Boosting the Activity and Stability of the Photoreduction of Diluted CO2 by Copper Oxide Decorated CeO2 Hetero-shells

Mingjiao Xiao, Di Li, Yanze Wei, Yilei He, Zumin Wang, Ranbo Yu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 513-520. DOI: 10.1007/s40242-024-4051-3
Article

Boosting the Activity and Stability of the Photoreduction of Diluted CO2 by Copper Oxide Decorated CeO2 Hetero-shells

Author information +
History +

Abstract

Inspired by the natural photosynthesis systems, the integrated harnessing and conversion of CO2 present a promising solution for addressing the ever-rising global atmospheric concentration of CO2. Hollow multi-shelled structured (HoMS) photocatalysts, featuring alternating shells and cavities, have recently gained recognition as efficient nano-reactors for capturing CO2 molecules and facilitating effective photoreduction within these hierarchical structures, leveraging the preeminent enrichment effect. In this work, to augment the photocatalytic efficacy of HoMS in CO2 treatment, highly dispersed Cu xO nanoparticles (NPs) were incorporated on the CeO2 shells through a polymer-assisted impregnation method to create more active sites and strengthen the interaction between the hetero-shells and CO2 molecules. The photoreduction of the CO2-to-CO rate under a diluted CO2 (15%, volume fraction) atmosphere is improved by the introduction of Cu xO NPs, with the highest CO yielding rate reaching 120 µmol·h−1·g−1 without any sacrificial reagents. Further comparison experiments and theoretical calculations reveal that the Cu xO NPs promote the adsorption of CO2 molecules in HoMS, accelerate the charge transfer efficiency, and stabilize the surface oxygen vacancies (Ovs) during the photoreduction CO2 conversion process. We hope these easy-to-prepare HoMS nanoreactors can contribute to the effective enrichment and valorization of CO2 in industrial exhaust gases.

Keywords

Photoreduction CO2 / Cu xO/CeO2 hollow multi-shell structure (HoMS) / Hetero-shell

Cite this article

Download citation ▾
Mingjiao Xiao, Di Li, Yanze Wei, Yilei He, Zumin Wang, Ranbo Yu. Boosting the Activity and Stability of the Photoreduction of Diluted CO2 by Copper Oxide Decorated CeO2 Hetero-shells. Chemical Research in Chinese Universities, 2024, 40(3): 513‒520 https://doi.org/10.1007/s40242-024-4051-3

