In situ Preparation and Visible-light-driven Photocatalytic Degradation Performance of Nano 3C-SiC@Multilayer Graphene Oxide Heterostructure

Xiaodan Yang , Ziqi Guo , Yichen Xu , Ziliang Li , Yangtao Zhou , Zhenming Yang , Zishuai Zhou , Yong Gao , Jinsong Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 536 -547.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 536 -547. DOI: 10.1007/s40242-024-4076-7
Article

In situ Preparation and Visible-light-driven Photocatalytic Degradation Performance of Nano 3C-SiC@Multilayer Graphene Oxide Heterostructure

Author information +
History +
PDF

Abstract

Nano 3C-SiC@multilayer graphene oxide (NS@MGO) heterostructure was in situ prepared by carbothermal reduction of pyrolyzed precursor composed of highly dispersed cured phenolic resin and silicon dioxide derived from tetraethyl orthosilicate. The heterojunction interface, number of layers of MGO, and defect content in graphene are the three most important factors for promoting photocatalytic activity. Direct contact between 3C-SiC nanograins and MGO layers facilitates the photogenerated electrons to migrate across the heterojunction interface and avoid the formation of SiO2 nanolayers on the surface of SiC nanograins. The number of MGO layers is supposed to be less than ten instead of over-thick MGO. The concentrations of oxygenated components, considered the defect contents, decrease with the increase of sintering temperature for NS@MGO 0.175-T-150, and relative carbon content in the multilayer graphene increases. According to the heterostructures, properties, and photocatalytic reaction performance of the NS@MGO materials, the highest photocatalytic kinetic rate constant of 0.00891/min for NS@MGO 0.175-1500-150 shows that the significant enhancement in photocatalytic degradation activity under visible light (>420 nm) irradiation is ascribed to the advantageous synergistic effects between the nano 3C-SiC particles and the direct contact multilayer graphene oxide with appropriate layers and sufficient oxygen content of 3.51% (atomic fraction) in MGO.

Keywords

Photocatalysis / Multilayer graphene oxide / Nano 3C-SiC / Visible light degradation

Cite this article

Download citation ▾
Xiaodan Yang, Ziqi Guo, Yichen Xu, Ziliang Li, Yangtao Zhou, Zhenming Yang, Zishuai Zhou, Yong Gao, Jinsong Zhang. In situ Preparation and Visible-light-driven Photocatalytic Degradation Performance of Nano 3C-SiC@Multilayer Graphene Oxide Heterostructure. Chemical Research in Chinese Universities, 2024, 40(3): 536-547 DOI:10.1007/s40242-024-4076-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A, Honda K. Nature, 1972, 238: 37.

[2]

Wei T Y, Wan C C. Ind. Eng. Chem. Res., 1991, 30: 1293.

[3]

Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei D S M. Ind. Eng. Chem. Res., 2020, 59: 15894.

[4]

Yīlmaz G, Dindar B. Inorg. Chem. Commun., 2023, 157: 111320.

[5]

Phuruangrat A, Thongtem S, Thongtem T. Mater. Lett., 2017, 196: 61.

[6]

Lu X H, Zhai T, Cui H N, Shi J Y, Xie S L, Huang Y Y, Liang C L, Tong Y X. J. Mater. Chem., 2011, 21: 5569.

[7]

Darwent J R, Porter G. J. Chem. Soc., Chem. Commun., 1981, 4: 145.

[8]

Matsumura M, Saho Y, Tsubomura H. J. Phys. Chem., 1983, 87: 3807.

[9]

Paola A D, Palmisano L, Augugliaro V. Catal. Today, 2000, 58: 141.

[10]

Keller N, Keller V, Garin F, Ledoux M J. Mater. Lett., 2004, 58: 970.

[11]

Lo S C, Lin C F, Wu C H, Hsieh P H. J. Hazard. Mater., 2004, 114: 183.

[12]

Liu Y H, Guo S C G, Feng J, Zhu J M, Shen Y H. Tetrahedron Lett., 2023, 123: 154551.

[13]

Xu Y, Qian Y S, Qiao J L, Huang D Y, Cui S B. Int. J. Electrochem. SC., 2022, 17: 22024.

[14]

Chen G P, Li D M, Li F, Fan Y Z, Zhao H F, Luo Y H, Yu R C, Meng Q B. Appl. Catal., A-Gen., 2012, 2012: 443/444.

[15]

Zhou Z H, Lin Y L, Zhang P A, Ashalley E, Shafa M, Li H D, Wu J, Wang Z M. Mater. Lett., 2014, 131: 122.

[16]

Fu C F, Wu X J, Yang J L. Adv. Mater., 2018, 30: 1802106.

[17]

Wang Q, Domen K. Chem. Rev., 2020, 120: 919.

