Synthetic Strategies of Carbon Nanobelts and Beyond

Yanbang Li, Wansong Shang, Yu Ren, Xi-Sha Zhang, Cheng Li, Guanxin Zhang, Deqing Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 627-631.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 627-631. DOI: 10.1007/s40242-024-4117-2
Review

Synthetic Strategies of Carbon Nanobelts and Beyond

Author information +
History +

Abstract

Carbon nanobelts (CNBs) with aesthetically appealing molecular structures and outstanding physical properties have attracted more and more attentions from the scientific community due to their potential applications in synthetic materials, host-guest chemistry, optoelectronics, and so on. The synthesis of CNBs at different stages was overviewed and some representative breakthroughs and advances in synthetic strategies were highlighted and discussed. The key issue for the synthesis of CNBs is how to construct curved structures with high strain energy. We not only proposed a few unconventional CNBs as the promising target molecules, but also pointed out the bottom-up synthesis of conjugated tubular segments of carbon nanotubes sharing similar properties as carbon nanotubes is the next focus in this emerging area.

Keywords

Carbon nanobelt / Strain energy / Carbon nanoring / Single-walled carbon nanotube / Bottom-up synthesis

Cite this article

Download citation ▾
Yanbang Li, Wansong Shang, Yu Ren, Xi-Sha Zhang, Cheng Li, Guanxin Zhang, Deqing Zhang. Synthetic Strategies of Carbon Nanobelts and Beyond. Chemical Research in Chinese Universities, 2024, 40(4): 627‒631 https://doi.org/10.1007/s40242-024-4117-2
This is a preview of subscription content, contact us for subscripton.

References

[1]
Cheung K Y, Segawa Y, Itami K. Chem. Eur. J., 2020, 26: 14791.
CrossRef Google scholar
[2]
Guo Q-H, Qiu Y, Wang M-X, Stoddart J F. Nat. Chem., 2021, 13: 402.
CrossRef Google scholar
[3]
Li Y, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res., 2021, 2: 681.
CrossRef Google scholar
[4]
Imoto D, Yagi A, Itami K. Precis. Chem., 2023, 1: 516.
CrossRef Google scholar
[5]
Zhang R, An D, Zhu J, Lu X, Liu Y. Adv. Funct. Mater., 2023, 33: 2305249.
CrossRef Google scholar
[6]
Zhang R, Zhu J, An D, Lu X, Liu Y. Sci. Bull., 2023, 68: 247.
CrossRef Google scholar
[7]
Shi T-H, Wang M-X. CCS Chem., 2020, 2: 916.
[8]
Bergman H M, Kiel G R, Handford R C, Liu Y, Tilley T D. J. Am. Chem. Soc., 2021, 143: 8619.
CrossRef Google scholar
[9]
Xia Z, Pun S H, Chen H, Miao Q. Angew. Chem. Int. Ed., 2021, 60: 10311.
CrossRef Google scholar
[10]
Yamashina M, Tanaka Y, Lavendomme R, Ronson T K, Pittelkow M, Nitschke J R. Nature, 2019, 574: 511.
CrossRef Google scholar
[11]
Lin J, Wang S, Zhang F, Yang B, Du P, Chen C, Zang Y, Zhu D. Sci. Adv., 2022, 8: eade4692.
CrossRef Google scholar
[12]
George G, Stasyuk O A, Sola M, Stasyuk A J. Nanoscale, 2023, 15: 17373.
CrossRef Google scholar
[13]
Freixas V M, Oldani N, Franklin-Mergarejo R, Tretiak S, Fernandez-Alberti S. J. Phys. Chem. Lett., 2020, 11: 4711.
CrossRef Google scholar
[14]
Ahn D-H, Song J-W. J. Comput. Chem., 2021, 42: 505.
CrossRef Google scholar
[15]
Shudo H, Kuwayama M, Segawa Y, Itami K. Chem. Sci., 2020, 11: 677.
CrossRef Google scholar
[16]
Heilbronner E. Helv. Chim. Acta, 1954, 37: 921.
CrossRef Google scholar
[17]
Vögtle F. Top. Curr. Chem., 1983, 115: 157.
[18]
Iijima S. Nature, 1991, 354: 56.
CrossRef Google scholar
[19]
Kohnke F H, Slawin A M Z, Stoddart J F, Williams D J. Angew. Chem. Int. Ed. Engl., 1987, 26: 892.
CrossRef Google scholar
[20]
Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130: 17646.
CrossRef Google scholar
[21]
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356: 172.
CrossRef Google scholar
[22]
Cheung K Y, Gui S, Deng C, Liang H, Xia Z, Liu Z, Chi L, Miao Q. Chem, 2019, 5: 838.
CrossRef Google scholar
[23]
Shi T-H, Guo Q-H, Tong S, Wang M-X. J. Am. Chem. Soc., 2020, 142: 4576.
CrossRef Google scholar
[24]
Cheung K Y, Watanabe K, Segawa Y, Itami K. Nat. Chem., 2021, 13: 255.
CrossRef Google scholar
[25]
Han Y, Dong S, Shao J, Fan W, Chi C. Angew. Chem. Int. Ed., 2021, 60: 2658.
CrossRef Google scholar
[26]
Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K. Nat. Synth., 2022, 1: 535.
CrossRef Google scholar
[27]
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. J. Am. Chem. Soc., 2018, 140: 10054.
CrossRef Google scholar
[28]
Sisto T J, Tian X, Jasti R. J. Org. Chem., 2012, 77: 5857.
CrossRef Google scholar
[29]
Golling F E, Quernheim M, Wagner M, Nishiuchi T, Müllen K. Angew. Chem. Int. Ed., 2014, 53: 1525.
CrossRef Google scholar
[30]
Golling F E, Osella S, Quernheim M, Wagner M, Beljonne D, Müllen K. Chem. Sci., 2015, 6: 7072.
CrossRef Google scholar
[31]
Xia Z, Cheung K M, Chen H, Pun S H, Miao Q. Chem. Commun., 2024, 60: 4314.
CrossRef Google scholar
[32]
Kintzel O., Luger P., Weber M., Schlüter A.-D., Eur. J. Org. Chem., 1998, 99.
[33]
Schulz F, Garcia F, Kaiser K, Pérez D, Guitián E, Gross L, Peña D. Angew. Chem. Int. Ed., 2019, 58: 9038.
CrossRef Google scholar
[34]
Chen H, Gui S, Zhang Y, Liu Z, Miao Q. CCS Chem., 2020, 2: 613.
[35]
Nakamura E, Tahara K, Matsuo Y, Sawamura M. J. Am. Chem. Soc., 2003, 125: 2834.
CrossRef Google scholar
[36]
Matsuo Y, Tahara K, Sawamura M, Nakamura E. J. Am. Chem. Soc., 2004, 126: 8725.
CrossRef Google scholar
[37]
Li Y, Xu D, Gan L. Angew. Chem. Int. Ed., 201, 55: 2483.
CrossRef Google scholar

56

Accesses

0

Citations

Detail

Sections
Recommended

/