Synthesis and Enhanced Acetone-sensing Properties of Ordered Large-pore Mesoporous Nickel Oxides with Ultrathin Crystalline Frameworks

Chen Shao , Ru Guo , Hui Li , Xiaozhong Wang , Qingfeng Yang , Xiaoyong Lai

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 521 -528.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 521 -528. DOI: 10.1007/s40242-024-4054-0
Article

Synthesis and Enhanced Acetone-sensing Properties of Ordered Large-pore Mesoporous Nickel Oxides with Ultrathin Crystalline Frameworks

Author information +
History +
PDF

Abstract

Acetone is a tracer for monitoring air quality and a potential breath maker for diabetes. It remains a great challenge for current portable sensors to sensitively and selectively detect acetone at low-ppb (part per billion) level. Herein, we present an ordered mesoporous nickel oxide (NiO) with both large mesopores and ultrathin crystalline frameworks for the detection of low-ppb acetone. The ordered mesoporous NiO replicas with predominant large mesopores of 11 nm, high specific surface areas of 121–128 m2/g and ultrathin crystalline frameworks of 5 nm were synthesized by the nanocasting method and the crystalline properties of NiO frameworks were adjusted by changing the annealing temperature from 300 °C to 750 °C, which resulted in different contents of oxygen deficient on the surface of ultrathin frameworks. The gas-sensing properties for all the NiO samples were investigated and the ordered large-pore mesoporous NiO (NiO-600) with maximum oxygen deficient obtained at 600 °C exhibited the highest response (R gas/R air−1=2.9) toward acetone (1 ppm, ppm: part per million), which is 3.4 and 30 times larger than those for common mesoporous NiO obtained at 300 °C and bulk NiO. Notably, a low detection limit (2 ppb), good selectivity and cycling stability were also observed in NiO-600.

Keywords

Mesoporous semiconductor / NiO / Gas sensing / Acetone

Cite this article

Download citation ▾
Chen Shao, Ru Guo, Hui Li, Xiaozhong Wang, Qingfeng Yang, Xiaoyong Lai. Synthesis and Enhanced Acetone-sensing Properties of Ordered Large-pore Mesoporous Nickel Oxides with Ultrathin Crystalline Frameworks. Chemical Research in Chinese Universities, 2024, 40(3): 521-528 DOI:10.1007/s40242-024-4054-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang J, Liu X, Neri G, Pinna N. Adv. Mater., 201, 28: 795.

[2]

Jeong S Y, Kim J S, Lee J H. Adv. Mater., 2020, 32: 2002075.

[3]

Xu J Y, Xu K C, He X X, Liao H L, Debliquy M, Liu Q Q, Zhang C. Rare Met., 2023, 42: 4153.

[4]

Lou C, Lei G, Liu X, Xie J, Li Z, Zheng W, Goel N, Kumar M, Zhang J. Coord. Chem. Rev., 2022, 452: 214280.

[5]

Guo R, Shang X, Shao C, Wang X, Yan X, Yang Q, Lai X. Sens. Actuators B, 2022, 365: 131964.

[6]

Li P, Yu J, Cao C, Song W. Chem. Res. Chinese Universities, 2021, 37: 1317.

[7]

Gao W X, Chang X T, Zhu X J, Li J F, Jiang Y C, Wang D S, Yang C X, Sun S B. Rare Met., 2023, 43: 247.

[8]

Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D. Adv. Funct. Mater., 2017, 28: 1705628.

[9]

Qi P, Wang Z, Wang R, Xu Y, Zhang T. Chem. Res. Chinese Universities, 201, 32: 924.

[10]

Mao D, Yao J, Lai X, Yang M, Du J, Wang D. Small, 2011, 7: 578.

[11]

Wang B, Zeng Q, Chen S, Yue T, Han B, Feng W, Yang D. Chem. Res. Chinese Universities, 2019, 35: 755.

[12]

Hu Q M, Dong Z, Zhang G X, Li Y X, Xing S F, Ma Z H, Dong B Y, Lu B, Sun S H, Xu J Q. Rare Met., 2023, 42: 3054.

[13]

Wang R, Yu X, Li Z, Chen J, Jiang T. Chem. Res. Chinese Universities, 2021, 37: 584.

[14]

Lu G C, Liu X H, Zheng W, Xie J Y, Li Z S, Lou C M, Lei G L, Zhang J. Rare Met., 2022, 41: 1520.

[15]

Lai X, Li J, Korgel B A, Dong Z, Li Z, Su F, Du J, Wang D. Angew. Chem Int Ed., 2011, 50: 2738.

[16]

Zhang Y, Wang M Y, San X G, Shen Y B, Wang G S, Zhang L, Meng D. Rare Met., 2023, 43: 267.

[17]

Sun H, Lai X Y. Chem. J. Chinese Universities, 2020, 41: 855.

[18]

Cao W, Duan Y. Clin. Chem., 200, 52: 800.

[19]

Navale S T, Yang Z B, Liu C, Cao P J, Patil V B, Ramgir N S, Mane R S, Stadler F J. Sens. Actuators B, 2018, 255: 1701.

[20]

Wang L, Teleki A, Pratsinis S E, Gouma P I. Chem. Mater., 2008, 20: 4794.

[21]

Zeng Y, Zhang T, Yuan M, Kang M, Lu G, Wang R, Fan H, He Y, Yang H. Sens. Actuators B, 2009, 143: 93.

[22]

Wang L, Lou Z, Fei T, Zhang T. Sens. Actuators B, 2012, 161: 178.

