Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction

Chengbin Wang , Ping Li , Dehong Chen , Ruiyong Zhang , Lei Wang , Lingbo Zong

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 462 -474.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 462 -474. DOI: 10.1007/s40242-024-4072-y
Review

Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction

Author information +
History +
PDF

Abstract

Single-atom catalysts (SACs) have garnered extensive attention in the field of catalysis due to their exceptional inherent reaction activity, optimal utilization of metal atoms, etc. Controlled synthesis plays a crucial role in elucidating the structure-activity relationship of SACs. This paper reviews various synthetic strategies for SACs, encompassing defect engineering, metal-organic frameworks (MOFs) pyrolysis, and ion exchange. With specific examples, the significance of constructing catalysts at the atomic level is discussed, aiming to comprehensively understand the synthetic strategies of SACs. Finally, it addresses the challenges and prospects associated with controlled synthesis techniques for SACs as well as their future applications.

Keywords

Single-atom catalyst / Synthetic strategy / Carbon support / Oxygen reduction reaction

Cite this article

Download citation ▾
Chengbin Wang, Ping Li, Dehong Chen, Ruiyong Zhang, Lei Wang, Lingbo Zong. Progress and Outlook of Carbon-supported Single-atom Electrocatalyst for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2024, 40(3): 462-474 DOI:10.1007/s40242-024-4072-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fei H, Dong J, Chen D, Hu T, Duan X, Shakir I, Huang Y, Duan X. Chem. Soc. Rev., 2019, 48: 5207.

[2]

Gielen D, Boshell F, Saygin D, Bazilian M D, Wagner N, Gorini R. Energy Strategy Rev., 2019, 24: 38.

[3]

Zhang J, Xia Z, Dai L. Sci. Adv., 2015, 1: e1500564.

[4]

Chow J, Kopp R J, Portney P R. Science, 2003, 302: 1528.

[5]

Lee J S, Tai Kim S, Cao R, Choi N S, Liu M, Lee K T, Cho J. Adv. Energy Mater., 2011, 1: 34.

[6]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355: eaad4998.

[7]

Liu S., Wang A., Liu Y., Zhou W., Wen H., Zhang H., Sun K., Li S., Zhou J., Wang Y., Adv. Sci., 2024, 2308040.

[8]

Xu N, Zhang Y, Zhang T, Liu Y, Qiao J. Nano Energy, 2019, 57: 176.

[9]

Sun Y, Sun S, Yang H, Xi S, Gracia J, Xu Z J. Adv. Mater., 2020, 32: 2003297.

[10]

Wang X., Kang Z., Wang D., Zhao Y., Xiang X., Shang H., Zhang B., Nano Energy, 2024, 109268.

[11]

Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chem. Rev., 2020, 120: 11900.

[12]

Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Electrochem. Energy Rev., 2022, 5: 145.

[13]

Wang A, Li J, Zhang T. Nat. Rev. Chem., 2018, 2: 65.

[14]

Chen H, Liang X, Liu Y, Ai X, Asefa T, Zou X. Adv. Mater., 2020, 32: 2002435.

[15]

Guo W, Wang Z, Wang X, Wu Y. Adv. Mater., 2021, 33: 2004287.

[16]

Li H, Wang M, Luo L, Zeng J. Adv. Sci., 2019, 6: 1801471.

[17]

Tajik S, Dourandish Z, Nejad F G, Beitollahi H, Afshar A A, Jahani P M, Di Bartolomeo A. J. Electrochem. Soc., 2022, 169: 046504.

[18]

Liu D, He Q, Ding S, Song L. Adv. Energy Mater., 2020, 10: 2001482.

[19]

Lai W H, Miao Z, Wang Y X, Wang J Z, Chou S L. Adv. Energy Mater., 2019, 9: 1900722.

[20]

Zhu C, Fu S, Shi Q, Du D, Lin Y. Angew. Chem. Int. Ed., 2017, 56: 13944.

