A Stable Copper-based Metal-Azolate Framework for Efficient Electroreduction of CO2 to C2+ Products

Yuan-Yuan Liu, Hao-Lin Zhu, Pei-Qin Liao, Xiao-Ming Chen

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 664-669. DOI: 10.1007/s40242-024-4113-6
Article

A Stable Copper-based Metal-Azolate Framework for Efficient Electroreduction of CO2 to C2+ Products

Author information +
History +

Abstract

Driven by renewable or excess electrical energy, electrochemical CO2 reduction reaction (eCO2RR) represents a promising carbon-neutral approach to generating valuable low-carbon fuels by consuming CO2 and H2O. C2+ products are one of the most economically valuable products among the reduction species of eCO2RR, but there are still some challenges, such as low selectivity or low current density. In this work, we showed that a copper-based metal-azolate framework (MAF), denoted as MAF-203, exhibits the high performance of eCO2RR to yield C2+ products with the Faradaic efficiency (C2+) of 52.5% and a current density of 660 mA/cm2 at −1.2 V vs. RHE in a flow cell device under alkaline condition. Controlled experiment, in situ infrared spectroscopy and the density functional theory (DFT) calculations showed that the electron donating effect of methyl substituents on organic ligands of the copper-based MAF could enhance the ligand field and activation of key intermediates (*CO and *CHO species), thus promoting the coupling of *CO and *CHO for yielding C2+ products.

Keywords

Metal-organic framework / Carbon dioxide / Electroreduction / C2+ product / Metal-azolate framework

Cite this article

Download citation ▾
Yuan-Yuan Liu, Hao-Lin Zhu, Pei-Qin Liao, Xiao-Ming Chen. A Stable Copper-based Metal-Azolate Framework for Efficient Electroreduction of CO2 to C2+ Products. Chemical Research in Chinese Universities, 2024, 40(4): 664‒669 https://doi.org/10.1007/s40242-024-4113-6

