Multifunctional Sodium Gluconate Electrolyte Additive Enabling Highly Reversible Zn Anodes

Kang Zhao , Jianan Zhao , Meng Yu , Fangming Liu , Yang Dong , Shiwen Wang , Fangyi Cheng

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 722 -729.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 722 -729. DOI: 10.1007/s40242-024-4110-9
Article

Multifunctional Sodium Gluconate Electrolyte Additive Enabling Highly Reversible Zn Anodes

Author information +
History +
PDF

Abstract

Sodium gluconate (SG) is reported as an electrolyte additive for rechargeable aqueous zinc batteries. The SG addition is proposed to modulate the nucleation overpotential and plating behaviors of Zn by forming a shielding buffer layer because of the adsorption priority and large steric hindrance effect, which contributes to limited rampant Zn2+ diffusion and mitigated hydrogen evolution and corrosion. With the introduction of 30 mmol/L SG in 2 mol/L ZnSO4 electrolyte, the Zn anode harvests a reversible cycling of 1200 h at 5 mA/cm2 and a high average Coulombic efficiency of Zn plating/stripping (99.6%). Full cells coupling Zn anode with V2O5·1.6H2O or polyaniline cathode far surpass the SG additivefree batteries in terms of cycle stability and rate capability. This work provides an inspiration for design of a high-effective and low-cost electrolyte additive towards Zn-based energy storage devices.

Keywords

Electrolyte additive / Zn anode / Sodium gluconate / Adsorption / Zn dendrite

Cite this article

Download citation ▾
Kang Zhao, Jianan Zhao, Meng Yu, Fangming Liu, Yang Dong, Shiwen Wang, Fangyi Cheng. Multifunctional Sodium Gluconate Electrolyte Additive Enabling Highly Reversible Zn Anodes. Chemical Research in Chinese Universities, 2024, 40(4): 722-729 DOI:10.1007/s40242-024-4110-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao R, Wang H, Du H, Yang Y, Gao Z, Qie L, Huang Y. Nat. Commun., 2022, 13: 3252.

[2]

Wang L, Zhang B, Zhou W, Zhao Z, Xin L, Zhao R, Sun Z, Li H, Wang X, Zhang T, Jin H, Li W, Elzatahry A, Hassan Y, Fan H J, Zhao D, Chao D. J. Am. Chem. Soc., 2024, 146: 6199.

[3]

Liu M, Yuan W, Ma G, Qiu K, Nie X, Liu Y, Shen S, Zhang N. Angew. Chem. Int. Ed., 2023, 62: e202304444.

[4]

Wang Q, Kaushik S, Xiao X, Xu Q. Chem. Soc. Rev., 2023, 52: 6139.

[5]

Li H, Zhao R, Zhou W, Wang L, Li W, Zhao D, Chao D. JACS Au, 2023, 3: 2107.

[6]

Wu J, Yuan C, Li T, Yuan Z, Zhang H, Li X. J. Am. Chem. Soc., 2021, 143: 13135.

[7]

Guo X, Zhang Z, Li J, Luo N, Chai G-L, Miller T S, Lai F, Shearing P, Brett D J L, Han D, Weng Z, He G, Parkin I P. ACS Energy Lett., 2021, 6: 395.

[8]

Wu W, Deng Y, Chen G. Chinese Chem. Lett., 2023, 34: 108424.

[9]

Di S, Nie X, Ma G, Yuan W, Wang Y, Liu Y, Shen S, Zhang N. Energy Storage Mater., 2021, 43: 375.

[10]

Liu X, Fang Y, Liang P, Xu J, Xing B, Zhu K, Liu Y, Zhang J, Yi J. Chinese Chem. Lett., 2021, 32: 2899.

[11]

Wang L, Fan G, Liu J, Zhang L, Yu M, Yan Z, Cheng F. Chinese Chem. Lett., 2021, 32: 1095.

[12]

Wang T, Tang Y, Yu M, Lu B, Zhang X, Zhou J. Adv. Funct. Mater., 2023, 33: 2306101.

[13]

Zhang L, Xiao J, Xiao X, Xin W, Geng Y, Yan Z, Zhu Z. eScience, 2024, 4: 100205.

[14]

Li J., Rohrens D., Dalfollo G., Wu X., Lu Z., Gao Q., Han B., Sun R., Zhou C., Wang J., Cai Z., Nano Mater. Sci., 2023, DOI: https://doi.org/10.1016/j.nanoms.2023.11.004.

[15]

Huang J-Q, Guo X, Lin X, Zhu Y, Zhang B. Research, 2019, 2019: 2635310.

[16]

Xiong P, Lin C, Wei Y, Kim J-H, Jang G, Dai K, Zeng L, Huang S, Kwon S J, Lee S-Y, Park H S. ACS Energy Lett., 2023, 8: 2718.

[17]

Zhao K, Fan G, Liu J, Liu F, Li J, Zhou X, Ni Y, Yu M, Zhang Y-M, Su H, Liu Q, Cheng F. J. Am. Chem. Soc., 2022, 144: 11129.

