MOF-derived 1D CGO Cathode for Efficient Solid Oxide Electrolysis Cells

Jiayu Tian, Qi Sun, Pei Liu, Jiuyi Dai, Yezheng Cai, Miao Xu, Tian-Nan Ye, Jie-Sheng Chen

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 737-746. DOI: 10.1007/s40242-024-4126-1
Article

MOF-derived 1D CGO Cathode for Efficient Solid Oxide Electrolysis Cells

Author information +
History +

Abstract

Solid oxide electrolysis cells (SOECs) provide a promising way for converting renewable energy into chemical fuels. Traditionally, NiO/CGO (nickel-gadolinium doped ceria) cermet has shown its excellent properties in ionic and electronic conductivity under reducing conditions. Herein, we developed a novel 1D NiO/CGO cathode through a cerium metal-organic framework (MOF) derived process. The cathode’s 1D nanostructure integrated with a microchannel scaffold facilitates enhanced mass transport, providing vertically aligned pathways for CO2 and H2O diffusion. Additionally, the 1D framework increases the number of interfacial sites and reduces ion diffusion distances, thereby simplifying electron/ion transport. Consequently, this advanced cathode achieved a significant breakthrough in SOEC performance, maintaining efficient CO2 and H2O electrolysis at an extraordinary current density of 1.41 A/cm2 at 1.5 V and excellent stability over 24 h at 850 °C. The enhanced performance of this newly developed cathode not only achieves a remarkable 100% improvement compared to those of NiO/CGO cathodes with varying geometrical configurations but also surpasses those of commercial NiO/CGO catalysts by an outstanding 40% when tested under identical conditions. The development of the 1D NiO/CGO enhances the efficiency and durability of ceramic cathodes for CO2 and H2O co-electrolysis in SOECs and improves the scalability and effectiveness of SOECs in renewable energy applications.

Keywords

Cerium metal-organic framework / One-dimensional structure / Gadolinium doped ceria / CO2 activation / co-Electrolysis

Cite this article

Download citation ▾
Jiayu Tian, Qi Sun, Pei Liu, Jiuyi Dai, Yezheng Cai, Miao Xu, Tian-Nan Ye, Jie-Sheng Chen. MOF-derived 1D CGO Cathode for Efficient Solid Oxide Electrolysis Cells. Chemical Research in Chinese Universities, 2024, 40(4): 737‒746 https://doi.org/10.1007/s40242-024-4126-1

