Hollow Multi-shelled Structure Photoelectric Materials: Multiple Shells Bring Novel Properties

Fengmei Su, Jiawei Wan, Dan Wang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 413-427. DOI: 10.1007/s40242-024-4061-1
Review

Hollow Multi-shelled Structure Photoelectric Materials: Multiple Shells Bring Novel Properties

Author information +
History +

Abstract

Hollow multi-shelled structures (HoMS) have made significant strides across a wide spectrum of scientific investigations since the inception of the sequential templating approach (STA) in 2009, revealing distinctive temporal-spatial ordering properties. The recent establishment of a mathematical model for STA has not only demystified the formation of concentration waves within the STA process but also extended its relevance to gentler solution-based systems, thereby broadening the HoMS landscape. Herein, focusing on photoelectric applications, this review first summarizes the unique temporal-spatial ordering features of HoMS. Subsequentially, the greatly enhanced properties of light capture and absorption, exciton separation, and transfer are deeply discussed. Finally, we conclude with a perspective on the potential challenges and burgeoning opportunities that lie ahead in the advancement of HoMS development.

Keywords

Hollow multi-shelled structure / Photoelectric conversion / Sequential templating approach / Light absorption / Charge transfer

Cite this article

Download citation ▾
Fengmei Su, Jiawei Wan, Dan Wang. Hollow Multi-shelled Structure Photoelectric Materials: Multiple Shells Bring Novel Properties. Chemical Research in Chinese Universities, 2024, 40(3): 413‒427 https://doi.org/10.1007/s40242-024-4061-1

