Reaction Kinetics and Secondary Organic Aerosol Composition Analysis of 2-Cyclohexen-1-one with NO3 Radicals

Lin Hu , Shengrui Tong , Yanyong Xu , Hailiang Zhang , Shanshan Yu , Meifang Chen , Maofa Ge

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 730 -736.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 730 -736. DOI: 10.1007/s40242-024-4119-0
Article

Reaction Kinetics and Secondary Organic Aerosol Composition Analysis of 2-Cyclohexen-1-one with NO3 Radicals

Author information +
History +
PDF

Abstract

Unsaturated ketones are typical oxygenated volatile organic compounds (OVOCs) with high reactivity, and are important precursors in air pollution. The sources of OVOCs are complex and include direct emissions and secondary oxidation formation of VOCs in the atmosphere. 2-Cyclohexen-1-one is a widespread substance, and is derived from the industrial catalytic oxidation of cyclohexene. In this paper, we investigated the rate constants of the chemical reactions of 2-cyclohexen-1-one with NO3 radicals, which is (7.25±0.29)×10−15 cm3·molecule−1·s−1 at 298 K and under 1 atm (1 atm=101325Pa). It supplemented the kinetics of NO3 radicals database, and revealed its effects in the nighttime atmosphere. In addition, the reaction products of 2-cyclohexen-1-one with NO3 radicals were detected by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which revealed a series of nitrate esters in the composition of the secondary organic aerosol (SOA), which may reduce atmospheric visibility. Finally, the possible pathways for the generation of the products were developed.

Keywords

Kinetics / Unsaturated ketone / Nitrate radical / Secondary organic aerosol

Cite this article

Download citation ▾
Lin Hu, Shengrui Tong, Yanyong Xu, Hailiang Zhang, Shanshan Yu, Meifang Chen, Maofa Ge. Reaction Kinetics and Secondary Organic Aerosol Composition Analysis of 2-Cyclohexen-1-one with NO3 Radicals. Chemical Research in Chinese Universities, 2024, 40(4): 730-736 DOI:10.1007/s40242-024-4119-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calvert J., Mellouki A., Orlando J., Pilling M., Wallington T., Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, 2011.

[2]

Mellouki A, Wallington T J, Chen J. Chemical Reviews, 2015, 115: 3984.

[3]

Illmann N, Gibilisco R G, Bejan I G, Patroescu-Klotz I, Wiesen P. Atmospheric Chemistry and Physics, 2021, 21: 13667.

[4]

Blanco M B, Barnes I, Wiesen P. The Journal of Physical Chemistry A, 2012, 116: 6033.

[5]

Siegel H, Eggersdorfer M. Ketones, Ullmann’s Encyclopedia of Industrial Chemistry, 2000, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA

[6]

Li W, Chen M, Chen Y, Tong S, Ge M, Guo Y, Zhang Y. Journal of Environmental Sciences, 2020, 95: 23.

[7]

Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, 2002, New York: Oxford University Press.

[8]

Atkinson R, Arey J. Chemical Reviews, 2003, 103: 4605.

[9]

Aschmann S M, Nishino N, Arey J, Atkinson R. Environmental Science & Technology, 2011, 45: 1859.

[10]

Brown S S, Stutz J. Chemical Society Reviews, 2012, 41: 6405.

[11]

Yan C, Tham Y J, Nie W, Xia M, Wang H, Guo Y, Ma W, Zhan J, Hua C, Li Y, Deng C, Li Y, Zheng F, Chen X, Li Q, Zhang G, Mahajan A S, Cuevas C A, Huang D D, Wang Z, Sun Y, Saiz-Lopez A, Bianchi F, Kerminen V-M, Worsnop D R, Donahue N M, Jiang J, Liu Y, Ding A, Kulmala M. Nature Geoscience, 2023, 16: 975.

[12]

Boyd C M, Sanchez J, Xu L, Eugene A J, Nah T, Tuet W Y, Guzman M I, Ng N L. Atmospheric Chemistry Physics, 2015, 15: 7497.

[13]

Ng N L, Brown S S, Archibald A T, Atlas E, Cohen R C, Crowley J N, Day D A, Donahue N M, Fry J L, Fuchs H, Griffin R J, Guzman M I, Herrmann H, Hodzic A, Iinuma Y, Jimenez J L, Kiendler-Scharr A, Lee B H, Luecken D J, Mao J, McLaren R, Mutzel A, Osthoff H D, Ouyang B, Picquet-Varrault B, Platt U, Pye H O T, Rudich Y, Schwantes R H, Shiraiwa M, Stutz J, Thornton J A, Tilgner A, Williams B J, Zaveri R A. Atmospheric Chemistry and Physics, 2017, 17: 2103.

[14]

Canosa-Mas C E, Flugge M L, King M D, Wayne R P. Physical Chemistry Chemical Physics, 2005, 7: 643.

[15]

Adhikari P, Bhattacharyya D, Deori K, Sarmah B K, Das A. Chemistry A European Journal, 2024, 30: 202303206.

[16]

Kalalian C, Roth E, Chakir A. Atmospheric Environment, 2018, 190: 308.

[17]

Kaur N., Aggarwal A., Sharma N., Choudhary B. J. I. J. o. P. S., Research D., International Journal of Pharmaceutical Sciences and Drug Research, 2012, 199.

[18]

Burguete A, Pontiki E, Hadjipavlou-Litina D, Villar R, Vicente E, Solano B, Ancizu S, Pérez-Silanes S, Aldana I, Monge A. Bioorganic & Medicinal Chemistry Letters, 2007, 17: 6439.