[18]

Wang C, Hou J, Gan Y, Xie L, He Y, Hu Q, Liu S, Jun S C. J. Mater. Chem. A, 2023, 11: 8057.

[19]

Zhang W, Zhang C, Wang H, Wang H. Chem. Res. Chinese Universities, 2023, 39: 1037.

[20]

Wang D, Lv D, Liu H, Zhang S, Wang C, Wang C, Yang J, Qian Y. Angew. Chem. Int. Ed., 2022, 61: e202212839.

[21]

Zheng L, Li H, Wang X, Chen Z, Hu C, Wang K, Gao G, Passerini S, Zhang H. ACS Energy Lett., 2023, 8: 2086.

[22]

Huang C, Zhao X, Hao Y, Yang Y, Qian Y, Chang G, Zhang Y, Tang Q, Hu A, Chen X. Energy Environ. Sci., 2023, 16: 1721.

[23]

Li T C, Lin C, Luo M, Wang P, Li D-S, Li S, Zhou J, Yang H Y. ACS Energy Lett., 2023, 8: 3258.

[24]

Shi X, Wang J, Yang F, Liu X, Yu Y, Lu X. Adv. Funct. Mater., 2023, 33: 2211917.

[25]

Hu Z, Zhang F, Zhou A, Hu X, Yan Q, Liu Y, Arshad F, Li Z, Chen R, Wu F, Li L. Nano-Micro Lett., 2023, 15: 171.

[26]

Luo X, Zhou M, Luo Z, Shi T, Li L, Xie X, Sun Y, Cao X, Long M, Liang S, Fang G. Energy Storage Mater., 2023, 57: 628.

[27]

Hou Z, Gao Y, Zhou R, Zhang B. Adv. Funct. Mater., 2022, 32: 2107584.

[28]

Kim M, Lee J, Kim Y, Park Y, Kim H, Choi J W. J. Am. Chem. Soc., 2023, 145: 15776.

[29]

Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. Angew. Chem. Int. Ed., 2021, 60: 18247.

[30]

Zhao K, Sheng J, Luo N, Ding J, Luo H, Jia X, Wang S, Fang S. J. Colloid Interf. Sci., 2024, 664: 816.

[31]

Wang J, Qiu H, Zhao Z, Zhang Y, Zhao J, Ma Y, Li J, Xing M, Li G, Cui G. Chem. Res. Chinese Universities, 2021, 37: 328.

[32]

Wan J, Wang R, Liu Z, Zhang L, Liang F, Zhou T, Zhang S, Zhang L, Lu Q, Zhang C, Guo Z. ACS Nano, 2023, 17: 1610.

[33]

Xin T, Zhou R, Xu Q, Yuan X, Zheng Z, Li Y, Zhang Q, Liu J. Chem. Eng. J., 2023, 452: 139572.

[34]

Wang N, Chen X, Wan H, Zhang B, Guan K, Yao J, Ji J, Li J, Gan Y, Lv L, Tao L, Ma G, Wang H, Zhang J, Wang H. Adv. Funct. Mater., 2023, 33: 2300795.

[35]

Zhong Y, Cheng Z, Zhang H, Li J, Liu D, Liao Y, Meng J, Shen Y, Huang Y. Nano Energy, 2022, 98: 107220.

[36]

Yan M, Xu C, Sun Y, Pan H, Li H. Nano Energy, 2021, 82: 105739.

[37]

Zhao K, Liu F, Fan G, Liu J, Yu M, Yan Z, Zhang N, Cheng F. ACS Appl. Mater. Interfaces, 2021, 13: 47650.

[38]

Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, Wang C, Cui G. Energy Environ. Sci., 2019, 12: 1938.

[39]

Chen Y, Ma D, Ouyang K, Yang M, Shen S, Wang Y, Mi H, Sun L, He G, Zhang P. Nano-Micro Lett., 2022, 14: 154.

[40]

Jin Y, Han K S, Shao Y, Sushko M L, Xiao J, Pan H, Liu J. Adv. Funct. Mater., 2020, 30: 2003932.

[41]

Yin J, Liu H, Li P, Feng X, Wang M, Huang C, Li M, Su Y, Xiao B, Cheng Y, Xu X. Energy Storage Mater., 2023, 59: 102800.

[42]

Qin R, Wang Y, Zhang M, Wang Y, Ding S, Song A, Yi H, Yang L, Song Y, Cui Y, Liu J, Wang Z, Li S, Zhao Q, Pan F. Nano Energy, 2021, 80: 105478.

[43]

Sun C, Wu C, Gu X, Wang C, Wang Q. Nano-Micro Lett., 2021, 3: 89.

[44]

Cao Z, Zhu X, Xu D, Dong P, Chee M O L, Li X, Zhu K, Ye M, Shen J. Energy Storage Mater., 2021, 36: 132.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/