Reaction Kinetics and Secondary Organic Aerosol Composition Analysis of 2-Cyclohexen-1-one with NO3 Radicals

Lin Hu, Shengrui Tong, Yanyong Xu, Hailiang Zhang, Shanshan Yu, Meifang Chen, Maofa Ge

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 730-736. DOI: 10.1007/s40242-024-4119-0
Article

Reaction Kinetics and Secondary Organic Aerosol Composition Analysis of 2-Cyclohexen-1-one with NO3 Radicals

Author information +
History +

Abstract

Unsaturated ketones are typical oxygenated volatile organic compounds (OVOCs) with high reactivity, and are important precursors in air pollution. The sources of OVOCs are complex and include direct emissions and secondary oxidation formation of VOCs in the atmosphere. 2-Cyclohexen-1-one is a widespread substance, and is derived from the industrial catalytic oxidation of cyclohexene. In this paper, we investigated the rate constants of the chemical reactions of 2-cyclohexen-1-one with NO3 radicals, which is (7.25±0.29)×10−15 cm3·molecule−1·s−1 at 298 K and under 1 atm (1 atm=101325Pa). It supplemented the kinetics of NO3 radicals database, and revealed its effects in the nighttime atmosphere. In addition, the reaction products of 2-cyclohexen-1-one with NO3 radicals were detected by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which revealed a series of nitrate esters in the composition of the secondary organic aerosol (SOA), which may reduce atmospheric visibility. Finally, the possible pathways for the generation of the products were developed.

Keywords

Kinetics / Unsaturated ketone / Nitrate radical / Secondary organic aerosol

Cite this article

Download citation ▾
Lin Hu, Shengrui Tong, Yanyong Xu, Hailiang Zhang, Shanshan Yu, Meifang Chen, Maofa Ge. Reaction Kinetics and Secondary Organic Aerosol Composition Analysis of 2-Cyclohexen-1-one with NO3 Radicals. Chemical Research in Chinese Universities, 2024, 40(4): 730‒736 https://doi.org/10.1007/s40242-024-4119-0