[19]

Zhang B, Guo R, Hu Y, Dong X, Lin N, Dai X, Wu H, Ma S, Yang B. RSC Advances, 2017, 7: 31899.

[20]

McQuaid J B, Stocker D W, Pilling M J. International Journal of Chemical Kinetics, 2002, 34: 7.

[21]

Ahn S, Nauert S L, Hicks K E, Ardagh M A, Schweitzer N M, Farha O K, Notestein J M. ACS Catalysis, 2020, 10: 2817.

[22]

Zhao Z, Husainy S, Smith G D. The Journal of Physical Chemistry A, 2011, 115: 12161.

[23]

Canosa-Mas C E, Carr S, King M D, Shallcross D E, Thompson K C, Wayne R P. Physical Chemistry Chemical Physics, 1999, 1: 4195.

[24]

Mayorga R, Chen K, Raeofy N, Woods M, Lum M, Zhao Z, Zhang W, Bahreini R, Lin Y-H, Zhang H. Environmental Science & Technology, 2022, 56: 7761.

[25]

Gai Y, Ge M, Wang W. Atmospheric Environment, 2011, 45: 53.

[26]

He Z, Luo J, Lv C. Chinese Journal of Explosives & Propellants, 2010, 33: 1.

[27]

Grimme S, Ehrlich S, Goerigk L. Journal of Computational Chemistry, 2011, 32: 1456.

[28]

Xu Y, Tong S, Li W, Chen M, Hu L, Zhang H, Wang S, Ge M. Journal of Environmental Sciences, 2025, 151: 331.

[29]

Lu T, Chen F. Journal of Computational Chemistry, 2012, 33: 580.

[30]

Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics, 199, 14: 33-8. 27–8

[31]

Mutzel A, Zhang Y, Böge O, Rodigast M, Kolodziejczyk A, Wang X, Herrmann H. Atmospheric Chemistry and Physics, 2021, 21: 8479.

[32]

Kumar V, Slowik J G, Baltensperger U, Prevot A S H, Bell D M. Environmental Science & Technology, 2023, 57: 11572.

[33]

Stewart D J, Almabrok S H, Lockhart J P, Mohamed O M, Nutt D R, Pfrang C, Marston G. Atmospheric Environment, 2013, 70: 227.

[34]

Hallquist M, Langer S, Ljungström E, Wängberg I. International Journal of Chemical Kinetics, 199, 28: 467.

[35]

Atkinson R. Journal of Physical and Chemical Reference Data, 1991, 20: 459.

[36]

Ren Y, McGillen M, Ouchen I, Daële V, Mellouki A. Journal of Environmental Sciences, 2020, 95: 111.

[37]

Kerdouci J, Picquet-Varrault B, Durand-Jolibois R, Gaimoz C, Doussin J-F. The Journal of Physical Chemistry A, 2012, 116: 10135.

[38]

McGillen M R, Archibald A T, Carey T, Leather K E, Shallcross D E, Wenger J C, Percival C J. Physical Chemistry Chemical Physics, 2011, 13: 2842.

[39]

Murray J S, Politzer P. WIRES Computational Molecular Science, 2011, 1: 153.

[40]

Chen H, Ren Y, Cazaunau M, Daële V, Hu Y, Chen J, Mellouki A. Chemical Physics Letters, 2015, 621: 71.

[41]

Atkinson R., Aschmann S. M., Winer A. M., Pitts J. N. Jr., 1981, 13, 1133.

[42]

Murray K K, Boyd R K, Eberlin M N, Langley G J, Li L, Naito Y. Pure and Applied Chemistry, 2013, 85: 1515.

[43]

Patiny L, Borel A. Journal of Chemical Information and Modeling, 2013, 53: 1223.

[44]

Sarangi B, Aggarwal S G, Gupta P K. Aerosol and Air Quality Research, 2015, 15: 166.

[45]

DeVault M P, Ziola A C, Ziemann P J. The Journal of Physical Chemistry A, 2022, 126: 7719.

[46]

Chuong B, Stevens P S. International Journal of Chemical Kinetics, 2004, 36: 12.

[47]

Moise A R, Al-Babili S, Wurtzel E T. Chemical Reviews, 2014, 114: 164.

[48]

Cao Y, Ma Q, Chu B, He H. Frontiers of Environmental Science & Engineering, 2022, 17: 48.

[49]

Atkinson R, Aschmann S M, Winer A M, Pitts J N Jr International Journal of Chemical Kinetics, 1981, 13: 1133.

[50]

Khan M A H, Ashfold M J, Nickless G, Martin D, Watson L A, Hamer P D, Wayne R P, Canosa-Mas C E, Shallcross D E. Atmospheric Science Letters, 2008, 9: 140.

[51]

Mayorga R, Xia Y, Zhao Z, Long B, Zhang H. Environmental Science & Technology, 2022, 56: 15337.

[52]

Draper D C, Farmer D K, Desyaterik Y, Fry J L. Atmospheric Chemistry Physics, 2015, 15: 12267.

[53]

Rollins A W, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M, Cohen R C J S. Science, 2012, 337: 1210.

[54]

Press N A. Formaldehyde and Other Aldehydes, 1982, Washington D. C.: National Academy Press

[55]

Andrade M. V. A. S. d., Pinheiro H. L. C., Pereira P. A. d. P., Andrade J. B. D., Química Nova, 2002, 25.

AI Summary AI Mindmap
PDF

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/