References

[1]
Mao D, Wan J, Wang J, Wang D. . Adv. Mater., 2018, 31: 1802874,
CrossRef Google scholar
[2]
Wang J, Wan J, Yang N, Li Q, Wang D. . Nat. Rev. Chem., 2020, 4: 159,
CrossRef Google scholar
[3]
Wang J, Wan J, Wang D. . Acc. Chem. Res., 2019, 52: 2169,
CrossRef Google scholar
[4]
Wang J, Tang H, Wang H, Yu R, Wang D. . Mater. Chem. Front., 2017, 1: 414,
CrossRef Google scholar
[5]
Zhu M, Tang J, Wei W, Li S. . Mater. Chem. Front., 2020, 4: 1105,
CrossRef Google scholar
[6]
Zhao J, Yang M, Yang N, Wang J, Wang D. . Chem. Res. Chinese Universities, 2020, 36: 313,
CrossRef Google scholar
[7]
Wang Z, Yang N, Wang D. . Chem. Sci., 2020, 11: 5359,
CrossRef Google scholar
[8]
Wei Y, Wan J, Yang N, Yang Y, Ma Y, Wang S, Wang J, Yu R, Gu L, Wang L, Wang L, Huang W, Wang D. . Natl. Sci. Rev., 2020, 7: 1638,
CrossRef Google scholar
[9]
Wei Y, You F, Zhao D, Wan J, Gu L, Wang D. . Angew. Chem. Int. Ed., 2022, 61: e202212049,
CrossRef Google scholar
[10]
Zhao D, Yang N, Wei Y, Jin Q, Wang Y, He H, Yang Y, Han B, Zhang S, Wang D. . Nat. Commun., 2020, 11: 4450,
CrossRef Google scholar
[11]
Han W, Wei Y, Wan J, Nakagawa N, Wang D. . Inorg. Chem., 2022, 61: 5397,
CrossRef Google scholar
[12]
Wang Z, Qi J, Yang N, Yu R, Wang D. . Mater. Chem. Front, 2021, 5: 1126,
CrossRef Google scholar
[13]
Wei Y, Wan J, Wang J, Zhang X, Yu R, Yang N, Wang D. . Small, 2021, 17: 2005345,
CrossRef Google scholar
[14]
Pei J, Yang L, Lin J, Zhang Z, Sun Z, Wang D, Chen W. . Angew., Chem. Int. Ed., 2023, 63: e202316123,
CrossRef Google scholar
[15]
Shang H, Zhou X, Dong J, Li A, Zhao X, Liu Q, Lin Y, Pei J, Li Z, Jiang Z, Zhou D, Zheng L, Wang Y, Zhou J, Yang Z, Cao R, Sarangi R, Sun T, Yang X, Zheng X, Yan W, Zhuang Z, Li J, Chen W, Wang D, Zhang J, Li Y. . Nat. Commun., 2020, 11: 3049,
CrossRef Google scholar
[16]
Xu R-G, Yao J-X, Lai X-Y, Mao D, Xing C-J, Wang D. . Chem. Res. Chinese Universities, 2009, 25: 95,
CrossRef Google scholar
[17]
Huang T, Yang M, Wang J, Zhang Sh, Du J, Wang D. . Chem. J. Chinese Universities, 2023, 44: 20220276
[18]
Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y. . Angew. Chem. Int. Ed., 2020, 59: 2465,
CrossRef Google scholar
[19]
Salhabi E H M, Zhao J, Wang J, Yang M, Wang B, Wang D. . Angew. Chem. Int. Ed., 2019, 58: 9078,
CrossRef Google scholar
[20]
Zhang J, Wan J, Wang J, Ren H, Yu R, Gu L, Liu Y, Feng S, Wang D. . Angew. Chem. Int. Ed., 2019, 58: 5266,
CrossRef Google scholar
[21]
Bi R, Xu N, Ren H, Yang N, Sun Y, Cao A, Yu R, Wang D. . Angew. Chem. Int. Ed., 2020, 59: 4865,
CrossRef Google scholar
[22]
Zhang X, Bi R, Wang J, Zheng M, Wang J, Yu R, Wang D. . Adv. Mater., 2023, 35: 2209354,
CrossRef Google scholar
[23]
Bi R, Zhao J, Wang J, Yu R, Wang D. . Chem J. Chinese Universities, 2023, 44: 20220453
[24]
Wu Y, Du H, Zhu J, Xu N, Zhou L, Mai L. . Chem J. Chinese Universities, 2023, 44: 20220689
[25]
Wu Z, Li Z, Chou S, Liang X. . Chem. Res. Chinese Universities, 2023, 39: 283,
CrossRef Google scholar
[26]
Zhao X, Yang M, Wang J, Wang D. . Chem. Res. Chinese Universities, 2023, 39: 630,
CrossRef Google scholar
[27]
Li M, Mao D, Wan J, Wang F, Zhai T, Wang D. . Inorg. Chem. Front., 2019, 6: 1968,
CrossRef Google scholar
[28]
Lai X, Li J, Korgel B A, Dong Z, Li Z, Su F, Du J, Wang D. . Angew. Chem. Int. Ed., 2011, 50: 2738,
CrossRef Google scholar
[29]
Xu J, Yao X, Wei W, Wang Z, Yu R. . Mater. Res. Bull., 2017, 87: 214,
CrossRef Google scholar
[30]
Wu C, Zhang X, Ning B, Yang J, Xie Y. . Inorg. Chem., 2009, 48: 6044,
CrossRef Google scholar
[31]
Sun X M, Li Y D. . Angew. Chem. Int. Ed., 2004, 43: 3827,
CrossRef Google scholar
[32]
Li Z M, Lai X Y, Wang H, Mao D, Xing C J, Wang D. . J. Phys. Chem. C, 2009, 113: 2792,
