Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction

Chengbin Wang, Ping Li, Dehong Chen, Ruiyong Zhang, Lei Wang, Lingbo Zong

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 462-474. DOI: 10.1007/s40242-024-4072-y
Review

Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction

Author information +
History +

Abstract

Single-atom catalysts (SACs) have garnered extensive attention in the field of catalysis due to their exceptional inherent reaction activity, optimal utilization of metal atoms, etc. Controlled synthesis plays a crucial role in elucidating the structure-activity relationship of SACs. This paper reviews various synthetic strategies for SACs, encompassing defect engineering, metal-organic frameworks (MOFs) pyrolysis, and ion exchange. With specific examples, the significance of constructing catalysts at the atomic level is discussed, aiming to comprehensively understand the synthetic strategies of SACs. Finally, it addresses the challenges and prospects associated with controlled synthesis techniques for SACs as well as their future applications.

Keywords

Single-atom catalyst / Synthetic strategy / Carbon support / Oxygen reduction reaction

Cite this article

Download citation ▾
Chengbin Wang, Ping Li, Dehong Chen, Ruiyong Zhang, Lei Wang, Lingbo Zong. Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2024, 40(3): 462‒474 https://doi.org/10.1007/s40242-024-4072-y

References

[1]
Fei H, Dong J, Chen D, Hu T, Duan X, Shakir I, Huang Y, Duan X. . Chem. Soc. Rev., 2019, 48: 5207,
CrossRef Google scholar
[2]
Gielen D, Boshell F, Saygin D, Bazilian M D, Wagner N, Gorini R. . Energy Strategy Rev., 2019, 24: 38,
CrossRef Google scholar
[3]
Zhang J, Xia Z, Dai L. . Sci. Adv., 2015, 1: e1500564,
CrossRef Google scholar
[4]
Chow J, Kopp R J, Portney P R. . Science, 2003, 302: 1528,
CrossRef Google scholar
[5]
Lee J S, Tai Kim S, Cao R, Choi N S, Liu M, Lee K T, Cho J. . Adv. Energy Mater., 2011, 1: 34,
CrossRef Google scholar
[6]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. . Science, 2017, 355: eaad4998,
CrossRef Google scholar
[7]
Liu S., Wang A., Liu Y., Zhou W., Wen H., Zhang H., Sun K., Li S., Zhou J., Wang Y., Adv. Sci., 2024, 2308040.
[8]
Xu N, Zhang Y, Zhang T, Liu Y, Qiao J. . Nano Energy, 2019, 57: 176,
CrossRef Google scholar
[9]
Sun Y, Sun S, Yang H, Xi S, Gracia J, Xu Z J. . Adv. Mater., 2020, 32: 2003297,
CrossRef Google scholar
[10]
Wang X., Kang Z., Wang D., Zhao Y., Xiang X., Shang H., Zhang B., Nano Energy, 2024, 109268.
[11]
Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. . Chem. Rev., 2020, 120: 11900,
CrossRef Google scholar
[12]
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. . Electrochem. Energy Rev., 2022, 5: 145,
CrossRef Google scholar
[13]
Wang A, Li J, Zhang T. . Nat. Rev. Chem., 2018, 2: 65,
CrossRef Google scholar
[14]
Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. . Adv. Mater., 2020, 32: 2002435,
CrossRef Google scholar
[15]
Guo W, Wang Z, Wang X, Wu Y. . Adv. Mater., 2021, 33: 2004287,
CrossRef Google scholar
[16]
Li H, Wang M, Luo L, Zeng J. . Adv. Sci., 2019, 6: 1801471,
CrossRef Google scholar
[17]
