Synthesis and Enhanced Acetone-sensing Properties of Ordered Large-pore Mesoporous Nickel Oxides with Ultrathin Crystalline Frameworks
Chen Shao , Ru Guo , Hui Li , Xiaozhong Wang , Qingfeng Yang , Xiaoyong Lai
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 521 -528.
Synthesis and Enhanced Acetone-sensing Properties of Ordered Large-pore Mesoporous Nickel Oxides with Ultrathin Crystalline Frameworks
Acetone is a tracer for monitoring air quality and a potential breath maker for diabetes. It remains a great challenge for current portable sensors to sensitively and selectively detect acetone at low-ppb (part per billion) level. Herein, we present an ordered mesoporous nickel oxide (NiO) with both large mesopores and ultrathin crystalline frameworks for the detection of low-ppb acetone. The ordered mesoporous NiO replicas with predominant large mesopores of 11 nm, high specific surface areas of 121–128 m2/g and ultrathin crystalline frameworks of 5 nm were synthesized by the nanocasting method and the crystalline properties of NiO frameworks were adjusted by changing the annealing temperature from 300 °C to 750 °C, which resulted in different contents of oxygen deficient on the surface of ultrathin frameworks. The gas-sensing properties for all the NiO samples were investigated and the ordered large-pore mesoporous NiO (NiO-600) with maximum oxygen deficient obtained at 600 °C exhibited the highest response (R gas/R air−1=2.9) toward acetone (1 ppm, ppm: part per million), which is 3.4 and 30 times larger than those for common mesoporous NiO obtained at 300 °C and bulk NiO. Notably, a low detection limit (2 ppb), good selectivity and cycling stability were also observed in NiO-600.
Mesoporous semiconductor / NiO / Gas sensing / Acetone
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Kleitz F., Choi S. H., Ryoo R., Chem. Commun., 2003, 2136. |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
Chen Z., Fu F., Cao J., An L., Zhang K., Chen Q., Mater. Res. Bull., 2023, 165. |
| [51] |
Du L., Pan J., Dong Q., Liu Y., Sun H., Sens. Actuators B, 2022, 372. |
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
/
| 〈 |
|
〉 |