References

[1]
Calvert J., Mellouki A., Orlando J., Pilling M., Wallington T., Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, 2011.
[2]
Mellouki A, Wallington T J, Chen J. . Chemical Reviews, 2015, 115: 3984,
CrossRef Google scholar
[3]
Illmann N, Gibilisco R G, Bejan I G, Patroescu-Klotz I, Wiesen P. . Atmospheric Chemistry and Physics, 2021, 21: 13667,
CrossRef Google scholar
[4]
Blanco M B, Barnes I, Wiesen P. . The Journal of Physical Chemistry A, 2012, 116: 6033,
CrossRef Google scholar
[5]
Siegel H, Eggersdorfer M. . Ketones, Ullmann’s Encyclopedia of Industrial Chemistry, 2000 Weinheim Wiley-VCH Verlag GmbH & Co. KGaA
[6]
Li W, Chen M, Chen Y, Tong S, Ge M, Guo Y, Zhang Y. . Journal of Environmental Sciences, 2020, 95: 23,
CrossRef Google scholar
[7]
Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. . The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, 2002 New York Oxford University Press,
CrossRef Google scholar
[8]
Atkinson R, Arey J. . Chemical Reviews, 2003, 103: 4605,
CrossRef Google scholar
[9]
Aschmann S M, Nishino N, Arey J, Atkinson R. . Environmental Science & Technology, 2011, 45: 1859,
CrossRef Google scholar
[10]
Brown S S, Stutz J. . Chemical Society Reviews, 2012, 41: 6405,
CrossRef Google scholar
[11]
Yan C, Tham Y J, Nie W, Xia M, Wang H, Guo Y, Ma W, Zhan J, Hua C, Li Y, Deng C, Li Y, Zheng F, Chen X, Li Q, Zhang G, Mahajan A S, Cuevas C A, Huang D D, Wang Z, Sun Y, Saiz-Lopez A, Bianchi F, Kerminen V-M, Worsnop D R, Donahue N M, Jiang J, Liu Y, Ding A, Kulmala M. . Nature Geoscience, 2023, 16: 975,
CrossRef Google scholar
[12]
Boyd C M, Sanchez J, Xu L, Eugene A J, Nah T, Tuet W Y, Guzman M I, Ng N L. . Atmospheric Chemistry Physics, 2015, 15: 7497,
CrossRef Google scholar
[13]
Ng N L, Brown S S, Archibald A T, Atlas E, Cohen R C, Crowley J N, Day D A, Donahue N M, Fry J L, Fuchs H, Griffin R J, Guzman M I, Herrmann H, Hodzic A, Iinuma Y, Jimenez J L, Kiendler-Scharr A, Lee B H, Luecken D J, Mao J, McLaren R, Mutzel A, Osthoff H D, Ouyang B, Picquet-Varrault B, Platt U, Pye H O T, Rudich Y, Schwantes R H, Shiraiwa M, Stutz J, Thornton J A, Tilgner A, Williams B J, Zaveri R A. . Atmospheric Chemistry and Physics, 2017, 17: 2103,
CrossRef Google scholar
[14]
Canosa-Mas C E, Flugge M L, King M D, Wayne R P. . Physical Chemistry Chemical Physics, 2005, 7: 643,
CrossRef Google scholar
[15]
Adhikari P, Bhattacharyya D, Deori K, Sarmah B K, Das A. . Chemistry A European Journal, 2024, 30: 202303206,
CrossRef Google scholar
[16]
Kalalian C, Roth E, Chakir A. . Atmospheric Environment, 2018, 190: 308,
CrossRef Google scholar
[17]
Kaur N., Aggarwal A., Sharma N., Choudhary B. J. I. J. o. P. S., Research D., International Journal of Pharmaceutical Sciences and Drug Research, 2012, 199.
[18]
Burguete A, Pontiki E, Hadjipavlou-Litina D, Villar R, Vicente E, Solano B, Ancizu S, Pérez-Silanes S, Aldana I, Monge A. . Bioorganic & Medicinal Chemistry Letters, 2007, 17: 6439,
CrossRef Google scholar
[19]
Zhang B, Guo R, Hu Y, Dong X, Lin N, Dai X, Wu H, Ma S, Yang B. . RSC Advances, 2017, 7: 31899,
CrossRef Google scholar
[20]
McQuaid J B, Stocker D W, Pilling M J. . International Journal of Chemical Kinetics, 2002, 34: 7,
CrossRef Google scholar
[21]
Ahn S, Nauert S L, Hicks K E, Ardagh M A, Schweitzer N M, Farha O K, Notestein J M. . ACS Catalysis, 2020, 10: 2817,
CrossRef Google scholar
[22]
Zhao Z, Husainy S, Smith G D. . The Journal of Physical Chemistry A, 2011, 115: 12161,
CrossRef Google scholar
[23]
Canosa-Mas C E, Carr S, King M D, Shallcross D E, Thompson K C, Wayne R P. . Physical Chemistry Chemical Physics, 1999, 1: 4195,
CrossRef Google scholar
[24]
Mayorga R, Chen K, Raeofy N, Woods M, Lum M, Zhao Z, Zhang W, Bahreini R, Lin Y-H, Zhang H. . Environmental Science & Technology, 2022, 56: 7761,
CrossRef Google scholar
[25]
Gai Y, Ge M, Wang W. . Atmospheric Environment, 2011, 45: 53,