[21]

Zhang H, Liu G, Shi L, Ye J. Adv. Energy Mater., 2018, 8: 1701343.

[22]

Xi J, Jung H S, Xu Y, Xiao F, Bae J W, Wang S. Adv. Funct. Mater., 2021, 31: 2008318.

[23]

Liu D, Wan X, Kong T, Han W, Xiong Y. J. Mater. Chem. A, 2022, 10: 5878.

[24]

Li X, Kou Z, Wang J. Small Methods, 2021, 5: 2001010.

[25]

Yan X, Zhuang L, Zhu Z, Yao X. Nanoscale, 2021, 13: 3327.

[26]

Jia Y, Jiang K, Wang H, Yao X. Chem, 2019, 5: 1371.

[27]

Wu Q, Liu Q, Zhou Y, Sun Y, Zhao J, Liu Y, Liu F, Nie M, Ning F, Yang N. ACS Appl. Mater. Interfaces, 2018, 10: 39735.

[28]

Li W, Wang D, Zhang Y, Tao L, Wang T, Zou Y, Wang Y, Chen R, Wang S. Adv. Mater., 2020, 32: 1907879.

[29]

Zhang J, Zhang J, He F, Chen Y, Zhu J, Wang D, Mu S, Yang H Y. Nano-Micro Lett., 2021, 13: 1.

[30]

Zhang Z, Zhao X, Xi S, Zhang L, Chen Z, Zeng Z, Huang M, Yang H, Liu B, Pennycook S J. Adv. Energy Mater., 2020, 10: 2002896.

[31]

Yang Z, Wang Y, Zhu M, Li Z, Chen W, Wei W, Yuan T, Qu Y, Xu Q, Zhao C. ACS Catal., 2019, 9: 2158.

[32]

Li J, Chen M, Cullen D A, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H. Nat. Catal., 2018, 1: 935.

[33]

Fei H, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H. Nat. Catal., 2018, 1: 63.

[34]

Li W, Min C, Tan F, Li Z, Zhang B, Si R, Xu M, Liu W, Zhou L, Wei Q. ACS Nano, 2019, 13: 3177.

[35]

Zong L, Fan K, Wu W, Cui L, Zhang L, Johannessen B, Qi D, Yin H, Wang Y, Liu P. Adv. Funct. Mater., 2021, 31: 2104864.

[36]

Zong L, Fan K, Li P, Lu F, Li B, Wang L. Adv. Energy Mater., 2023, 13: 2203611.

[37]

Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, Xiao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X. Nat. Catal., 2019, 2: 688.

[38]

Wang X, Jia Y, Mao X, Liu D, He W, Li J, Liu J, Yan X, Chen J, Song L, Du A, Yao X. Adv. Mater., 2020, 32: 2000966.

[39]

Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Joule, 2018, 2: 1242.

[40]

Rao P, Luo J, Wu D, Li J, Chen Q, Deng P, Shen Y, Tian X. Energy Environ. Mater., 2023, 6: e12371.

[41]

Yan X, Jia Y, Yao X. Chem. Soc. Rev., 2018, 47: 7628.

[42]

Shen M, Liu J, Li J, Duan C, Xiong C, Zhao W, Dai L, Wang Q, Yang H, Ni Y. Energy Storage Mater., 2023, 59: 102790.

[43]

Jiang R, Li L, Sheng T, Hu G, Chen Y, Wang L. J. Am. Chem. Soc., 2018, 140: 11594.

[44]

Zhang Y, Guo L, Tao L, Lu Y, Wang S. Small Methods, 2019, 3: 1800406.

[45]

Zhao Y, Chen H C, Ma X, Li J, Yuan Q, Zhang P, Wang M, Li J, Li M, Wang S, Guo H, Hu R, Tu K-H, Zhu W, Li X, Yang X, Pan Y. Adv. Mater., 2024, 36: 2308243.

[46]

Zhang Z, Gao X, Dou M, Ji J, Wang F. Small, 2017, 13: 1604290.