[18]

Zou Z G, Ye J H, Sayama K, Arakawa H. Nature, 2001, 414: 625.

[19]

Chen X Y, Kuo D H, Lu D F. Adv. Powder Technol., 2017, 28: 1213.

[20]

Zhang L Q, Hao J F, Jia Z H, Wang C T. J. Solid State Chem., 2023, 325: 124167.

[21]

Zhang J D, Chen J J, Xin L P, Wang M M. Mat. Sci. Eng., B: Adv, 2014, 179: 6.

[22]

Guo Y, Shi G L, Guo T, Chen J H, Ding Z J, Cheng N S, Ding R, Jiang M M, Jiao W Z, Liu Y Z. Appl. Surf. Sci., 2023, 609: 155181.

[23]

Wang D, Wang W J, Wang Q, Guo Z N, Yuan W X. Mater. Lett., 2017, 201: 114.

[24]

Hao D, Yang Z M, Jiang C H, Zhang J S. Appl. Catal., B: Environ., 2014, 144: 196.

[25]

Meenakshi G, Sivasamy A, Suganya Josephine G A, Kavithaa S. J. Mol. Catal. A: Chem., 201, 411: 167.

[26]

Zheng X H, Tang Q, Zhang H W, Lu S H, Yang F E. Inorg. Chem. Commun., 2022, 140: 109434.

[27]

Rico-Santacruz M, García-Muñoz P, Keller V, Batail N, Pham C, Robert D, Keller N. Catal. Today, 2019, 328: 235.

[28]

Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320: 1308.

[29]

Zhang N, Zhang Y H, Xu Y J. Nanoscale, 2012, 4: 5792.

[30]

Hass J, Varchon F, Millán-Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L, Conrad E H. Phys. Rev. Lett., 2008, 100: 125504.

[31]

Zhu K X, Guo L W, Lin J J, Hao W C, Shang J, Jia Y P, Chen L L, Jin S F, Wang W J, Chen X L. Appl. Phys. Lett., 2012, 100: 023113.

[32]

Lin S, Zhao X S, Li Y F, Huang K, Jia R X, Liang C, Xu X, Zhou Y F, Wang H, Fan D Y, Yang H J, Zhang R, Wang Y G, Lei M. Mater. Lett., 2014, 132: 380.

[33]

Lu W, Guo L W, Jia Y P, Guo Y, Li Z L, Lin J J, Huang J, Wang W J. RSC Adv., 2014, 4: 46771.

[34]

Koumoto K, Takeda S, Pai C H, Sato T, Yanagida H. J. Am. Ceram. Soc., 1989, 72: 1985.

[35]

Seo W-S, Koumoto K. J. Am. Ceram. Soc., 199, 79: 1777.

[36]

Li Z Q, Lu C J, Xia Z P, Zhou Y, Luo Z. Carbon, 2007, 45: 1686.

[37]

Lai Q, Zhu S F, Luo X P, Zou M, Huang S H. AIP Adv., 2012, 2: 032146.

[38]

Zhang T, Zhu G Y, Yu C H, Xie Y, Xia M Y, Lu B Y, Fei X F, Peng Q. Microchim. Acta, 2019, 186: 207.

[39]

Wang Y W, Guo X N, Dong L L, Jin G Q, Wang Y Y, Guo X Y. Int. J. Hydrogen Energy, 2013, 38: 12733.

[40]

Tuinstra F, Koenig J L. J. Chem. Phys., 1970, 53: 1126.

[41]

Varchon F, Feng R, Hass J, Li X, Nguyen B N, Naud C, Mallet P, Veuillen J Y, Berger C, Conrad E H, Magaud L. Phys. Rev. Lett., 2007, 99: 126805.

[42]

Faugeras C., Nerrière A., Potemski M., Mahmood A., Dujardin E., Berger C., de Heer W. A., Appl. Phys. Lett., 2008, 92

[43]

Latil S, Henrard L. Phys. Rev. Lett., 200, 97: 036803.

[44]

Latil S, Meunier V, Henrard L. Phys. Rev. B, 2007, 76: 201402.

[45]

Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Phys. Rev. Lett., 200, 97: 187401.

[46]

Hu G L, He J Y, Li Y J. Chem. Res. Chinese Universities, 2021, 37: 1195.

[47]

Rafiq S, Raza Z A, Aslam M, Bakhtiyar M J. Chem. Res. Chinese Universities, 2022, 38: 1518.

[48]

Zhang H, Zhang S C, Guo B Y, Yu L J, Ma L L, Hou B X, Liu H Y, Zhang S H, Wang J Y, Song J J, Tang Y F, Zhao X X. Angew. Chem. Int. Ed., 2024, 63: e202400285.

[49]

Carles L, Joly M, Joly P. CLEAN-Soil, Air, Water, 2017, 45: 1700011.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/