References

[1]
Hauch A, Kungas R, Blennow P, Hansen A B, Hansen J B, Mathiesen B V. . Science, 2020, 370: 186,
CrossRef Google scholar
[2]
Song Y, Zhang X, Xie K, Wang G, Bao X. . Adv. Mater., 2019, 31: e1902033,
CrossRef Google scholar
[3]
Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J. . Chem. Soc. Rev., 2017, 46: 1427,
CrossRef Google scholar
[4]
Graves C, Ebbesen S D, Jensen S H, Simonsen S B, Mogensen M B. . Nat. Mater., 2015, 14: 239,
CrossRef Google scholar
[5]
Lv H, Lin L, Zhang X, Li R, Song Y, Matsumoto H. . Nat. Commun., 2021, 12: 5665,
CrossRef Google scholar
[6]
Xu H, Zhang Z, Liu J, Do-Thanh C L, Chen H, Xu S. . Nat. Commun., 2020, 11: 3908,
CrossRef Google scholar
[7]
Shimada H, Yamaguchi T, Kishimoto H, Sumi H, Yamaguchi Y, Nomura K. . Nat. Commun., 2019, 10: 5432,
CrossRef Google scholar
[8]
Chen Y., Bu Y., Zhang Y., Yan R., Ding D., Zhao B., Adv. Energy Mater., 2016, 7
[9]
Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C. . Adv. Mater., 2020, 32: e1906193,
CrossRef Google scholar
[10]
Lee S, Kim M, Lee K T, Irvine J T S, Shin T H. . Adv. Energy Mater., 2021, 11: 2100339,
CrossRef Google scholar
[11]
Li Y, Li Y, Wan Y, Xie Y, Zhu J, Pan H. . Adv. Energy Mater., 2018, 9: 1803156,
CrossRef Google scholar
[12]
Song Y, Zhou S, Dong Q, Li Y, Zhang X, Ta N. . Angew.Chem.Int. Ed. Engl., 2019, 58: 4617,
CrossRef Google scholar
[13]
Song Y, Min J, Guo Y, Li R, Zou G, Li M. . Angew.Chem.Int. Ed. Engl., 2024, 63(5): e202313361,
CrossRef Google scholar
[14]
O’Leary W, Giordano L, Park J, Nonnenmann S S, Shao-Horn Y, Rupp J L M. . J. Am. Chem. Soc., 2023, 145: 13768,
CrossRef Google scholar
[15]
Tan T, Wang Z, Qin M, Zhong W, Hu J, Yang C. . Adv. Funct. Mater., 2022, 32: 2202878,
CrossRef Google scholar
[16]
Li T, Wang T, Wei T, Hu X, Ye Z, Wang Z. . Small, 2021, 17: e2007211,
CrossRef Google scholar
[17]
Anelli S, Baiutti F, Hornés A, Bernadet L, Torrell M, Tarancón A. . J. Mater. Chem. A, 2019, 7: 27458,
CrossRef Google scholar
[18]
Tan Z, Song J T, Takagaki A, Ishihara T. . J. Mater. Chem. A, 2021, 9: 1530,
CrossRef Google scholar
[19]
Shaur A, Drazkowski M, Zhu S, Boukamp B, Bouwmeester H J M. . J. Mater. Chem. A, 2023, 11: 25020,
CrossRef Google scholar
[20]
Luo Y, Liu T, Wang Y, Ding M. . Chem. Catal., 2023, 3: 100815,
CrossRef Google scholar
[21]
Hu S, Li H, Dong X, Cao Z, Pang B, Zhang L. . J. Energy Chem., 2022, 66: 603,
CrossRef Google scholar
[22]
Aitbekova A, Wu L, Wrasman C J, Boubnov A, Hoffman A S, Goodman E D. . J.Am.Chem.Soc., 2018, 140: 13736,
CrossRef Google scholar
[23]
Liu K, Zhao X, Ren G, Yang T, Ren Y, Lee A F. . Nat. Commun., 2020, 11: 1263,
CrossRef Google scholar
[24]
Tong J, Ni N, Zhou B, Yang C, Reddy K M, Tu H. . ACS Catal., 2024, 14: 2897,
CrossRef Google scholar
[25]
Zhang L., Jiang Y., Zhu K., Shi N., Rehman Z. U., Peng R., Small Methods, 2024, e2301686.
[26]
Jiang Y, Ye L, Zhang S, Xia C. . J. Mater. Chem. A, 2022, 10: 9380,
CrossRef Google scholar
[27]
Tong X, Hendriksen P V, Hauch A, Sun X, Chen M. . J. Electrochem. Soc., 2020, 167: 024519,
CrossRef Google scholar
[28]
Neofytidis C, Ioannidou E, Sygellou L, Kollia M, Niakolas D K. . J. Catal., 2019, 373: 260,
CrossRef Google scholar
[29]
Yatoo M A, Habib F, Malik A H, Qazi M J, Ahmad S, Ganayee M A. . MRS Commun., 2023, 13: 378,
CrossRef Google scholar
[30]
