Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics

Yarui Li, Yiwen Bai, Dengjie Yu, Rongyao Wang, Ying Mu, Wei Jin, Bingwen Yu

Chemical Research in Chinese Universities ›› 2024

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024 DOI: 10.1007/s40242-024-4112-7
Article

Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics

Author information +
History +

Abstract

This study proposes a coaxial structure atmospheric pressure microwave cold plasma device that utilizes argon as the main working gas. It achieves stable formation of atmospheric pressure cold plasma jet at low power (<50 W) with a jet length ranging from 1 mm to 32 mm. The paper analyzes the composition of the cold plasma using spectroscopy and investigates its composition changes at different positions along the jet. It also studies the appearance and reaction composition of the plasma filament under different shielding gases. Furthermore, it explores the effects of continuous and modulated microwave power on the length, appearance, and composition of the plasma filament. Finally, it examines the bactericidal effect of the plasma filament on Escherichia coli under various gas conditions, providing a foundation for further application research.

Keywords

Microwave cold plasma / Spectral analysis / Modulated microwave source / Sterilization

Cite this article

Download citation ▾
Yarui Li, Yiwen Bai, Dengjie Yu, Rongyao Wang, Ying Mu, Wei Jin, Bingwen Yu. Investigation of a Novel Atmospheric Pressure Microwave Cold Plasma Torch and Its Characteristics. Chemical Research in Chinese Universities, 2024 https://doi.org/10.1007/s40242-024-4112-7
This is a preview of subscription content, contact us for subscripton.

References

[1]
Fu W, Zhang C, Guan X, Li X, Yan Y. J. Microw. Power Electromagn. Energy, 2022, 56: 58.
[2]
Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. Food Control, 2017, 75: 83.
CrossRef Google scholar
[3]
Feizollahi E, Misra N N, Roopesh M S. Crit. Rev. Food Sci. Nutr., 2021, 61: 666.
CrossRef Google scholar
[4]
Umair M, Jabbar S, Ayub Z, Muhammad A R, Abid M, Zhang J, Liqing Z. Food Rev. Int., 2022, 38: 789.
CrossRef Google scholar
[5]
Yang Z, Liu D. Plasma Processes Polym., 2021, 18: 2100054.
CrossRef Google scholar
[6]
Schlegel J, Köritzer J, Boxhammer V. Clin. Plasma Med., 2013, 1: 2.
CrossRef Google scholar
[7]
Tsai M-H, Lin C-H, Chen W-T, Huang C-H, Woon W-Y, Lin C-T. ECS J. Solid State Sci. Technol., 2020, 9: 121007.
CrossRef Google scholar
[8]
George A, Shen B, Craven M, Wang Y, Kang D, Wu C, Tu X. Renewable Sustainable Energy Rev., 2021, 135: 109702.
CrossRef Google scholar
[9]
Zhang S, Gao Y, Sun H, Fan Z, Shao T. High Voltage, 2022, 7: 718.
CrossRef Google scholar
[10]
Stoican O S. Polym., 2021, 13: 2132.
CrossRef Google scholar
[11]
Cornell K A, White A, Croteau A, Carlson J, Kennedy Z, Miller D, Provost M, Goering S, Plumlee D, Browning J. IEEE Trans. Plasma Sci., 2021, 49: 1388.
CrossRef Google scholar
[12]
Sremački I, Jurov A, Modic M, Cvelbar U, Wang L, Leys C, Nikiforov A. Plasma Sources Sci. Technol., 2020, 29: 035027.
CrossRef Google scholar
[13]
Trebulová K, Krčma F, Kozáková Z, Matoušková P. Appl. Sci., 2020, 10: 5538.
CrossRef Google scholar
[14]
Benova E, Marinova P, Tafradjiiska-Hadjiolova R, Sabit Z, Bakalov D, Valchev N, Traikov L, Hikov T, Tsonev I, Bogdanov T. Appl. Sci.: Basel, 2022, 12: 969.
CrossRef Google scholar
[15]
Won I H, Kang S K, Sim J Y, Lee J K. IEEE Trans. Plasma Sci., 2014, 42: 2788.
CrossRef Google scholar
[16]
Kang S K, Kim H Y, Yun G S, Lee J K. Plasma Sources Sci. Technol., 2015, 24: 035020.
CrossRef Google scholar
[17]
Liu Z, Zhang W, Tao J, Wu L, Huang K. IEEE Trans. Plasma Sci., 2019, 47: 1749.
CrossRef Google scholar
[18]
Hong L, Chen Z, Yang J, Cheng T, Chen S, Zhou Y, Wang B, Lu X. Plasma Sci. Technol., 2022, 24: 105401.
CrossRef Google scholar
[19]
Tonmitr N, Mori T, Takami M, Yonesu A, Hayashi N. IEEE Trans. Plasma Sci., 2021, 49: 154.
CrossRef Google scholar
[20]
Hnilica J, Potocnáková L, Kudrle V. IEEE Trans. Plasma Sci., 2014, 42: 2472.
CrossRef Google scholar
[21]
Voráč J, Potočňáková L, Synek P, Hnilica J, Kudrle V. Plasma Sources Sci. Technol., 201, 25: 025018.
CrossRef Google scholar
[22]
Jin Q, Zhu C, Border M W, Hieftje G M. Spectrochim. Acta Part B: Atomic Spectroscopy, 1991, 46: 417.
CrossRef Google scholar
[23]
Deng S, Cheng C, Ni G, Meng Y, Chen H. Curr. Appl. Phys., 2010, 10: 1164.
CrossRef Google scholar
[24]
Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia L H. Int. J. Pharm., 2001, 226: 1.
CrossRef Google scholar
[25]
Itarashiki T, Hayashi N, Yonesu A. Jpn. J. Appl. Phys., 201, 55: 01AB03.
CrossRef Google scholar
[26]
Nicol M J, Brubaker T R, Honish B J, Simmons A N, Kazemi A, Geissel M A, Whalen C T, Siedlecki C A, Bilén S G, Knecht S D, Kirimanjeswara G S. Sci. Rep., 2020, 10: 3066.
CrossRef Google scholar
[27]
El-Sayed W. S., Ouf S. A., Mohamed A.-A. H., Front. Microbiol., 2015, 6
[28]
Zhang Q, Sun P, Feng H, Wang R, Liang Y, Zhu W, Becker K H, Zhang J, Fang J. J. Appl. Phys., 2012, 111: 123305.
CrossRef Google scholar
[29]
Xu H, Chen C, Liu D, Wang W, Xia W, Liu Z, Guo L, Kong M G. Plasma Sci. Technol., 2019, 21: 115502.
CrossRef Google scholar
[30]
Zhao Y, Shao L, Jia L, Meng Z, Liu Y, Wang Y, Zou B, Dai R, Li X, Jia F. Food Res. Int., 2022, 160: 111720.
CrossRef Google scholar

23

Accesses

1

Citations

Detail

Sections
Recommended

/