PDF
Abstract
Precipitation and impregnation procedures unevenly distribute metals on zeolite, limiting chemical transformation in Lewis-acid, Brönsted-acid and metal-catalyzed tandem reactions. Although, heterogeneous multitask transition metals oxides@zeolites are promising catalysts for sustainable processes; nevertheless, synthesis is fascinating and complex. Herein, the construction of purposely designed multitask materials segregated in selective shells reveals the remarkable spatial organization of metals-zeolite, resulting in them being suitable for a wide range of tandem reactions. The synthesis of multi-site catalysts begins with a universal wet chemistry approach that yields nickel oxide (NiO) crystals. Then, the NiO crystals are stabilized using cationic dodecyltrimethylammonium bromide, followed by achieving cross-linking carbon growth by emulsion polymerization of glucose in hydrothermal treatment to yield uniformed NiO@carbon spheres (NiO@CSs). Next, sequential adsorption of cobalt cations and colloidal ZSM-5 (1% in H2O, mass fraction), followed by calcination in air, yielded NiO@cobalt oxide@zeolite denoted as NiO@Co3O4@ZEO hollow spheres. The hollowing mechanism and materials segregation within shells are revealed by scanning and transmission electron microscopy, thermogravimetric analysis, and X-ray diffraction. The finding advances the rational synthesis of heterogenous core-shell hollow structures for various gas phase catalytic tandem reactions to yield valuable chemicals.
Keywords
Multifunctional
/
Core-shell hollow spheres
/
Gas-phase reactions
/
Valuable chemical
Cite this article
Download citation ▾
Muhammad Waqas.
Design and Synthesis of NiO@Co3O4@ZSM-5 Heterogeneous Multitask Hollow Structures for Tandem Catalysis.
Chemical Research in Chinese Universities, 2024, 40(3): 529-535 DOI:10.1007/s40242-024-4055-z
| [1] |
Wei Y, Li J, Zhao D, Zhao Y, Zhang Q, Gu L, Wan J, Wang D. CCS Chemistry, 2024, 6: 1.
|
| [2] |
Wei Y, Zhao D, Wang D. Adv. Sci., 2023, 11: 2305408.
|
| [3] |
Ge W, Chen X, Ma R, Zheng S, Shang N, Zhao X. Chem. Res. Chinese Universities, 2024, 40: 1.
|
| [4] |
Waqas M, Ahmad H. Chemosphere, 2024, 350: 140968.
|
| [5] |
Waqas M. Inorg. Chem., 2021, 60: 13461.
|
| [6] |
Zhao X, Yang M, Wang J, Wang D. Chem. Res. Chinese Universities, 2023, 39: 630.
|
| [7] |
Waqas M, Iqbal S, Bahadur A, Saeed A, Raheel M, Javed M. Appl. Catal. B: Environ., 2017, 219: 30.
|
| [8] |
Waqas M, Yang B, Cao L, Zhao X, Iqbal W, Xiao K, Zhu C, Zhang J. Catal. Sci. & Technol., 2019, 9: 5322.
|
| [9] |
Waqas M, Wei Y, Mao D, Qi J, Yang Y, Wang B, Wang D. Nano Res., 2017, 10: 3920.
|
| [10] |
Xu W, Bi R, Yang M, Wang J, Yu R, Wang D. Nano Res., 2023, 16: 12745.
|
| [11] |
Mao D, Zhang Z, Yang M, Wang Z, Wang D. Int. J. Miner. Metall. Mater., 2023, 30: 581.
|
| [12] |
Han W, Wei Y, Wan J, Nakagawa N, Wang D. Inorg. Chem., 2022, 61: 5397.
|
| [13] |
Wei Y, Wan J, Wang J, Zhang X, Yu R, Yang N, Wang D. Small, 2021, 17: 2005345.
|
| [14] |
Wang D, Wang H, Qi J, Yang N, Cui W, Wang J, Li Q, Yu X, Gu L, Yu R, Huang K, Feng S, Song S, Li J. Angew. Chem. Int. Ed., 2020, 59: 19691.