Lu L, Liu W, Wang J, Wang Y, Xia C, Zhou X-D. . Appl. Energy, 2020, 259: 114130,
CrossRef Google scholar
[31]
Grimes J, Hong J, Barnett S A. . J. Power Sources, 2022, 551: 232189,
CrossRef Google scholar
[32]
Chen H, Wang J, Xu X. . J. Therm. Sci., 2023, 32: 1973,
CrossRef Google scholar
[33]
Sun C, Bian L, Qi J, Yu W, Li S, Hou Y. . J. Power Sources, 2022, 521: 230984,
CrossRef Google scholar
[34]
Li P, Xuan Y, Jiang B, Zhang S, Xia C. . Electrochem. Commun., 2022, 134: 107188,
CrossRef Google scholar
[35]
Zhou Y, Liu T, Song Y, Lv H, Liu Q, Ta N. . Chinese J. Catal., 2022, 43: 1710,
CrossRef Google scholar
[36]
Qi J, Bian L, Ting T, Liu C, Yang L, Xu Y. . J. Power Sources, 2023, 570: 233032,
CrossRef Google scholar
[37]
Seo J, Gowda A, Babu S V. . ECS J. Solid State Sci. Technol., 2018, 7: 243,
CrossRef Google scholar
[38]
Huang Z, Shang L, Qi H, Zhao Z, Tu B, Yang W. . ChemElectroChem, 2019, 6: 1668,
CrossRef Google scholar
[39]
Singh V, Muroyama H, Matsui T, Hashigami S, Inagaki T, Eguchi K. . J. Power Sources, 2015, 293: 642,
CrossRef Google scholar
[40]
Sun W, Li X, Sun C, Huang Z, Xu H, Shen W. . Catalysts, 2019, 9: 682,
CrossRef Google scholar
[41]
Jacobsen J, Ienco A, D’Amato R, Costantino F, Stock N. . Dalton Trans., 2020, 49: 16551,
CrossRef Google scholar
[42]
Farrag M. . Microporous Mesoporous Mater., 2021, 312: 110783,
CrossRef Google scholar
[43]
Zhou Y, Zhou Z, Song Y, Zhang X, Guan F, Lv H. . Nano Energy, 2018, 50: 43,
CrossRef Google scholar
[44]
Yassin J M, Taddesse A M, Sánchez-Sánchez M. . Microporous Mesoporous Mater., 2021, 324: 111303,
CrossRef Google scholar
[45]
Pervez M N, Chen C, Li Z, Naddeo V, Zhao Y. . Chemosphere, 2022, 303(Pt1): 134934,
CrossRef Google scholar
[46]
Bogolowski N, Iwanschitz B, Drillet J F. . Fuel Cells, 2015, 15: 711,
CrossRef Google scholar
[47]
Ishibashi Y, Matsumoto K, Futamura S, Tachikawa Y, Matsuda J, Lyth S M. . J. Electrochem. Soc., 2020, 167: 124517,
CrossRef Google scholar
[48]
Cho C-K, Choi B-H, Lee K-T. . J. Alloys Compd., 2012, 541: 433,
CrossRef Google scholar
[49]
Lee S-I, Vohs J M, Gorte R J. . J. Electrochem. Soc., 2004, 151: A1319,
CrossRef Google scholar
[50]
Lu X C, Zhu J H, Bi Z H. . Solid State Ionics, 2009, 180: 265,
CrossRef Google scholar
[51]
Nikolla E, Schwank J, Linic S. . J. Electrochem. Soc., 2009, 156: B1312,
CrossRef Google scholar
[52]
Hou X, Zhao K, Marina O A, Grant Norton M, Ha S. . Appl. Catal. B-Environ., 2019, 242: 31,
CrossRef Google scholar
[53]
Tian Y, Zhang L, Jia L, Wang X, Yang J, Chi B. . J. CO2 Util., 2019, 31: 43,
CrossRef Google scholar
[54]
Li P., Dong R., Jiang X., Zhang S., Liu T., Wang R., J. Electroanal. Chem., 2020, 873
[55]
Peng X, Tian Y, Liu Y, Wang W, Jia L, Pu J. . J. CO2 Util., 2020, 36: 18,
CrossRef Google scholar
[56]
Tian Y, Zheng H, Zhang L, Chi B, Pu J, Li J. . J. Electrochem. Soc., 2018, 165: F17,
CrossRef Google scholar
[57]
Wang Y, Yang Z, Han M, Chang J. . RSC Adv., 2016, 6: 112253,
CrossRef Google scholar
[58]
Yang C, Lu Y, Zhang L, Kong Z, Yang T, Tao L. . Small Struct., 2021, 2: 2100058,
CrossRef Google scholar
[59]
Kullgren J, Hermansson K, Castleton C. . J Chem Phys, 2012, 137: 044705,
CrossRef Google scholar
[60]
Zhang S, Huang Z Q, Ma Y, Gao W, Li J, Cao F. . Nat. Commun., 2017, 8: 15266,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/