Multifunctional Sodium Gluconate Electrolyte Additive Enabling Highly Reversible Zn Anodes

Kang Zhao, Jianan Zhao, Meng Yu, Fangming Liu, Yang Dong, Shiwen Wang, Fangyi Cheng

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 722-729. DOI: 10.1007/s40242-024-4110-9
Article

Multifunctional Sodium Gluconate Electrolyte Additive Enabling Highly Reversible Zn Anodes

Author information +
History +

Abstract

Sodium gluconate (SG) is reported as an electrolyte additive for rechargeable aqueous zinc batteries. The SG addition is proposed to modulate the nucleation overpotential and plating behaviors of Zn by forming a shielding buffer layer because of the adsorption priority and large steric hindrance effect, which contributes to limited rampant Zn2+ diffusion and mitigated hydrogen evolution and corrosion. With the introduction of 30 mmol/L SG in 2 mol/L ZnSO4 electrolyte, the Zn anode harvests a reversible cycling of 1200 h at 5 mA/cm2 and a high average Coulombic efficiency of Zn plating/stripping (99.6%). Full cells coupling Zn anode with V2O5·1.6H2O or polyaniline cathode far surpass the SG additivefree batteries in terms of cycle stability and rate capability. This work provides an inspiration for design of a high-effective and low-cost electrolyte additive towards Zn-based energy storage devices.

Keywords

Electrolyte additive / Zn anode / Sodium gluconate / Adsorption / Zn dendrite

Cite this article

Download citation ▾
Kang Zhao, Jianan Zhao, Meng Yu, Fangming Liu, Yang Dong, Shiwen Wang, Fangyi Cheng. Multifunctional Sodium Gluconate Electrolyte Additive Enabling Highly Reversible Zn Anodes. Chemical Research in Chinese Universities, 2024, 40(4): 722‒729 https://doi.org/10.1007/s40242-024-4110-9