Tajik S, Dourandish Z, Nejad F G, Beitollahi H, Afshar A A, Jahani P M, Di Bartolomeo A. . J. Electrochem. Soc., 2022, 169: 046504,
CrossRef Google scholar
[18]
Liu D, He Q, Ding S, Song L. . Adv. Energy Mater., 2020, 10: 2001482,
CrossRef Google scholar
[19]
Lai W H, Miao Z, Wang Y X, Wang J Z, Chou S L. . Adv. Energy Mater., 2019, 9: 1900722,
CrossRef Google scholar
[20]
Zhu C, Fu S, Shi Q, Du D, Lin Y. . Angew. Chem. Int. Ed., 2017, 56: 13944,
CrossRef Google scholar
[21]
Zhang H, Liu G, Shi L, Ye J. . Adv. Energy Mater., 2018, 8: 1701343,
CrossRef Google scholar
[22]
Xi J, Jung H S, Xu Y, Xiao F, Bae J W, Wang S. . Adv. Funct. Mater., 2021, 31: 2008318,
CrossRef Google scholar
[23]
Liu D, Wan X, Kong T, Han W, Xiong Y. . J. Mater. Chem. A, 2022, 10: 5878,
CrossRef Google scholar
[24]
Li X, Kou Z, Wang J. . Small Methods, 2021, 5: 2001010,
CrossRef Google scholar
[25]
Yan X, Zhuang L, Zhu Z, Yao X. . Nanoscale, 2021, 13: 3327,
CrossRef Google scholar
[26]
Jia Y, Jiang K, Wang H, Yao X. . Chem, 2019, 5: 1371,
CrossRef Google scholar
[27]
Wu Q, Liu Q, Zhou Y, Sun Y, Zhao J, Liu Y, Liu F, Nie M, Ning F, Yang N. . ACS Appl. Mater. Interfaces, 2018, 10: 39735,
CrossRef Google scholar
[28]
Li W, Wang D, Zhang Y, Tao L, Wang T, Zou Y, Wang Y, Chen R, Wang S. . Adv. Mater., 2020, 32: 1907879,
CrossRef Google scholar
[29]
Zhang J, Zhang J, He F, Chen Y, Zhu J, Wang D, Mu S, Yang H Y. . Nano-Micro Lett., 2021, 13: 1,
CrossRef Google scholar
[30]
Zhang Z, Zhao X, Xi S, Zhang L, Chen Z, Zeng Z, Huang M, Yang H, Liu B, Pennycook S J. . Adv. Energy Mater., 2020, 10: 2002896,
CrossRef Google scholar
[31]
Yang Z, Wang Y, Zhu M, Li Z, Chen W, Wei W, Yuan T, Qu Y, Xu Q, Zhao C. . ACS Catal., 2019, 9: 2158,
CrossRef Google scholar
[32]
Li J, Chen M, Cullen D A, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H. . Nat. Catal., 2018, 1: 935,
CrossRef Google scholar
[33]
Fei H, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H. . Nat. Catal., 2018, 1: 63,
CrossRef Google scholar
[34]
Li W, Min C, Tan F, Li Z, Zhang B, Si R, Xu M, Liu W, Zhou L, Wei Q. . ACS Nano, 2019, 13: 3177,
CrossRef Google scholar
[35]
Zong L, Fan K, Wu W, Cui L, Zhang L, Johannessen B, Qi D, Yin H, Wang Y, Liu P. . Adv. Funct. Mater., 2021, 31: 2104864,
CrossRef Google scholar
[36]
Zong L, Fan K, Li P, Lu F, Li B, Wang L. . Adv. Energy Mater., 2023, 13: 2203611,
CrossRef Google scholar
[37]
Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, Xiao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X. . Nat. Catal., 2019, 2: 688,
CrossRef Google scholar
[38]
Wang X, Jia Y, Mao X, Liu D, He W, Li J, Liu J, Yan X, Chen J, Song L, Du A, Yao X. . Adv. Mater., 2020, 32: 2000966,
CrossRef Google scholar
[39]
Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. . Joule, 2018, 2: 1242,
CrossRef Google scholar
[40]
Rao P, Luo J, Wu D, Li J, Chen Q, Deng P, Shen Y, Tian X. . Energy Environ. Mater., 2023, 6: e12371,
CrossRef Google scholar
[41]
Yan X, Jia Y, Yao X. . Chem. Soc. Rev., 2018, 47: 7628,
CrossRef Google scholar
[42]
Shen M, Liu J, Li J, Duan C, Xiong C, Zhao W, Dai L, Wang Q, Yang H, Ni Y. . Energy Storage Mater., 2023, 59: 102790,
CrossRef Google scholar
[43]
Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. . J. Am. Chem. Soc., 2018, 140: 11594,
