012, 137: 044705.

[60]

Zhang S, Huang Z Q, Ma Y, Gao W, Li J, Cao F. Nat. Commun., 2017, 8: 15266.

AI Summary AI Mindmap
PDF

235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/