CrossRef Google scholar
[26]
He Z, Luo J, Lv C. . Chinese Journal of Explosives & Propellants, 2010, 33: 1
[27]
Grimme S, Ehrlich S, Goerigk L. . Journal of Computational Chemistry, 2011, 32: 1456,
CrossRef Google scholar
[28]
Xu Y, Tong S, Li W, Chen M, Hu L, Zhang H, Wang S, Ge M. . Journal of Environmental Sciences, 2025, 151: 331,
CrossRef Google scholar
[29]
Lu T, Chen F. . Journal of Computational Chemistry, 2012, 33: 580,
CrossRef Google scholar
[30]
Humphrey W, Dalke A, Schulten K. . Journal of Molecular Graphics, 1996, 14: 33-8, 27–8
CrossRef Google scholar
[31]
Mutzel A, Zhang Y, Böge O, Rodigast M, Kolodziejczyk A, Wang X, Herrmann H. . Atmospheric Chemistry and Physics, 2021, 21: 8479,
CrossRef Google scholar
[32]
Kumar V, Slowik J G, Baltensperger U, Prevot A S H, Bell D M. . Environmental Science & Technology, 2023, 57: 11572,
CrossRef Google scholar
[33]
Stewart D J, Almabrok S H, Lockhart J P, Mohamed O M, Nutt D R, Pfrang C, Marston G. . Atmospheric Environment, 2013, 70: 227,
CrossRef Google scholar
[34]
Hallquist M, Langer S, Ljungström E, Wängberg I. . International Journal of Chemical Kinetics, 1996, 28: 467,
CrossRef Google scholar
[35]
Atkinson R. . Journal of Physical and Chemical Reference Data, 1991, 20: 459,
CrossRef Google scholar
[36]
Ren Y, McGillen M, Ouchen I, Daële V, Mellouki A. . Journal of Environmental Sciences, 2020, 95: 111,
CrossRef Google scholar
[37]
Kerdouci J, Picquet-Varrault B, Durand-Jolibois R, Gaimoz C, Doussin J-F. . The Journal of Physical Chemistry A, 2012, 116: 10135,
CrossRef Google scholar
[38]
McGillen M R, Archibald A T, Carey T, Leather K E, Shallcross D E, Wenger J C, Percival C J. . Physical Chemistry Chemical Physics, 2011, 13: 2842,
CrossRef Google scholar
[39]
Murray J S, Politzer P. . WIRES Computational Molecular Science, 2011, 1: 153,
CrossRef Google scholar
[40]
Chen H, Ren Y, Cazaunau M, Daële V, Hu Y, Chen J, Mellouki A. . Chemical Physics Letters, 2015, 621: 71,
CrossRef Google scholar
[41]
Atkinson R., Aschmann S. M., Winer A. M., Pitts J. N. Jr., 1981, 13, 1133.
[42]
Murray K K, Boyd R K, Eberlin M N, Langley G J, Li L, Naito Y. . Pure and Applied Chemistry, 2013, 85: 1515,
CrossRef Google scholar
[43]
Patiny L, Borel A. . Journal of Chemical Information and Modeling, 2013, 53: 1223,
CrossRef Google scholar
[44]
Sarangi B, Aggarwal S G, Gupta P K. . Aerosol and Air Quality Research, 2015, 15: 166,
CrossRef Google scholar
[45]
DeVault M P, Ziola A C, Ziemann P J. . The Journal of Physical Chemistry A, 2022, 126: 7719,
CrossRef Google scholar
[46]
Chuong B, Stevens P S. . International Journal of Chemical Kinetics, 2004, 36: 12,
CrossRef Google scholar
[47]
Moise A R, Al-Babili S, Wurtzel E T. . Chemical Reviews, 2014, 114: 164,
CrossRef Google scholar
[48]
Cao Y, Ma Q, Chu B, He H. . Frontiers of Environmental Science & Engineering, 2022, 17: 48,
CrossRef Google scholar
[49]
Atkinson R, Aschmann S M, Winer A M, Pitts J N Jr. . International Journal of Chemical Kinetics, 1981, 13: 1133,
CrossRef Google scholar
[50]
Khan M A H, Ashfold M J, Nickless G, Martin D, Watson L A, Hamer P D, Wayne R P, Canosa-Mas C E, Shallcross D E. . Atmospheric Science Letters, 2008, 9: 140,
CrossRef Google scholar
[51]
Mayorga R, Xia Y, Zhao Z, Long B, Zhang H. . Environmental Science & Technology, 2022, 56: 15337,
CrossRef Google scholar
[52]
Draper D C, Farmer D K, Desyaterik Y, Fry J L. . Atmospheric Chemistry Physics, 2015, 15: 12267,
CrossRef Google scholar
[53]
Rollins A W, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M, Cohen R C J S. . Science, 2012, 337: 1210,
CrossRef Google scholar
[54]
Press N A. . Formaldehyde and Other Aldehydes, 1982 Washington D. C. National Academy Press
[55]
Andrade M. V. A. S. d., Pinheiro H. L. C., Pereira P. A. d. P., Andrade J. B. D., Química Nova, 2002, 25.

Accesses

Citations

Detail

Sections
Recommended

/