CrossRef Google scholar
[44]
Zhang Y, Guo L, Tao L, Lu Y, Wang S. . Small Methods, 2019, 3: 1800406,
CrossRef Google scholar
[45]
Zhao Y, Chen H C, Ma X, Li J, Yuan Q, Zhang P, Wang M, Li J, Li M, Wang S, Guo H, Hu R, Tu K-H, Zhu W, Li X, Yang X, Pan Y. . Adv. Mater., 2024, 36: 2308243,
CrossRef Google scholar
[46]
Zhang Z, Gao X, Dou M, Ji J, Wang F. . Small, 2017, 13: 1604290,
CrossRef Google scholar
[47]
Mehmood A, Gong M, Jaouen F, Roy A, Zitolo A, Khan A, Sougrati M-T, Primbs M, Bonastre A M, Fongalland D. . Nat. Catal., 2022, 5: 311,
CrossRef Google scholar
[48]
Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. . Angew. Chem. Int. Ed., 2021, 60: 21751,
CrossRef Google scholar
[49]
Cui L, Fan K, Zong L, Lu F, Zhou M, Li B, Zhang L, Feng L, Li X, Chen Y. . Energy Storage Mater., 2022, 44: 469,
CrossRef Google scholar
[50]
Wu T, Zhu S, Xie Y, Ma Q, Lu C. . Appl. Catal. B: Environ., 2023, 331: 122685,
CrossRef Google scholar
[51]
Kang Z, Wang X, Wang D, Bai B, Zhao Y, Xiang X, Zhang B, Shang H. . Nanoscale, 2023, 15: 9605,
CrossRef Google scholar
[52]
Zhao X, Takao S, Yoshida Y, Kaneko T, Gunji T, Higashi K, Uruga T, Iwasawa Y. . Appl. Catal. B: Environ., 2023, 324: 122268,
CrossRef Google scholar
[53]
Yao X., Zhu Y., Xia T., Han Z., Du C., Yang L., Tian J., Ma X., Hou J., Cao C., Small, 2023, 2301075.
[54]
Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X. . Angew. Chem. Int. Ed., 2021, 60: 21685,
CrossRef Google scholar
[55]
Li G, Liu J, Xu C, Chen H, Hu H, Jin R, Sun L, Chen H, Guo C, Li H, Si Y. . Energy Storage Mater., 2023, 56: 394,
CrossRef Google scholar
[56]
Wu Q, Jia Y, Liu Q, Mao X, Guo Q, Yan X, Zhao J, Liu F, Du A, Yao X. . Adv. Mater., 2022, 8: 2715
[57]
Yin L., Zhang S., Sun M., Wang S., Huang B., Du Y., Nano Res., 2024, 1, DOI: https://doi.org/10.1007/s12274-024-6416-9.
[58]
Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. . Adv. Mater., 2021, 33: 2007442,
CrossRef Google scholar
[59]
Wang T, Cao X, Jiao L. . Small, 2021, 17: 2004398,
CrossRef Google scholar
[60]
Liu H, Cheng M, Liu Y, Wang J, Zhang G, Li L, Du L, Wang G, Yang S, Wang X. . Energy Environ. Sci., 2022, 15: 3722,
CrossRef Google scholar
[61]
Li L, Zhu Q, Han M, Tu X, Shen Y. . Nanoscale, 2023, 15: 13487,
CrossRef Google scholar
[62]
Song Z, Zhang L, Doyle-Davis K, Fu X, Luo J L, Sun X. . Adv. Energy Mater., 2020, 10: 2001561,
CrossRef Google scholar
[63]
Wang H-F, Chen L, Pang H, Kaskel S, Xu Q. . Chem. Soc. Rev., 2020, 49: 1414,
CrossRef Google scholar
[64]
Wang Q, Astruc D. . Chem. Rev., 2019, 120: 1438,
CrossRef Google scholar
[65]
Lu X F, Xia B Y, Zang S Q, Lou X W. . Angew. Chem. Int. Ed., 2020, 132: 4662,
CrossRef Google scholar
[66]
Kaneti Y V, Tang J, Salunkhe R R, Jiang X, Yu A, Wu K C W, Yamauchi Y. . Adv. Mater., 2017, 29: 1604898,
CrossRef Google scholar
[67]
Liu B, Shioyama H, Akita T, Xu Q J. . J. Am. Chem. Soc., 2008, 130: 5390,
CrossRef Google scholar
[68]
Li J, Xia W, Xu X, Jiang D, Cai Z-X, Tang J, Guo Y, Huang X, Wang T, He J. . J. Am. Chem. Soc., 2023, 145: 27262,
CrossRef Google scholar
[69]
Han A, Wang B, Kumar A, Qin Y, Jin J, Wang X, Yang C, Dong B, Jia Y, Liu J. . Small Methods, 2019, 3: 1800471,