[47]

Mehmood A, Gong M, Jaouen F, Roy A, Zitolo A, Khan A, Sougrati M-T, Primbs M, Bonastre A M, Fongalland D. Nat. Catal., 2022, 5: 311.

[48]

Zhang L S, Jiang X H, Zhong Z A, Tian L, Sun Q, Cui Y T, Lu X, Zou J P, Luo S L. Angew. Chem. Int. Ed., 2021, 60: 21751.

[49]

Cui L, Fan K, Zong L, Lu F, Zhou M, Li B, Zhang L, Feng L, Li X, Chen Y. Energy Storage Mater., 2022, 44: 469.

[50]

Wu T, Zhu S, Xie Y, Ma Q, Lu C. Appl. Catal. B: Environ., 2023, 331: 122685.

[51]

Kang Z, Wang X, Wang D, Bai B, Zhao Y, Xiang X, Zhang B, Shang H. Nanoscale, 2023, 15: 9605.

[52]

Zhao X, Takao S, Yoshida Y, Kaneko T, Gunji T, Higashi K, Uruga T, Iwasawa Y. Appl. Catal. B: Environ., 2023, 324: 122268.

[53]

Yao X., Zhu Y., Xia T., Han Z., Du C., Yang L., Tian J., Ma X., Hou J., Cao C., Small, 2023, 2301075.

[54]

Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X. Angew. Chem. Int. Ed., 2021, 60: 21685.

[55]

Li G, Liu J, Xu C, Chen H, Hu H, Jin R, Sun L, Chen H, Guo C, Li H, Si Y. Energy Storage Mater., 2023, 56: 394.

[56]

Wu Q, Jia Y, Liu Q, Mao X, Guo Q, Yan X, Zhao J, Liu F, Du A, Yao X. Adv. Mater., 2022, 8: 2715.

[57]

Yin L., Zhang S., Sun M., Wang S., Huang B., Du Y., Nano Res., 2024, 1, DOI: https://doi.org/10.1007/s12274-024-6416-9.

[58]

Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Adv. Mater., 2021, 33: 2007442.

[59]

Wang T, Cao X, Jiao L. Small, 2021, 17: 2004398.

[60]

Liu H, Cheng M, Liu Y, Wang J, Zhang G, Li L, Du L, Wang G, Yang S, Wang X. Energy Environ. Sci., 2022, 15: 3722.

[61]

Li L, Zhu Q, Han M, Tu X, Shen Y. Nanoscale, 2023, 15: 13487.

[62]

Song Z, Zhang L, Doyle-Davis K, Fu X, Luo J L, Sun X. Adv. Energy Mater., 2020, 10: 2001561.

[63]

Wang H-F, Chen L, Pang H, Kaskel S, Xu Q. Chem. Soc. Rev., 2020, 49: 1414.

[64]

Wang Q, Astruc D. Chem. Rev., 2019, 120: 1438.

[65]

Lu X F, Xia B Y, Zang S Q, Lou X W. Angew. Chem. Int. Ed., 2020, 132: 4662.

[66]

Kaneti Y V, Tang J, Salunkhe R R, Jiang X, Yu A, Wu K C W, Yamauchi Y. Adv. Mater., 2017, 29: 1604898.

[67]

Liu B, Shioyama H, Akita T, Xu Q J. J. Am. Chem. Soc., 2008, 130: 5390.

[68]

Li J, Xia W, Xu X, Jiang D, Cai Z-X, Tang J, Guo Y, Huang X, Wang T, He J. J. Am. Chem. Soc., 2023, 145: 27262.

[69]

Han A, Wang B, Kumar A, Qin Y, Jin J, Wang X, Yang C, Dong B, Jia Y, Liu J. Small Methods, 2019, 3: 1800471.

[70]

Lu F, Fan K, Cui L, Yang Y, Wang W, Zhang G, Wang C, Zhang Q, Li B, Zong L. Chem. Eng. J., 2022, 431: 133242.

