Design and Synthesis of NiO@Co3O4@ZSM-5 Heterogeneous Multitask Hollow Structures for Tandem Catalysis

Muhammad Waqas

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 529-535. DOI: 10.1007/s40242-024-4055-z
Article

Design and Synthesis of NiO@Co3O4@ZSM-5 Heterogeneous Multitask Hollow Structures for Tandem Catalysis

Author information +
History +

Abstract

Precipitation and impregnation procedures unevenly distribute metals on zeolite, limiting chemical transformation in Lewis-acid, Brönsted-acid and metal-catalyzed tandem reactions. Although, heterogeneous multitask transition metals oxides@zeolites are promising catalysts for sustainable processes; nevertheless, synthesis is fascinating and complex. Herein, the construction of purposely designed multitask materials segregated in selective shells reveals the remarkable spatial organization of metals-zeolite, resulting in them being suitable for a wide range of tandem reactions. The synthesis of multi-site catalysts begins with a universal wet chemistry approach that yields nickel oxide (NiO) crystals. Then, the NiO crystals are stabilized using cationic dodecyltrimethylammonium bromide, followed by achieving cross-linking carbon growth by emulsion polymerization of glucose in hydrothermal treatment to yield uniformed NiO@carbon spheres (NiO@CSs). Next, sequential adsorption of cobalt cations and colloidal ZSM-5 (1% in H2O, mass fraction), followed by calcination in air, yielded NiO@cobalt oxide@zeolite denoted as NiO@Co3O4@ZEO hollow spheres. The hollowing mechanism and materials segregation within shells are revealed by scanning and transmission electron microscopy, thermogravimetric analysis, and X-ray diffraction. The finding advances the rational synthesis of heterogenous core-shell hollow structures for various gas phase catalytic tandem reactions to yield valuable chemicals.

Keywords

Multifunctional / Core-shell hollow spheres / Gas-phase reactions / Valuable chemical

Cite this article

Download citation ▾
Muhammad Waqas. Design and Synthesis of NiO@Co3O4@ZSM-5 Heterogeneous Multitask Hollow Structures for Tandem Catalysis. Chemical Research in Chinese Universities, 2024, 40(3): 529‒535 https://doi.org/10.1007/s40242-024-4055-z