CrossRef Google scholar
[70]
Lu F, Fan K, Cui L, Yang Y, Wang W, Zhang G, Wang C, Zhang Q, Li B, Zong L. . Chem. Eng. J., 2022, 431: 133242,
CrossRef Google scholar
[71]
Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D. . Angew. Chem. Int. Ed., 2017, 56: 6937,
CrossRef Google scholar
[72]
Ji S, Chen Y, Fu Q, Chen Y, Dong J, Chen W, Li Z, Wang Y, Gu L, He W J. . J. Am. Chem. Soc., 2017, 139: 9795,
CrossRef Google scholar
[73]
Rong J, Gao E, Liu N, Chen W, Rong X, Zhang Y, Zheng X, Ao H, Xue S, Huang B. . Energy Storage Mater., 2023, 56: 165,
CrossRef Google scholar
[74]
Xie X, Shang L, Xiong X, Shi R, Zhang T. . Adv. Energy Mater., 2022, 12: 2102688,
CrossRef Google scholar
[75]
Jang H-W, Kang G-S, Lee J Y, Lee S Y, Lee G, Yoo S J, Lee S, Joh H-I. . Chem. Eng. J., 2023, 474: 145464,
CrossRef Google scholar
[76]
Hu Y, Li Z, Li B, Yu C. . Small, 2022, 18: 2203589,
CrossRef Google scholar
[77]
Pei Z., Zhang H., Guo Y., Luan D., Gu X., Lou X. W., Adv. Mater., 2023, 2306047.
[78]
Dey G, Jana R, Saifi S, Kumar R, Bhattacharyya D, Datta A, Sinha A, Aijaz A. . ACS Nano, 2023, 17: 19155,
CrossRef Google scholar
[79]
Feng R, Ruan Q-D, Feng J-J, Yao Y-Q, Li L-M, Zhang L, Wang A-J. . J. Colloid Interface Sci., 2024, 654: 1240,
CrossRef Google scholar
[80]
Li W H, Yang J, Wang D. . Angew. Chem. Int. Ed., 2022, 134: e202213318,
CrossRef Google scholar
[81]
Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M. . Adv. Mater., 2021, 33: 2102576,
CrossRef Google scholar
[82]
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. . Adv. Mater., 2022, 34: 2201796,
CrossRef Google scholar
[83]
Pedersen A, Barrio J, Li A, Jervis R, Brett D J, Titirici M M, Stephens I E. . Adv. Energy Mater., 2022, 12: 2102715,
CrossRef Google scholar
[84]
Zhu P, Xiong X, Wang D, Li Y. . Adv. Energy Mater., 2023, 13: 2300884,
CrossRef Google scholar
[85]
Li J, Zhang H, Samarakoon W, Shan W, Cullen D A, Karakalos S, Chen M, Gu D, More K L, Wang G. . Angew. Chem. Int. Ed., 2019, 58: 18971,
CrossRef Google scholar
[86]
He Y, Shi Q, Shan W, Li X, Kropf A J, Wegener E C, Wright J, Karakalos S, Su D, Cullen D A. . Angew. Chem., 2021, 133: 9602,
CrossRef Google scholar
[87]
Zong L, Fan K, Cui L, Lu F, Liu P, Li B, Feng S, Wang L. . Angew. Chem. Int. Ed., 2023, 135: e202309784,
CrossRef Google scholar
[88]
Hong Y, Kim T, Jo J, Kim B, Jin H, Baik H, Lee K. . ACS Nano, 2020, 14: 11205,
CrossRef Google scholar
[89]
Anderson B D, Tracy J B. . Nanoscale, 2014, 6: 12195,
CrossRef Google scholar
[90]
Park J, Zheng H, Jun Y W, Alivisatos A P. . J. Am. Chem. Soc., 2009, 131: 13943,
CrossRef Google scholar
[91]
Hodges J M, Kletetschka K, Fenton J L, Read C G, Schaak R E. . Angew. Chem., Int. Ed., 2015, 54: 8669,
CrossRef Google scholar
[92]
Lim Y, Lee C-H, Jun C-H, Kim K, Cheon J. . J. Am. Chem. Soc., 2020, 142: 9130,
CrossRef Google scholar
[93]
Jiao L, Li J, Richard L L, Sun Q, Stracensky T, Liu E, Sougrati M T, Zhao Z, Yang F, Zhong S. . Nat. Mater., 2021, 20: 1385,
CrossRef Google scholar
[94]
Yin S-H, Yang S-L, Li G, Li G, Zhang B-W, Wang C-T, Chen M-S, Liao H-G, Yang J, Jiang Y-X, Sun S-G. . Energy Environ. Sci., 2022, 15: 3033,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/