Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands

Guanzhong Wang , Hui Lu , Jiang Li , Lihua Wang , Ying Zhu , Shiping Song , Zhilei Ge , Qian Li , Jing Chen , Chunhai Fan

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 670 -674.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 670 -674. DOI: 10.1007/s40242-024-4104-7
Article

Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands

Author information +
History +
PDF

Abstract

The hierarchical assemblies of precise nanoparticles (NPs) have created materials with emergent properties and functionalities. However, the complex assemblies remain unclear at a precise scale. Here, we show the hierarchical self-assembly of atomically precise gold nanoclusters (Au NCs) with molecular rotor-based ligands (MRL), featuring a double-layer surface. Compared to two other types of monolayer-protected (MLP) Au NCs, the significantly reduced surface density for MRL Au NCs profoundly influences their assembly behavior within the lattice. Furthermore, the long length of rotor-based ligands and the rotational freedom of the phenyl-rings of rotor-based ligands also facilitate the assembly of NCs. Our works elucidate the hierarchical assembly on a precise scale, suggesting that the rotor-based ligand’s strategy offers promising potential for designing well-defined and more complex structures in supercrystals.

Keywords

Gold nanocluster / Molecular rotor / Hierarchical assembly / Double-layer surface

Cite this article

Download citation ▾
Guanzhong Wang, Hui Lu, Jiang Li, Lihua Wang, Ying Zhu, Shiping Song, Zhilei Ge, Qian Li, Jing Chen, Chunhai Fan. Hierarchical Self-assembly of Atomically Precise Au Nanoclusters with Molecular Rotor-based Ligands. Chemical Research in Chinese Universities, 2024, 40(4): 670-674 DOI:10.1007/s40242-024-4104-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miszta K, De Graaf J, Bertoni G, Dorfs D, Brescia R, Marras S, Ceseracciu L, Cingolani R, Van Roij R, Dijkstra M, Manna L. Nat. Mater., 2011, 10: 872.

[2]

Kumar S K, Kumaraswamy G, Prasad B L V, Bandyopadhyaya R, Granick S, Gang O, Manoharan V N, Frenkel D, Kotov N A. Curr. Sci., 2017, 112: 1635.

[3]

Kagan C R, Lifshitz E, Sargent E H, Talapin D V. Science, 201, 353: aac5523.

[4]

Glotzer S C, Solomon M J. Nat. Mater., 2007, 6: 557.

[5]

Damasceno P F, Engel M, Glotzer S C. Science, 2012, 337: 453.

[6]

Ye X C, Chen J, Engel M, Millan J A, Li W B, Qi L, Xing G Z, Collins J E, Kagan C R, Li J, Glotzer S C, Murray C B. Nat. Chem., 2013, 5: 466.

[7]

Walker D A, Leitsch E K, Nap R J, Szleifer I, Grzybowski B A. Nat. Nanotechnol., 2013, 8: 676.

[8]

Gröschel A H, Walther A, Löbling T I, Schacher F H, Schmalz H, Müller A H E. Nature, 2013, 503: 247.

[9]

Batista C A S, Larson R G, Kotov N A. Science, 2015, 350: 1242477.

[10]

Wang X J, Yin B, Jiang L R, Yang C, Liu Y, Zou G, Chen S, Zhu M Z. Science, 2023, 381: 784.

[11]

Chakraborty P, Nag A, Chakraborty A, Pradeep T. Acc. Chem. Res., 2019, 52: 2.

[12]

Jena P, Sun Q. Chem. Rev., 2018, 118: 5755.

[13]

Li Q, Russell J C, Luo T Y, Roy X, Rosi N L, Zhu Y, Jin R C. Nat. Commun., 2018, 9: 3871.

[14]

Zeng C J, Chen Y X, Kirschbaum K, Lambright K J, Jin R C. Science, 201, 354: 1580.

[15]

Li Y W, Zhou M, Song Y B, Higaki T, Wang H, Jin R C. Nature, 2021, 594: 380.

[16]

Yan J Z, Teo B K, Zheng N F. Acc. Chem. Res., 2018, 51: 3084.

[17]

Mckenzie L C, Zaikova T O, Hutchison J E. J. Am. Chem. Soc., 2014, 136: 13426.

[18]

Li H, Song F, Zhu D S, Song Y B, Zhou C J, Ke F, Lu L, Kang X, Zhu M Z. J. Am. Chem. Soc., 2022, 144: 4845.

[19]

Lei Z, Wan X K, Yuan S F, Guan Z J, Wang Q M. Acc. Chem. Res., 2018, 51: 2465.

[20]

Konishi K, Iwasaki M, Shichibu Y. Acc. Chem. Res., 2018, 51: 3125.

[21]

Hossain S, Niihori Y, Nair L V, Kumar B, Kurashige W, Negishi Y. Acc. Chem. Res., 2018, 51: 3114.

[22]

Higaki T, Li Q, Zhou M, Zhao S, Li Y W, Li S T, Jin R C. Acc. Chem. Res., 2018, 51: 2764.

[23]

Gan Z B, Xia N, Woo Z K. Acc. Chem. Res., 2018, 51: 2774.

[24]

Tang Q, Hu G X, Fung V, Jiang D E. Acc. Chem. Res., 2018, 51: 2793.

[25]

Wang Y F, Wang Y, Breed D R, Manoharan V N, Feng L, Hollingsworth A D, Weck M, Pine D J. Nature, 2012, 491: 51.

[26]

Chen J, Gu P L, Ran G L, Zhang Y, Li M Q, Chen B, Lu H, Han Y Z, Zhang W K, Tang Z C, Yan Q L, Sun R, Fu X B, Chen G R, Shi Z W, Wang S Y, Liu X G, Li J, Wang L H, Zhu Y, Shen J L, Tang B Z, Fan C H. Nat. Mater., 2024, 23: 271.

[27]

Chen J, Zhang Q F, Williard P G, Wang L S. Inorg. Chem., 2014, 53: 3932.

[28]

Zeng C J, Liu C, Chen Y X, Rosi N L, Jin R C. J. Am. Chem. Soc., 2014, 136: 11922.

[29]

Harper E S, Van Anders G, Glotzer S C. Proc. Natl. Acad. Sci., 2019, 116: 16703.

[30]

Van Anders G, Ahmed N K, Smith R, Engel M, Glotzer S C. ACS Nano., 2014, 8: 931.

[31]

Abu Bakar M, Sugiuchi M, Iwasaki M, Shichibu Y, Konishi K. Nat. Commun., 2017, 8: 567.

[32]

Spackman M A, Jayatilaka D. CrystEngComm, 2009, 11: 19.

AI Summary AI Mindmap
PDF

195

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/