References

[1]
Wei Y, Li J, Zhao D, Zhao Y, Zhang Q, Gu L, Wan J, Wang D. . CCS Chemistry, 2024, 6: 1,
CrossRef Google scholar
[2]
Wei Y, Zhao D, Wang D. . Adv. Sci., 2023, 11: 2305408,
CrossRef Google scholar
[3]
Ge W, Chen X, Ma R, Zheng S, Shang N, Zhao X. . Chem. Res. Chinese Universities, 2024, 40: 1,
CrossRef Google scholar
[4]
Waqas M, Ahmad H. . Chemosphere, 2024, 350: 140968,
CrossRef Google scholar
[5]
Waqas M. . Inorg. Chem., 2021, 60: 13461,
CrossRef Google scholar
[6]
Zhao X, Yang M, Wang J, Wang D. . Chem. Res. Chinese Universities, 2023, 39: 630,
CrossRef Google scholar
[7]
Waqas M, Iqbal S, Bahadur A, Saeed A, Raheel M, Javed M. . Appl. Catal. B: Environ., 2017, 219: 30,
CrossRef Google scholar
[8]
Waqas M, Yang B, Cao L, Zhao X, Iqbal W, Xiao K, Zhu C, Zhang J. . Catal. Sci. & Technol., 2019, 9: 5322,
CrossRef Google scholar
[9]
Waqas M, Wei Y, Mao D, Qi J, Yang Y, Wang B, Wang D. . Nano Res., 2017, 10: 3920,
CrossRef Google scholar
[10]
Xu W, Bi R, Yang M, Wang J, Yu R, Wang D. . Nano Res., 2023, 16: 12745,
CrossRef Google scholar
[11]
Mao D, Zhang Z, Yang M, Wang Z, Wang D. . Int. J. Miner. Metall. Mater., 2023, 30: 581,
CrossRef Google scholar
[12]
Han W, Wei Y, Wan J, Nakagawa N, Wang D. . Inorg. Chem., 2022, 61: 5397,
CrossRef Google scholar
[13]
Wei Y, Wan J, Wang J, Zhang X, Yu R, Yang N, Wang D. . Small, 2021, 17: 2005345,
CrossRef Google scholar
[14]
Wang D, Wang H, Qi J, Yang N, Cui W, Wang J, Li Q, Yu X, Gu L, Yu R, Huang K, Feng S, Song S, Li J. . Angew. Chem. Int. Ed., 2020, 59: 19691,
CrossRef Google scholar
[15]
Zhang H, Zhang S, Guo B, Yu L-J, Ma L, Hou B, Liu H, Zhang S, Wang J, Song J, Tang Y, Zhao X. . Angew. Chem. Int. Ed., 2024 e202400285
[16]
Ma L, Hou B, Zhang H, Yuan S, Zhao B, Liu ^Y, Qi X, Liu H, Zhang S, Song J, Zhao X. . Chem. Eng. J., 2023, 453: 139735,
CrossRef Google scholar
[17]
Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. . Angew. Chem. Int. Ed., 2013, 52: 6417,
CrossRef Google scholar
[18]
Qi J, Zhao K, Li G, Gao Y, Zhao H, Yu R, Tang Z. . Nanoscale., 2014, 6: 4072,
CrossRef Google scholar
[19]
Zhou B, Waqas M, Yang B, Xiao K, Wang S, Zhu C, Li J, Zhang J. . App. Surf. Sci., 2020, 506: 145004,
CrossRef Google scholar
[20]
Climent M J, Corma A, Iborra S, Sabater M J. . ACS Catal., 2014, 4: 870,
CrossRef Google scholar
[21]
Behr A, Vorholt A J, Ostrowski K A, Seidensticker T. . Green Chem., 2014, 16: 982,
CrossRef Google scholar
[22]
Lohr T L, Marks T J. . Nat. Chem., 2015, 7: 477,
CrossRef Google scholar
[23]
Védrine J C. . ChemSusChem, 2019, 12: 577,
CrossRef Google scholar
[24]
de Jong K P. . Synthesis of solid catalysts John Wiley & Sons, 2009,
CrossRef Google scholar
[25]
Chen S, Takata T, Domen K. . Nat. Rev. Mater., 2017, 2: 1
[26]
Hong W T, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. . Energy & Environ. Sci., 2015, 8: 1404,
CrossRef Google scholar
[27]
Corma A. . Chem. Rev., 1997, 97: 2373,
CrossRef Google scholar
[28]
Vogt E T C, Weckhuysen B M. . Chem. Soc. Rev., 2015, 44: 7342,
CrossRef Google scholar
[29]
Li Y, Li L, Yu J. . Chem., 2017, 3: 928,
CrossRef Google scholar
[30]
Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X. . Science, 2016, 351: 1065,
CrossRef Google scholar
[31]
Cheng K, Zhou W, Kang J, He S, Shi S, Zhang Q, Pan Y, Wen W, Wang Y. . Chem., 2017, 3: 334,
CrossRef Google scholar
[32]
Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. . Nat. Chem., 2017, 9: 1019,
CrossRef Google scholar
[33]
Wang Y, Tan L, Tan M, Zhang P, Fang Y, Yoneyama Y, Yang G, Tsubaki N. . ACS Catal., 2019, 9: 895,
CrossRef Google scholar
[34]
Takeuchi M, Kimura T, Hidaka M, Rakhmawaty D, Anpo M. . J. Catal., 2007, 246: 235,
CrossRef Google scholar
[35]
Huang H, Huang H, Feng Q, Liu G, Zhan Y, Wu M, Lu H, Shu Y, Leung D Y C. . Appl. Catal. B: Environ., 2017, 203: 870,
CrossRef Google scholar
[36]
Bronstein L M, Huang X, Retrum J, Schmucker A, Pink M, Stein B D, Dragnea B. . Chem. Mater., 2007, 19: 3624,
CrossRef Google scholar
[37]
Selvin R, Hsu H-L, Roselin L S, Bououdina M. . Synth. React. Inorg. M., 2011, 41: 1028,
CrossRef Google scholar
[38]
Roselin L S, Selvin R, Bououdina M. . Chem. Eng. Commun., 2012, 199: 221,
CrossRef Google scholar
[39]
Xiao J, Cheng K, Xie X, Wang M, Xing S, Liu Y, Hartman T, Fu D, Bossers K, van Huis MA. . Nat. Mater., 2022, 21: 572,
CrossRef Google scholar
[40]
Israelachvili J N. . Intermolecular and surface forces, 3rd Edition, 2011 San Diego, CA Waltham, MA.
[41]
Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. . Angew. Chem. Int, 2007, 46: 3087,
CrossRef Google scholar
[42]
Guo R, Wang R, Ni Z, Liu X. . Appl. Phys. A., 2018, 124: 623,
CrossRef Google scholar
[43]
Yin Y, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. . Science, 2004, 304: 711,
CrossRef Google scholar
[44]
Cao L, Chen D, Caruso R A. . Angew. Chem. Int. Ed., 2013, 52: 10986,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/