Enhanced Solar Water Desalination by CuCo2S4-decorated Carbon Foam Derived from Waste Plastics

Muzammil Hussain , Tofik Ahmed Shifa , Pratik V. Shinde , Pankaj Kumar , Stefano Centenaro , Silvia Gross , Elisa Moretti , Alberto Vomiero

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 548 -555.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 548 -555. DOI: 10.1007/s40242-024-4091-8
Article

Enhanced Solar Water Desalination by CuCo2S4-decorated Carbon Foam Derived from Waste Plastics

Author information +
History +
PDF

Abstract

Interfacial solar desalination is an emerging technology for freshwater production, but the finding of novel solar evaporators is still challenging. In the present research, graphitic carbon foam (CF) was synthesized from the upcycling of waste plastic polyethylene terephthalate (PET) waste bottles functionalized with carrollite CuCo2S4 as a photothermal layer. Analytical characterization [X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS)] confirms the functionalization of carrollite CuCo2S4 on graphitic carbon foam. The UV-Vis spectroscopy analysis showed an enhanced optical absorption in the UV-Vis-near IR region (>96%) for functionalized CuCo2S4-CF foam compared to carbon foam (67%). The interfacial solar desalination experiment presented a significantly enhanced evaporation rate of 2.4 kg·m−2·h−1 for CuCo2S4-CF compared to that of CF (1.60 kg·m−2·h−1) and that of CuCo2S4 (1.60 kg·m−2·h−1). The obtained results proved that the newly synthesized CuCo2S4-CF from the upcycled plastic into new material for the photothermal desalination process can enhance the practice of a circular economy to produce fresh water.

Keywords

Photothermal desalination / Cobalt / Copper / Chalcogenide / Waste upcycling / Circular economy

Cite this article

Download citation ▾
Muzammil Hussain, Tofik Ahmed Shifa, Pratik V. Shinde, Pankaj Kumar, Stefano Centenaro, Silvia Gross, Elisa Moretti, Alberto Vomiero. Enhanced Solar Water Desalination by CuCo2S4-decorated Carbon Foam Derived from Waste Plastics. Chemical Research in Chinese Universities, 2024, 40(3): 548-555 DOI:10.1007/s40242-024-4091-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Elsaid K, Kamil M, Sayed E T, Abdelkareem M A, Wilberforce T, Olabi A. Sci. Total Environ., 2020, 748: 141528.

[2]

Karami S, Roghabadi F A, Maleki M, Ahmadi V, Sadrameli S M. Sol. Energy, 2021, 225: 747.

[3]

Ni G, Zandavi S H, Javid S M, Boriskina S V, Cooper T A, Chen G. Energy Environ. Sci., 2018, 11: 1510.

[4]

Elsheikh A H, Sharshir S W, Ali M K, Shaibo J, Edreis E M, Abdelhamid T, Du C, Haiou Z. Sol. Energy, 2019, 177: 561.

[5]

Bai B, Yang X, Tian R, Ren W, Suo R, Wang H. Appl. Therm. Eng., 2019, 163: 114379.

[6]

Wang G, Fu Y, Ma X, Pi W, Liu D, Wang X. Carbon, 2017, 114: 117.

[7]

Fu Y, Wang G, Mei T, Li J, Wang J, Wang X. ACS Sustain. Chem. Eng., 2017, 5: 4665.

[8]

Jiang F, Liu H, Li Y, Kuang Y, Xu X, Chen C, Huang H, Jia C, Zhao X, Hitz E, Zhou Y. ACS Appl. Mater. Interfaces, 2018, 10: 1104.

[9]

Jiang M, Wang X, Xi W, Zhou H, Yang P, Yao J, Jiang X, Wu D. J. Chem. Eng., 2023, 461: 141962.

[10]

Cabernard L, Pfister S, Oberschelp C, Hellweg S. Nat. Sustain, 2022, 5: 139.