CrossRef Google scholar
[33]
Wei Y, Cheng Y, Zhao D, Feng Y, Wei P, Wang J, Ge W, Wang D. . Angew. Chem. Int. Ed., 2023, 62: e202302621,
CrossRef Google scholar
[34]
Wang L, Wan J, Zhao Y, Yang N, Wang D. . J. Am. Chem. Soc., 2019, 141: 2238,
CrossRef Google scholar
[35]
Wang Z., Wei Y., Qi J., Wan J., Wang Z., Yu R., Wang D., Adv. Funct. Mater., 2024, 2316547.
[36]
Wei Y, Li J, Zhao D, Zhao Y, Zhang Q, Gu L, Wan J, Wang D. . CCS Chemistry, 2024, 1: 1
[37]
Yang D, Ma D. . Adv. Opt. Mater, 2018, 7: 1800522,
CrossRef Google scholar
[38]
Mihi A, Zhang C, Braun P V. . Angew. Chem. Int. Ed., 2011, 50: 5711,
CrossRef Google scholar
[39]
Du X, Zhang Q, He Z, Lin H, Yang G, Chen Z, Zheng C, Tao S. . Chin. Chem. Lett., 2023, 34: 107641,
CrossRef Google scholar
[40]
Wei Y, Zhao D, Wan J, Wang D. . Trends Chem., 2022, 4: 1021,
CrossRef Google scholar
[41]
Zhang P, Lou X W. . Adv. Mater., 2019, 31: 1900281,
CrossRef Google scholar
[42]
Wang L, Wan J, Wang J, Wang D. . Small Struct., 2020, 2: 2000041,
CrossRef Google scholar
[43]
Bi R, Mao D, Wang J, Yu R, Wang D. . Acta Chim. Sinica, 2020, 78: 1200,
CrossRef Google scholar
[44]
Wang J, Cui Y, Wang D. . Adv. Mater., 2019, 31: 1801993,
CrossRef Google scholar
[45]
Wang C, Wang J, Hu W, Wang D. . Chem. Res. Chinese Universities, 2020, 36: 68,
CrossRef Google scholar
[46]
Yang H G, Zeng H C. . J. Phys. Chem. B, 2004, 108: 3492,
CrossRef Google scholar
[47]
Liu B, Zeng H C. . Small, 2005, 1: 566,
CrossRef Google scholar
[48]
Lou X W, Wang Y, Yuan C, Lee J Y, Archer L A. . Adv. Mater., 2006, 18: 2325,
CrossRef Google scholar
[49]
Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. . Science, 2004, 304: 711,
CrossRef Google scholar
[50]
Fan H J, Goesele U, Zacharias M. . Small, 2007, 3: 1660,
CrossRef Google scholar
[51]
Wang C, Xu Z, Liu R. . Chem. Res. Chinese Universities, 2008, 24: 249,
CrossRef Google scholar
[52]
Bao N, Shen L, Takata T, Domen K. . Chem. Mater., 2008, 20: 110,
CrossRef Google scholar
[53]
Guan B Y, Yu L, Wang X, Song S, Lou X W. . Adv. Mater., 2017, 29: 1605051,
CrossRef Google scholar
[54]
Lee J, Park J C, Song H. . Adv. Mater., 2008, 20: 1523,
CrossRef Google scholar
[55]
Chen Y, Chen H, Guo L, He Q, Chen F, Zhou J, Feng J, Shi J. . ACS Nano, 2010, 4: 529,
CrossRef Google scholar
[56]
Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshirn C, Kalt H. . ACS Nano, 2008, 2: 1661,
CrossRef Google scholar
[57]
Yu R, Li Z, Wang D, Xing C, Lai X, Xing X. . Chem. Res. Chinese Universities, 2009, 25: 963
[58]
Wang J, Tang H, Zhang L, Ren H, Yu R, Jin Q, Qi J, Mao D, Yang M, Wang Y, Liu P, Zhang Y, Wen Y, Gu L, Ma G, Su Z, Tang Z, Zhao H, Wang D. . Nat. Energy, 2016, 1: 16050,
CrossRef Google scholar
[59]
Zhu Y, Yang M, Huang Q, Wang D, Yu R, Wang J, Zheng Z, Wang D. . Adv. Mater., 2020, 32: 1906205,
CrossRef Google scholar
[60]
Zhan S, Chen X, Xu B, Wang L, Tong L, Yu R, Yang N, Wang D. . Nano Today, 2022, 47: 101626,
CrossRef Google scholar
[61]
Li B, Wang J, Bi R, Yang N, Wan J, Jiang H, Gu L, Du J, Cao A, Gao W, Wang D. . Adv. Mater., 2022, 34: 2200206,
CrossRef Google scholar
[62]
Hou P, Li D, Yang N, Wan J, Zhang C, Zhang X, Jiang H, Zhang Q, Gu L, Wang D. . Angew. Chem. Int. Ed., 2021, 60: 6926,
CrossRef Google scholar
[63]
Wei Y, Yang N, Huang K, Wan J, You F, Yu R, Feng S, Wang D. . Adv. Mater., 2020, 32: 2002556,
CrossRef Google scholar
[64]
Takanabe K. . ACS Catalysis, 2017, 7: 8006,
CrossRef Google scholar
[65]
Long M, Wang P, Fang H, Hu W. . Adv. Funct. Mater., 2018, 29: 1803807,
CrossRef Google scholar
[66]
Restat L, Messmer C, Heydarian M, Heydarian M, Schoen J, Schubert M C, Glunz S W. . Solar Rrl, 2024, 8: 2300887,
CrossRef Google scholar
[67]
Zheng L X, Hu K, Teng F, Fang X S. . Small, 2017, 13: 1602448,