References

[1]
Zhao R, Wang H, Du H, Yang Y, Gao Z, Qie L, Huang Y. . Nat. Commun., 2022, 13: 3252,
CrossRef Google scholar
[2]
Wang L, Zhang B, Zhou W, Zhao Z, Xin L, Zhao R, Sun Z, Li H, Wang X, Zhang T, Jin H, Li W, Elzatahry A, Hassan Y, Fan H J, Zhao D, Chao D. . J. Am. Chem. Soc., 2024, 146: 6199,
CrossRef Google scholar
[3]
Liu M, Yuan W, Ma G, Qiu K, Nie X, Liu Y, Shen S, Zhang N. . Angew. Chem. Int. Ed., 2023, 62: e202304444,
CrossRef Google scholar
[4]
Wang Q, Kaushik S, Xiao X, Xu Q. . Chem. Soc. Rev., 2023, 52: 6139,
CrossRef Google scholar
[5]
Li H, Zhao R, Zhou W, Wang L, Li W, Zhao D, Chao D. . JACS Au, 2023, 3: 2107,
CrossRef Google scholar
[6]
Wu J, Yuan C, Li T, Yuan Z, Zhang H, Li X. . J. Am. Chem. Soc., 2021, 143: 13135,
CrossRef Google scholar
[7]
Guo X, Zhang Z, Li J, Luo N, Chai G-L, Miller T S, Lai F, Shearing P, Brett D J L, Han D, Weng Z, He G, Parkin I P. . ACS Energy Lett., 2021, 6: 395,
CrossRef Google scholar
[8]
Wu W, Deng Y, Chen G. . Chinese Chem. Lett., 2023, 34: 108424,
CrossRef Google scholar
[9]
Di S, Nie X, Ma G, Yuan W, Wang Y, Liu Y, Shen S, Zhang N. . Energy Storage Mater., 2021, 43: 375,
CrossRef Google scholar
[10]
Liu X, Fang Y, Liang P, Xu J, Xing B, Zhu K, Liu Y, Zhang J, Yi J. . Chinese Chem. Lett., 2021, 32: 2899,
CrossRef Google scholar
[11]
Wang L, Fan G, Liu J, Zhang L, Yu M, Yan Z, Cheng F. . Chinese Chem. Lett., 2021, 32: 1095,
CrossRef Google scholar
[12]
Wang T, Tang Y, Yu M, Lu B, Zhang X, Zhou J. . Adv. Funct. Mater., 2023, 33: 2306101,
CrossRef Google scholar
[13]
Zhang L, Xiao J, Xiao X, Xin W, Geng Y, Yan Z, Zhu Z. . eScience, 2024, 4: 100205,
CrossRef Google scholar
[14]
Li J., Rohrens D., Dalfollo G., Wu X., Lu Z., Gao Q., Han B., Sun R., Zhou C., Wang J., Cai Z., Nano Mater. Sci., 2023, DOI: https://doi.org/10.1016/j.nanoms.2023.11.004.
[15]
Huang J-Q, Guo X, Lin X, Zhu Y, Zhang B. . Research, 2019, 2019: 2635310
[16]
Xiong P, Lin C, Wei Y, Kim J-H, Jang G, Dai K, Zeng L, Huang S, Kwon S J, Lee S-Y, Park H S. . ACS Energy Lett., 2023, 8: 2718,
CrossRef Google scholar
[17]
Zhao K, Fan G, Liu J, Liu F, Li J, Zhou X, Ni Y, Yu M, Zhang Y-M, Su H, Liu Q, Cheng F. . J. Am. Chem. Soc., 2022, 144: 11129,
CrossRef Google scholar
[18]
Wang C, Hou J, Gan Y, Xie L, He Y, Hu Q, Liu S, Jun S C. . J. Mater. Chem. A, 2023, 11: 8057,
CrossRef Google scholar
[19]
Zhang W, Zhang C, Wang H, Wang H. . Chem. Res. Chinese Universities, 2023, 39: 1037,
CrossRef Google scholar
[20]
Wang D, Lv D, Liu H, Zhang S, Wang C, Wang C, Yang J, Qian Y. . Angew. Chem. Int. Ed., 2022, 61: e202212839,
CrossRef Google scholar
[21]
Zheng L, Li H, Wang X, Chen Z, Hu C, Wang K, Gao G, Passerini S, Zhang H. . ACS Energy Lett., 2023, 8: 2086,
CrossRef Google scholar
[22]
Huang C, Zhao X, Hao Y, Yang Y, Qian Y, Chang G, Zhang Y, Tang Q, Hu A, Chen X. . Energy Environ. Sci., 2023, 16: 1721,
CrossRef Google scholar
[23]
Li T C, Lin C, Luo M, Wang P, Li D-S, Li S, Zhou J, Yang H Y. . ACS Energy Lett., 2023, 8: 3258,
CrossRef Google scholar
[24]
Shi X, Wang J, Yang F, Liu X, Yu Y, Lu X. . Adv. Funct. Mater., 2023, 33: 2211917,
CrossRef Google scholar
[25]
Hu Z, Zhang F, Zhou A, Hu X, Yan Q, Liu Y, Arshad F, Li Z, Chen R, Wu F, Li L. . Nano-Micro Lett., 2023, 15: 171,
CrossRef Google scholar
[26]
Luo X, Zhou M, Luo Z, Shi T, Li L, Xie X, Sun Y, Cao X, Long M, Liang S, Fang G. . Energy Storage Mater., 2023, 57: 628,
CrossRef Google scholar
[27]
Hou Z, Gao Y, Zhou R, Zhang B. . Adv. Funct. Mater., 2022, 32: 2107584,
CrossRef Google scholar
[28]
Kim M, Lee J, Kim Y, Park Y, Kim H, Choi J W. . J. Am. Chem. Soc., 2023, 145: 15776,
CrossRef Google scholar
[29]
Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. . Angew. Chem. Int. Ed., 2021, 60: 18247,
CrossRef Google scholar
[30]
Zhao K, Sheng J, Luo N, Ding J, Luo H, Jia X, Wang S, Fang S. . J. Colloid Interf. Sci., 2024, 664: 816,
CrossRef Google scholar
[31]
Wang J, Qiu H, Zhao Z, Zhang Y, Zhao J, Ma Y, Li J, Xing M, Li G, Cui G. . Chem. Res. Chinese Universities, 2021, 37: 328,
CrossRef Google scholar
[32]
Wan J, Wang R, Liu Z, Zhang L, Liang F, Zhou T, Zhang S, Zhang L, Lu Q, Zhang C, Guo Z. . ACS Nano, 2023, 17: 1610,
CrossRef Google scholar
[33]
Xin T, Zhou R, Xu Q, Yuan X, Zheng Z, Li Y, Zhang Q, Liu J. . Chem. Eng. J., 2023, 452: 139572,
CrossRef Google scholar
[34]
Wang N, Chen X, Wan H, Zhang B, Guan K, Yao J, Ji J, Li J, Gan Y, Lv L, Tao L, Ma G, Wang H, Zhang J, Wang H. . Adv. Funct. Mater., 2023, 33: 2300795,
CrossRef Google scholar
[35]
Zhong Y, Cheng Z, Zhang H, Li J, Liu D, Liao Y, Meng J, Shen Y, Huang Y. . Nano Energy, 2022, 98: 107220,
CrossRef Google scholar
[36]
Yan M, Xu C, Sun Y, Pan H, Li H. . Nano Energy, 2021, 82: 105739,
CrossRef Google scholar
[37]
Zhao K, Liu F, Fan G, Liu J, Yu M, Yan Z, Zhang N, Cheng F. . ACS Appl. Mater. Interfaces, 2021, 13: 47650,
CrossRef Google scholar
[38]
Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G. . Energy Environ. Sci., 2019, 12: 1938,
CrossRef Google scholar
[39]
Chen Y, Ma D, Ouyang K, Yang M, Shen S, Wang Y, Mi H, Sun L, He G, Zhang P. . Nano-Micro Lett., 2022, 14: 154,
CrossRef Google scholar
[40]
Jin Y, Han K S, Shao Y, Sushko M L, Xiao J, Pan H, Liu J. . Adv. Funct. Mater., 2020, 30: 2003932,
CrossRef Google scholar
[41]
Yin J, Liu H, Li P, Feng X, Wang M, Huang C, Li M, Su Y, Xiao B, Cheng Y, Xu X. . Energy Storage Mater., 2023, 59: 102800,
CrossRef Google scholar
[42]
Qin R, Wang Y, Zhang M, Wang Y, Ding S, Song A, Yi H, Yang L, Song Y, Cui Y, Liu J, Wang Z, Li S, Zhao Q, Pan F. . Nano Energy, 2021, 80: 105478,
CrossRef Google scholar
[43]
Sun C, Wu C, Gu X, Wang C, Wang Q. . Nano-Micro Lett., 2021, 3: 89,
CrossRef Google scholar
[44]
Cao Z, Zhu X, Xu D, Dong P, Chee M O L, Li X, Zhu K, Ye M, Shen J. . Energy Storage Mater., 2021, 36: 132,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/