[23]

Choi S J, Lee I, Jang B H, Youn D Y, Ryu W H, Park C O, Kim I D. Anal. Chem., 2013, 85: 1792.

[24]

Hyodo T, Abe S, Shimizu Y, Egashira M. Sens. Actuators B, 2003, 93: 590.

[25]

Wagner T, Kohl C D, Froba M, Tiemann M. Sensors, 200, 6: 318.

[26]

Waitz T, Wagner T, Sauerwald T, Kohl C D, Tiemann M. Adv. Funct. Mater., 2009, 19: 653.

[27]

Lai X, Wang D, Han N, Du J, Li J, Xing C, Chen Y, Li X. Chem. Mater., 2010, 22: 3033.

[28]

Lai X, Li P, Yang T, Tu J, Xue P. Scr. Mater., 2012, 67: 293.

[29]

Sun X, Hao H, Ji H, Li X, Cai S, Zheng C. ACS Appl. Mater. Interfaces, 2014, 6: 401.

[30]

Liu H, Du X, Xing X, Wang G, Qiao S Z. Chem. Commun., 2012, 48: 865.

[31]

Ding C, Ma Y, Lai X, Yang Q, Xue P, Hu F, Geng W. ACS Appl. Mater. Inter., 2017, 9: 18170.

[32]

Lai X, Shen G, Xue P, Yan B, Wang H, Li P, Xia W, Fang J. Nanoscale, 2015, 7: 4005.

[33]

Sun X, Hu X, Wang Y, Xiong R, Li X, Liu J, Ji H, Li X, Cai S, Zheng C. J. Phys. Chem. C, 2015, 119: 3228.

[34]

Li X, Li D, Xu J, Jin H, Jin D, Peng X, Hong B, Li J, Yang Y, Ge H, Wang X. Mater. Res. Bull., 2017, 89: 280.

[35]

Liu S, Wang Z, Zhao H, Fei T, Zhang T. Sens. Actuators B, 2014, 197: 342.

[36]

Li Q, Du Y, Li X, Lu G, Wang W, Geng Y, Liang Z, Tian X. Sens. Actuators B, 201, 235: 39.

[37]

Wagner T, Waitz T, Roggenbuck J, Fröba M, Kohl C D, Tiemann M. Thin Solid Films, 2007, 515: 8360.

[38]

Zhou X, Zhu Y, Luo W, Ren Y, Xu P, Elzatahry A A, Cheng X, Alghamdi A, Deng Y, Zhao D. J. Mater. Chem. A, 201, 4: 15064.

[39]

Li Y, Luo W, Qin N, Dong J, Wei J, Li W, Feng S, Chen J, Xu J, Elzatahry A A, Es-Saheb M H, Deng Y, Zhao D. Angew. Chem. Int. Ed., 2014, 53: 9035.

[40]

Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G. Sens. Actuators B, 201, 225: 544.

[41]

Zhu Y, Zhao Y, Ma J, Cheng X, Xie J, Xu P, Liu H, Liu H, Zhang H, Wu M, Elzatahry A A, Alghamdi A, Deng Y, Zhao D. J. Am. Chem. Soc., 2017, 139: 10365.

[42]

Lai X, Cao K, Shen G, Xue P, Wang D, Hu F, Zhang J, Yang Q, Wang X. Sci. Bull., 2018, 63: 187.

[43]

Kleitz F., Choi S. H., Ryoo R., Chem. Commun., 2003, 2136.

[44]

Solovyov L A, Zaikovskii V I, Shmakov A N, Belousov O V, Ryoo R. J. Phys. Chem. B, 2002, 106: 12198.

[45]

Shi Y F, Meng Y, Chen D H, Cheng S J, Chen P, Yang H F, Wan Y, Zhao D Y. Adv. Funct. Mater., 200, 16: 561.

[46]

Barsan N, Simion C, Heine T, Pokhrel S, Weimar U. J. Electroceram., 2010, 25: 11.

[47]

Sutka A, Gross KA. Sens. Actuators B, 201, 222: 95.

[48]

Wang Y, Cheng P, Li X, Wang C, Feng C, Lu G. J. Mater. Chem. C, 2020, 8: 78.

[49]

Jiang L, Tu S, Xue K, Yu H, Hou X. Ceram. Int., 2021, 47: 7528.

[50]

Chen Z., Fu F., Cao J., An L., Zhang K., Chen Q., Mater. Res. Bull., 2023, 165.

[51]

Du L., Pan J., Dong Q., Liu Y., Sun H., Sens. Actuators B, 2022, 372.

[52]

Wang Z, Zhang K, Fei T, Gu F, Han D. Sens. Actuators B, 2020, 318: 128191.

[53]

Zhang R, Shi J, Zhou T, Tu J, Zhang T. J. Colloid Interface Sci., 2019, 539: 490.

[54]

Chen Q, Zhang Y, Ma S, Wang Y, Wang P, Zhang G, Gengzang D, Jiao H, Wang M, Chen W. J. Hazard. Mater., 2021, 415: 125662.

[55]

Yuan T, Xue Z, Chen Y, Xu J. Sens. Actuators B, 2023, 397: 134139.

[56]

Zhao L, Jin R, Wang C, Wang T, Sun Y, Sun P, Lu G. Sens. Actuators B, 2023, 390: 133964.

[57]

Wang C, Wang Y, Cheng P, Xu L, Dang F, Wang T, Lei Z. Sens. Actuators B, 2021, 340: 129926.

[58]

Hu M, Deng Y, Guo R, Jia Y, Zhang W, Hou X, Zhou Y. Sens. Actuators B, 2024, 402: 134889.

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/