CrossRef Google scholar
[68]
Zhang P, Luan D Y, Lou X W. . Adv. Mater., 2020, 32: 2004561,
CrossRef Google scholar
[69]
Wang Y, Wang S B, Zhang S L, Lou X W. . Angew. Chem. Int. Ed., 2020, 59: 11918,
CrossRef Google scholar
[70]
Hu L F, Chen M, Shan W Z, Zhan T R, Liao M Y, Fang X S, Hu X H, Wu L M. . Adv. Mater., 2012, 24: 5872,
CrossRef Google scholar
[71]
Zhao H, Chen J F, Zhao Y, Jiang L, Sun J W, Yun J. . Adv. Mater., 2008, 20: 3682,
CrossRef Google scholar
[72]
Xiao Y, Gao Z, Wu D, Jiang Y, Liu N, Jiang K. . Chem. Res. Chinese Universities, 2011, 27: 919
[73]
Lien D H, Dong Z, Retamal J R D, Wang H P, Wei T C, Wang D, He J H, Cui Y. . Adv. Mater., 2018, 30: 1801972,
CrossRef Google scholar
[74]
Korotin M A, Anisimov V I, Khomskii D I, Sawatzky G A. . Phys. Rev. Lett., 1998, 80: 4305,
CrossRef Google scholar
[75]
Huang K, Geng Z, Sun Y, Feng S. . Sci. Bull., 2018, 63: 203,
CrossRef Google scholar
[76]
Huang R, Lin J, Zhou J, Fan E, Zhang X, Chen R, Wu F, Li L. . Small, 2021, 17: 2007597,
CrossRef Google scholar
[77]
Li S-L, Tsukagoshi K, Orgiu E, Samori P. . Chem. Soc. Rev., 2016, 45: 118,
CrossRef Google scholar
[78]
Sawatzky G A, Allen J W. . Phys. Rev. Lett., 1984, 53: 2339,
CrossRef Google scholar
[79]
Peng S, Gong F, Li L, Yu D, Ji D, Zhang T, Hu Z, Zhang Z, Chou S, Du Y, Ramakrishna S. . J. Am. Chem. Soc., 2018, 140: 13644,
CrossRef Google scholar
[80]
Dong Z, Lai X, Halpert J E, Yang N, Y L, Zhai J, Wang D, Tang Z, Jiang L. . Adv. Mater., 2012, 24: 1046,
CrossRef Google scholar
[81]
Dong Z, Ren H, Hessel C M, Wang J, Yu R, Jin Q, Yang M, Hu Z, Chen Y, Tang Z, Zhao H, Wang D. . Adv. Mater., 2013, 26: 905,
CrossRef Google scholar
[82]
Chen M, Hu L, Xu J, Liao M, Wu L, Fang X. . Small, 2011, 7: 2449,
CrossRef Google scholar
[83]
Wang X, Liao M, Zhong Y, Zheng J Y, Tian W, Zhai T, Zhi C, Ma Y, Yao J, Bando Y, Golberg D. . Adv. Mater., 2012, 24: 3421,
CrossRef Google scholar
[84]
Du Z, Fu D, Teng J, Wang L, Gao F, Yang W, Zhang H, Fang X. . Small, 2019, 15: e1905253,
CrossRef Google scholar
[85]
Jeong H, Song H, Pak Y, Kwon I K, Jo K, Lee H, Jung G Y. . Adv. Mater., 2014, 26: 3445,
CrossRef Google scholar
[86]
Ouyang W X, Teng F, Fang X S. . Adv. Funct. Mater., 2018, 28: 1707178,
CrossRef Google scholar
[87]
Chen X, Yang H, Liu G, Gao F, Dai M, Hu Y, Chen H, Cao W, Hu P, Hu W. . Adv. Funct. Mater., 2018, 28: 1705153,
CrossRef Google scholar
[88]
Wang X, Liao M Y, Zhong Y T, Zheng J Y, Tian W, Zhai T Y, Zhi C Y, Ma Y, Yao J N A, Bando Y, Golberg D. . Adv. Mater., 2012, 24: 3421,
CrossRef Google scholar
[89]
Chen M, Ye C Y, Zhou S X, Wu L M. . Adv. Mater., 2013, 25: 5343,
CrossRef Google scholar
[90]
Tian W, Zhang C, Zhai T Y, Li S L, Wang X, Liao M Y, Tsukagoshi K, Golberg D, Bando Y. . Chem. Commun., 2013, 49: 3739,
CrossRef Google scholar
[91]
Han W, Wang Y, Wan J, Wang D. . Chem. Res. Chinese Universities, 2022, 38: 117,
CrossRef Google scholar
[92]
Pan X, Zhang J, Zhou H, Liu R, Wu D, Wang R, Shen L, Tao L, Zhang J, Wang H. . Nano-Micro Lett., 2021, 13: 70,
CrossRef Google scholar
[93]
Deng K, Liu Z, Wang M, Li L. . Adv. Funct. Mater., 2019, 29: 1900830,
CrossRef Google scholar
[94]
Wang H, Jiang R, Sun M, Yin X, Guo Y, He M, Wang L. . J. Mater. Chem. C, 2019, 7: 1948,
CrossRef Google scholar
[95]
Nai J, Lou X W. . Adv. Mater., 2019, 31: 1706825,
CrossRef Google scholar
[96]
Zhang P, Lu X F, Luan D, Lou X W. . Angew. Chem. Int. Ed., 2020, 59: 8128,
CrossRef Google scholar
[97]
Li L, Dai X Y, Chen D L, Zeng Y X, Hu Y, Lou X W. . Angew. Chem. Int. Ed., 2022, 61: e202205839,
CrossRef Google scholar
[98]
Zhang P, Guan B Y, Yu L, Lou X W. . Chem., 2018, 4: 162,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/