References

[1]
Zhu H-L, Huang J-R, Liao P-Q, Chen X-M. . ACS Cent. Sci., 2022, 8: 1506,
CrossRef Google scholar
[2]
Yu J, Wang J, Ma Y, Zhou J, Wang Y, Lu P, Yin J, Ye R, Zhu Z, Fan Z. . Adv. Funct. Mater., 2021, 31: 2102151,
CrossRef Google scholar
[3]
Chen C, Li Y, Yang P. . Joule, 2021, 5: 737,
CrossRef Google scholar
[4]
Seong H, Jo Y, Efremov V, Kim Y, Park S, Han S M, Chang K, Park J, Choi W, Kim W, Choi C H, Yoo J S, Lee D. . J. Am. Chem. Soc., 2023, 145: 2152,
CrossRef Google scholar
[5]
Xue H, Zhao Z-H, Liao P-Q, Chen X-M. . J. Am. Chem. Soc., 2023, 145: 16978,
CrossRef Google scholar
[6]
Zhu H-L, Huang J-R, Zhang X-W, Wang C, Huang N-Y, Liao P-Q, Chen X-M. . ACS Catal., 2021, 11: 11786,
CrossRef Google scholar
[7]
Jiao L, Yang W, Wan G, Zhang R, Zheng X, Zhou H, Yu S-H, Jiang H-L. . Angew. Chem. Int. Ed., 2020, 59: 20589,
CrossRef Google scholar
[8]
Huang J-R, Qiu X-F, Zhao Z-H, Zhu H-L, Liu Y-C, Shi W, Liao P-Q, Chen X-M. . Angew. Chem. Int. Ed., 2022, 61: e202210985,
CrossRef Google scholar
[9]
Bi J, Li P, Liu J, Wang Y, Song X, Kang X, Sun X, Zhu Q, Han B. . Angew. Chem. Int. Ed., 2023, 62: e202307612,
CrossRef Google scholar
[10]
Lei Y, Wang Z, Bao A, Tang X, Huang X, Yi H, Zhao S, Sun T, Wang J, Gao F. . Chem. Eng. J., 2023, 453: 139663,
CrossRef Google scholar
[11]
Nam D-H, Shekhah O, Ozden A, McCallum C, Li F, Wang X, Lum Y, Lee T, Li J, Wicks J, Johnston A, Sinton D, Eddaoudi M, Sargent E H. . Adv. Mater., 2022, 34: 2207088,
CrossRef Google scholar
[12]
Zhao Z-H, Huang J-R, Liao P-Q, Chen X-M. . J. Am. Chem. Soc., 2023, 145: 26783,
CrossRef Google scholar
[13]
Zhu H-L, Huang J-R, Zhang M-D, Yu C, Liao P-Q, Chen X-M. . J. Am. Chem. Soc., 2024, 146: 1144,
CrossRef Google scholar
[14]
Li J, Kuang Y, Zhang X, Hung W-H, Chiang C-Y, Zhu G, Chen G, Wang F, Liang P, Dai H. . Nat. Catal., 2023, 6: 1151,
CrossRef Google scholar
[15]
Wang X, Ou P, Ozden A, Hung S-F, Tam J, Gabardo C M, Howe J Y, Sisler J, Bertens K, García de Arquer F P, Miao R K, O’Brien C P, Wang Z, Abed J, Rasouli A S, Sun M, Ip A H, Sinton D, Sargent E H. . Nat. Energy, 2022, 7: 170,
CrossRef Google scholar
[16]
Long C, Liu X, Wan K, Jiang Y, An P, Yang C, Wu G, Wang W, Guo J, Li L, Pang K, Li Q, Cui C, Liu S, Tan T, Tang Z. . Sci. Adv., 2023, 9: eadi6119,
CrossRef Google scholar
[17]
Zhu C, Zhang Z, Zhong L, Hsu C-S, Xu X, Li Y, Zhao S, Chen S, Yu J, Chen S, Wu M, Gao P, Li S, Chen H M, Liu K, Zhang L. . Chem, 2021, 7: 406,
CrossRef Google scholar
[18]
Meng D L, Zhang M D, Si D H, Mao M J, Hou Y, Huang Y B, Cao R. . Angew. Chem. Int. Ed., 2021, 60: 25485,
CrossRef Google scholar
[19]
Dokania A, Ramirez A, Bavykina A, Gascon J. . ACS Energy Lett., 2019, 4: 167,
CrossRef Google scholar
[20]
Shi H, Luo L, Li C, Li Y, Zhang T, Liu Z, Cui J, Gu L, Zhang L, Hu Y, Li H, Li C. . Adv. Funct. Mater., 2024, 34: 2310913,
CrossRef Google scholar
[21]
Luan P, Dong X, Liu L, Xiao J, Zhang P, Zhang J, Chi H, Wang Q, Ding C, Li R, Li C. . ACS Catal., 2024, 14: 8776,
CrossRef Google scholar
[22]
Xu L, Ma X, Wu L, Tan X, Song X, Zhu Q, Chen C, Qian Q, Liu Z, Sun X, Liu S, Han B. . Angew. Chem. Int. Ed., 2022, 61: e202210375,
CrossRef Google scholar
[23]
Cao B, Li F-Z, Gu J. . ACS Catal., 2022, 12: 9735,
CrossRef Google scholar
[24]
Li X, Yu X, Yu Q. . Sci. China Mater., 2023, 66: 3765,
CrossRef Google scholar
[25]
Sultan S, Lee H, Park S, Kim M M, Yoon A, Choi H, Kong T-H, Koe Y-J, Oh H-S, Lee Z, Kim H, Kim W, Kwon Y. . Energy Environ. Sci., 2022, 15: 2397,