|
| [15] |
Zhang H, Zhang S, Guo B, Yu L-J, Ma L, Hou B, Liu H, Zhang S, Wang J, Song J, Tang Y, Zhao X. Angew. Chem. Int. Ed., 2024 e202400285.
|
| [16] |
Ma L, Hou B, Zhang H, Yuan S, Zhao B, Liu ^Y, Qi X, Liu H, Zhang S, Song J, Zhao X. Chem. Eng. J., 2023, 453: 139735.
|
| [17] |
Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. Angew. Chem. Int. Ed., 2013, 52: 6417.
|
| [18] |
Qi J, Zhao K, Li G, Gao Y, Zhao H, Yu R, Tang Z. Nanoscale., 2014, 6: 4072.
|
| [19] |
Zhou B, Waqas M, Yang B, Xiao K, Wang S, Zhu C, Li J, Zhang J. App. Surf. Sci., 2020, 506: 145004.
|
| [20] |
Climent M J, Corma A, Iborra S, Sabater M J. ACS Catal., 2014, 4: 870.
|
| [21] |
Behr A, Vorholt A J, Ostrowski K A, Seidensticker T. Green Chem., 2014, 16: 982.
|
| [22] |
Lohr T L, Marks T J. Nat. Chem., 2015, 7: 477.
|
| [23] |
Védrine J C. ChemSusChem, 2019, 12: 577.
|
| [24] |
de Jong K P. Synthesis of solid catalysts John Wiley & Sons, 2009
|
| [25] |
Chen S, Takata T, Domen K. Nat. Rev. Mater., 2017, 2: 1.
|
| [26] |
Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Energy & Environ. Sci., 2015, 8: 1404.
|
| [27] |
Corma A. Chem. Rev., 1997, 97: 2373.
|
| [28] |
Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44: 7342.
|
| [29] |
Li Y, Li L, Yu J. Chem., 2017, 3: 928.
|
| [30] |
Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X. Science, 201, 351: 1065.
|
| [31] |
Cheng K, Zhou W, Kang J, He S, Shi S, Zhang Q, Pan Y, Wen W, Wang Y. Chem., 2017, 3: 334.
|
| [32] |
Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. Nat. Chem., 2017, 9: 1019.
|
| [33] |
Wang Y, Tan L, Tan M, Zhang P, Fang Y, Yoneyama Y, Yang G, Tsubaki N. ACS Catal., 2019, 9: 895.
|
| [34] |
Takeuchi M, Kimura T, Hidaka M, Rakhmawaty D, Anpo M. J. Catal., 2007, 246: 235.
|
| [35] |
Huang H, Huang H, Feng Q, Liu G, Zhan Y, Wu M, Lu H, Shu Y, Leung D Y C. Appl. Catal. B: Environ., 2017, 203: 870.
|
| [36] |
Bronstein L M, Huang X, Retrum J, Schmucker A, Pink M, Stein B D, Dragnea B. Chem. Mater., 2007, 19: 3624.
|
| [37] |
Selvin R, Hsu H-L, Roselin L S, Bououdina M. Synth. React. Inorg. M., 2011, 41: 1028.
|
| [38] |
Roselin L S, Selvin R, Bououdina M. Chem. Eng. Commun., 2012, 199: 221.
|
| [39] |
Xiao J, Cheng K, Xie X, Wang M, Xing S, Liu Y, Hartman T, Fu D, Bossers K, van Huis MA. Nat. Mater., 2022, 21: 572.
|
| [40] |
Israelachvili J N. Intermolecular and surface forces, 3rd Edition, 2011, San Diego, CA: Waltham, MA.
|
| [41] |
Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Angew. Chem. Int, 2007, 46: 3087.
|
| [42] |
Guo R, Wang R, Ni Z, Liu X. Appl. Phys. A., 2018, 124: 623.
|
| [43] |
Yin Y, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304: 711.
|
| [44] |
Cao L, Chen D, Caruso R A. Angew. Chem. Int. Ed., 2013, 52: 10986.
|