[11]

Bai H, Liu N, Hao L, He P, Ma C, Niu R, Gong J, Tang T. Energy Environ. Mater., 2022, 5: 1204.

[12]

Bai H, He P, Hao L, Liu N, Fan Z, Chen B, Niu R, Gong J. J. Environ. Chem. Eng., 2022, 10: 108338.

[13]

Song C, Zhang B, Hao L, Min J, Liu N, Niu R, Gong J, Tang T. Green Energy Environ., 2022, 7: 411.

[14]

Zhu J, Huang L, Bao F, Chen G, Song K, Wang Z, Xia H, Gao J, Song Y, Zhu C, Lu F. Mat. Rep: Energ., 2023, 12: 100245.

[15]

Jiang J, Jiang H, Xu Y, Chen M, Ai L. Colloids Surf., 2022, 647: 128960.

[16]

Taranova A, Akbar K, Yusupov K, You S, Polewczyk V, Mauri S, Balliana E, Rosen J, Moras P, Gradone A, Morandi V, Moretti E, Vomiero A. Nat. Commun., 2023, 14: 7280.

[17]

Gao T, Wu X, Owens G, Xu H L. Tungsten, 2020, 2: 423.

[18]

Chen C, Liu H, Wang H, Zhao Y, Li M. Nano Energy, 2021, 84: 105868.

[19]

Lv F., Miao J., Hu J., Orejon D., Small, 2023, 2208137.

[20]

Ibrahim K B, Shifa T A, Zorzi S, Sendeku M G, Moretti E, Vomiero A. Prog. Mater. Sci., 2024, 20: 101287.

[21]

Ibrahim K B, Shifa T A, Bordin M, Moretti E, Wu H L, Vomiero A. Small Methods, 2023, 7: 2300348.

[22]

Chen X, Liu S, Yang N, Yu R, Wang D. EcoMat, 2023, 5: 12348.

[23]

Wei Y, Wang J, Yu R, Wan J, Wang D. Angewandte Chemie Intern Edition, 2019, 58: 1422.

[24]

Guo M, Balamurugan J, Thanh TD, Kim N H, Lee J H. J. Mater. Chem., 201, 4: 17560.

[25]

Konwar M, Mahanta B, Patar S, Saikia P, Guha A K, Borthaku L J. ChemistrySelect, 2022, 7: 202203585.

[26]

Vadivel S, Paul B, Habibi-Yangjeh A, Maruthamani D, Kumaravel M, Maiyalagan T. J. Phys. Chem. Solids, 2018, 123: 242.

[27]

Li L, Xu J, Ma J, Liu Z, Li Y. J. Colloid Interface Sci., 2019, 552: 17.

[28]

Zhu G, Zheng P, Wang M, Chen W, Li C. Inorg. Chem. Front, 2022, 9: 1006.

[29]

Ferreira M L, Santos T G, Calixto J M, Lavall R L, Justino D D, Gandra F G, Souza T D, Ladeira L O. Environ. Sci. Pollut. Res. Int., 2023, 30: 79082.

[30]

Peymanfar R, Selseleh-Zakerin E, Ahmadi A, Tavassoli S H. Sci. Rep., 2021, 11: 11932.

[31]

Tao F, Zhang Y, Cao S, Yin K, Chang X, Lei Y, Chen X. Mater. Today Energy, 2018, 9: 285.

[32]

Song C, Wang L, Li X, Guo L, Leng Y, Jin X, Ye L. Inorg. Chem. Commun., 2021, 133: 108886.

[33]

Yang Y, Zhao H, Yin Z, Zhao J, Yin X, Li N, Que W. Mater. Horiz., 2018, 5: 1143.

[34]

Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, Hu L. Adv. Mater., 2017, 29: 1701756.

[35]

Yin X, Zhang Y, Xu X, Wang Y. J. Solid State Chem., 2021, 303: 122423.

[36]

Jiang J, Yang R, Lu X, Ai L. Desalination, 2024, 569: 117042.

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/