CrossRef Google scholar
[26]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. . Science, 2013, 341: 1230444,
CrossRef Google scholar
[27]
Liao P-Q, Shen J-Q, Zhang J-P. . Coord. Chem. Rev., 2018, 373: 22,
CrossRef Google scholar
[28]
Zhang H, Nai J, Yu L, Lou X W. . Joule, 2017, 1: 77,
CrossRef Google scholar
[29]
Wu Q J, Liang J, Huang Y B, Cao R. . Acc. Chem. Res., 2022, 55: 2978,
CrossRef Google scholar
[30]
Zhang Y, Zhang X, Zhu Y, Qian B, Bond A M, Zhang J. . ChemSusChem, 2020, 13: 2552,
CrossRef Google scholar
[31]
Guo Q Y, Wang Z, Feng X, Fan Y, Lin W. . Angew. Chem. Int. Ed., 2023, 62: e202306905,
CrossRef Google scholar
[32]
Guo F, Li R X, Yang S, Zhang X Y, Yu H, Urban J J, Sun W Y. . Angew. Chem. Int. Ed., 2023, 62: e202216232,
CrossRef Google scholar
[33]
Feng X, Song Y, Lin W. . J. Am. Chem. Soc., 2021, 143: 8184,
CrossRef Google scholar
[34]
Liu Y-Y, Huang J-R, Zhu H-L, Liao P-Q, Chen X-M. . Angew. Chem. Int. Ed., 2023, 62: e202311265,
CrossRef Google scholar
[35]
Yi J D, Si D H, Xie R, Yin Q, Zhang M D, Wu Q, Chai G L, Huang Y B, Cao R. . Angew. Chem. Int. Ed., 2021, 60: 17108,
CrossRef Google scholar
[36]
Kang X, Lyu K, Li L, Li J, Kimberley L, Wang B, Liu L, Cheng Y, Frogley M D, Rudić S, Ramirez-Cuesta A J, Dryfe R A W, Han B, Yang S, Schröder M. . Nat. Commun., 2019, 10: 4466,
CrossRef Google scholar
[37]
Yaghi O M, Li H, Davis C, Richardson D, Groy T L. . Acc. Chem. Res., 1998, 31: 474,
CrossRef Google scholar
[38]
Yaghi O M, O’Keeffe M, Ockwig N W, Chae H K, Eddaoudi M, Kim J. . Nature, 2003, 423: 705,
CrossRef Google scholar
[39]
Zhang Y, Zhou Q, Qiu Z-F, Zhang X-Y, Chen J Q, Zhao Y, Gong F, Sun W-Y. . Adv. Funct. Mater., 2022, 32: 2203677,
CrossRef Google scholar
[40]
Wang J, Huang X, Xi S, Xu H, Wang X. . Angew. Chem. Int. Ed., 2020, 59: 19162,
CrossRef Google scholar
[41]
Dou S, Song J, Xi S, Du Y, Wang J, Huang Z-F, Xu Z J, Wang X. . Angew. Chem. Int. Ed., 2019, 58: 4041,
CrossRef Google scholar
[42]
Chen S, Hu J, Zhou H-Q, Yu F, Wu C-M, Chung L-H, Yu L, He J. . Inorg. Chem., 2022, 61: 19475,
CrossRef Google scholar
[43]
Mao X, Gong W, Fu Y, Li J, Wang X, O’Mullane A P, Xiong Y, Du A. . J. Am. Chem. Soc., 2023, 145: 21442,
CrossRef Google scholar
[44]
Xue H, Huang J-R, Wang Z-S, Zhao Z-H, Shi W, Liao P-Q, Chen X-M. . Chin. J. Catal., 2023, 53: 102,
CrossRef Google scholar
[45]
Mosca N, Vismara R, Fernandes J A, Tuci G, Di Nicola C, Domasevitch K V, Giacobbe C, Giambastiani G, Pettinari C, Aragones-Anglada M, Moghadam P Z, Fairen-Jimenez D, Rossin A, Galli S. . Chem. Eur. J., 2018, 24: 13170,
CrossRef Google scholar
[46]
Zhang M D, Si D H, Yi J D, Zhao S S, Huang Y B, Cao R. . Small, 2020, 16: 2005254,
CrossRef Google scholar
[47]
Ulagappan N, Frei H. . J. Phys. Chem. A, 2000, 104: 7834,
CrossRef Google scholar
[48]
Yi J D, Xie R, Xie Z L, Chai G L, Liu T F, Chen R P, Huang Y B, Cao R. . Angew. Chem. Int. Ed., 2020, 59: 23641,
CrossRef Google scholar
[49]
Meng D L, Zhang M D, Si D H, Mao M J, Hou Y, Huang Y B, Cao R. . Angew. Chem. Int. Ed., 2021, 60: 25485,
CrossRef Google scholar
[50]
Zhuo L-L, Chen P, Zheng K, Zhang X-W, Wu J-X, Lin D-Y, Liu S-Y, Wang Z-S, Liu J-Y, Zhou D-D, Zhang J-P. . Angew. Chem. Int. Ed., 2022, 50: e202204967
[51]
Pérez-Gallent E, Figueiredo M C, Calle-Vallejo F, Koper M T M. . Angew. Chem. Int. Ed., 2017, 56: 3621,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/