[71]

Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D. Angew. Chem. Int. Ed., 2017, 56: 6937.

[72]

Ji S, Chen Y, Fu Q, Chen Y, Dong J, Chen W, Li Z, Wang Y, Gu L, He W J. J. Am. Chem. Soc., 2017, 139: 9795.

[73]

Rong J, Gao E, Liu N, Chen W, Rong X, Zhang Y, Zheng X, Ao H, Xue S, Huang B. Energy Storage Mater., 2023, 56: 165.

[74]

Xie X, Shang L, Xiong X, Shi R, Zhang T. Adv. Energy Mater., 2022, 12: 2102688.

[75]

Jang H-W, Kang G-S, Lee J Y, Lee S Y, Lee G, Yoo S J, Lee S, Joh H-I. Chem. Eng. J., 2023, 474: 145464.

[76]

Hu Y, Li Z, Li B, Yu C. Small, 2022, 18: 2203589.

[77]

Pei Z., Zhang H., Guo Y., Luan D., Gu X., Lou X. W., Adv. Mater., 2023, 2306047.

[78]

Dey G, Jana R, Saifi S, Kumar R, Bhattacharyya D, Datta A, Sinha A, Aijaz A. ACS Nano, 2023, 17: 19155.

[79]

Feng R, Ruan Q-D, Feng J-J, Yao Y-Q, Li L-M, Zhang L, Wang A-J. J. Colloid Interface Sci., 2024, 654: 1240.

[80]

Li W H, Yang J, Wang D. Angew. Chem. Int. Ed., 2022, 134: e202213318.

[81]

Zhang W, Chao Y, Zhang W, Zhou J, Lv F, Wang K, Lin F, Luo H, Li J, Tong M. Adv. Mater., 2021, 33: 2102576.

[82]

Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Adv. Mater., 2022, 34: 2201796.

[83]

Pedersen A, Barrio J, Li A, Jervis R, Brett D J, Titirici M M, Stephens I E. Adv. Energy Mater., 2022, 12: 2102715.

[84]

Zhu P, Xiong X, Wang D, Li Y. Adv. Energy Mater., 2023, 13: 2300884.

[85]

Li J, Zhang H, Samarakoon W, Shan W, Cullen D A, Karakalos S, Chen M, Gu D, More K L, Wang G. Angew. Chem. Int. Ed., 2019, 58: 18971.

[86]

He Y, Shi Q, Shan W, Li X, Kropf A J, Wegener E C, Wright J, Karakalos S, Su D, Cullen D A. Angew. Chem., 2021, 133: 9602.

[87]

Zong L, Fan K, Cui L, Lu F, Liu P, Li B, Feng S, Wang L. Angew. Chem. Int. Ed., 2023, 135: e202309784.

[88]

Hong Y, Kim T, Jo J, Kim B, Jin H, Baik H, Lee K. ACS Nano, 2020, 14: 11205.

[89]

Anderson B D, Tracy J B. Nanoscale, 2014, 6: 12195.

[90]

Park J, Zheng H, Jun Y W, Alivisatos A P. J. Am. Chem. Soc., 2009, 131: 13943.

[91]

Hodges J M, Kletetschka K, Fenton J L, Read C G, Schaak R E. Angew. Chem., Int. Ed., 2015, 54: 8669.

[92]

Lim Y, Lee C-H, Jun C-H, Kim K, Cheon J. J. Am. Chem. Soc., 2020, 142: 9130.

[93]

Jiao L, Li J, Richard L L, Sun Q, Stracensky T, Liu E, Sougrati M T, Zhao Z, Yang F, Zhong S. Nat. Mater., 2021, 20: 1385.

[94]

Yin S-H, Yang S-L, Li G, Li G, Zhang B-W, Wang C-T, Chen M-S, Liao H-G, Yang J, Jiang Y-X, Sun S-G. Energy Environ. Sci., 2022, 15: 3033.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/