References

[1]
Wagner A, Sahm C D, Reisner E. . Nature Catalysis, 2020, 3: 775,
CrossRef Google scholar
[2]
Gray H B. . Nature Chemistry, 2009, 1: 112,
CrossRef Google scholar
[3]
Graetzel M, Janssen R A J, Mitzi D B, Sargent E H. . Nature, 2012, 488: 304,
CrossRef Google scholar
[4]
Wang T X, Mu Z J, Ding X S, Han B H. . Chemical Research in Chinese Universities, 2022, 38: 446,
CrossRef Google scholar
[5]
Wang J-C, Zhang L, Fang W-X, Ren J, Li Y-Y, Yao H-C, Wang J-S, Li Z-J. . ACS Applied Materials & Interfaces, 2015, 7: 8631,
CrossRef Google scholar
[6]
Dai W L, Yu J J, Luo S L, Hu X, Yang L X, Zhang S Q, Li B, Luo X B, Zou J P. . Chemical Engineering Journal, 2020, 389: 123430,
CrossRef Google scholar
[7]
Liu X, Sayed M, Bie C, Cheng B, Hu B, Yu J, Zhang L. . Journal of Materiomics, 2021, 7: 419,
CrossRef Google scholar
[8]
Miao T C, Di X, Hao F N, Zheng G F, Han Q. . Chemical Research in Chinese Universities, 2022, 38: 1197,
CrossRef Google scholar
[9]
Liu L Z, Huang H W, Chen F, Yu H J, Tian N, Zhang Y H, Zhang T R. . Science Bulletin, 2020, 65: 934,
CrossRef Google scholar
[10]
Zhu B C, Hong X Y, Tang L Y, Liu Q Q, Tang H. . Acta Physico-Chimica Sinica, 2022, 38: 2111008,
CrossRef Google scholar
[11]
Chen G X, Xu C F, Huang X Q, Ye J Y, Gu L, Li G, Tang Z C, Wu B H, Yang H Y, Zhao Z P, Zhou Z Y, Fu G, Zheng N F. . Nature Materials, 2016, 15: 564,
CrossRef Google scholar
[12]
Yuan Q, Duan H H, Li L L, Sun L D, Zhang Y W, Yan C H. . Journal of Colloid and Interface Science, 2009, 335: 151,
CrossRef Google scholar
[13]
Li B Y, Ou H H, Chen S H, Su Y Q, Wang D S. . Chemical Research in Chinese Universities, 2023, 39: 527,
CrossRef Google scholar
[14]
You F F, Wan J W, Qi J, Mao D, Yang N L, Zhang Q H, Gu L, Wang D. . Angewandte Chemie-International Edition, 2020, 59: 721,
CrossRef Google scholar
[15]
Wang C, Thompson R L, Ohodnicki P, Baltrus J, Matranga C. . Journal of Materials Chemistry, 2011, 21: 13452,
CrossRef Google scholar
[16]
Shin S, Han H S, Kim J S, Park I J, Lee M H, Hong K S, Cho I S. . Journal of Materials Chemistry A, 2015, 3: 12920,
CrossRef Google scholar
[17]
Wen F H, Liu W L. . Journal of Materials Chemistry A, 2021, 9: 18129,
CrossRef Google scholar
[18]
Tang R, Sun H Y, Zhang Z Y, Liu L, Meng F N, Zhang X M, Yang W J, Li Z T, Zhao Z F, Zheng R K, Huang J. . Chemical Engineering Journal, 2022, 429: 132137,
CrossRef Google scholar
[19]
Zhao Y F, Chen G B, Bian T, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Smith L J, O’Hare D, Zhang T R. . Advanced Materials, 2015, 27: 7824,
CrossRef Google scholar
[20]
Wang X Y, Zhao Z W, Zahra K, Li J J, Zhang Z C. . Chemical Research in Chinese Universities, 2023, 39: 580,
CrossRef Google scholar
[21]
Ji Y C, Xu J Y, Sun H C, Liu J Q. . Chemical Research in Chinese Universities, 2022, 38: 688,
CrossRef Google scholar
[22]
Wei Y Z, Zhao D C, Wan J W, Wang D. . Trends in Chemistry, 2022, 4: 1021,
CrossRef Google scholar
[23]
Wei Y Z, Zhao D C, Wang D. . Advanced Science, 2024, 11: 2305408,
CrossRef Google scholar
[24]
Wang J Y, Wan J W, Yang N L, Li Q, Wang D. . Nature Reviews Chemistry, 2020, 4: 159,
CrossRef Google scholar
[25]
Han W S, Wei Y Z, Wan J W, Nakagawa N, Wang D. . Inorganic Chemistry, 2022, 61: 5397,
CrossRef Google scholar
[26]
Lien D-H, Dong Z, Retamal J R D, Wang H-P, Wei T-C, Wang D, He J-H, Cui Y. . Advanced Materials, 2018, 30: 1801972,
CrossRef Google scholar
[27]
Zhang X, He Y L, Wei Y Z, Yu R B. . Materials Chemistry Frontiers, 2021, 5: 8010,
CrossRef Google scholar
[28]
Wei Y Z, Wan J W, Yang N L, Yang Y, Ma Y W, Wang S C, Wang J Y, Yu R B, Gu L, Wang L H, Wang L Z, Huang W, Wang D. . National Science Review, 2020, 7: 1638,
CrossRef Google scholar
[29]
Wei Y Z, Wang J Y, Yu R B, Wan J W, Wang D. . Angewandte Chemie-International Edition, 2019, 58: 1422,
CrossRef Google scholar
[30]
Wang L, Wan J W, Zhao Y S, Yang N L, Wang D. . Journal of the American Chemical Society, 2019, 141: 2238,
CrossRef Google scholar
[31]
Wei Y Z, You F F, Zhao D C, Wan J W, Gu L, Wang D. . Angewandte Chemie-International Edition, 2022, 61: e202212049,
CrossRef Google scholar
[32]
Mao D, Wan J W, Wang J Y, Wang D. . Advanced Materials, 2019, 31: 2101802874
[33]
Li X, Yu J, Jaroniec M, Chen X. . Chemical Reviews, 2019, 119: 3962,
CrossRef Google scholar
[34]
Wei Y Z, Yang N L, Huang K K, Wan J W, You F F, Yu R B, Feng S H, Wang D. . Advanced Materials, 2020, 32: 202002556
[35]
Tao J, Su X, Li J, Shi W, Teng Z, Wang L. . Biomaterials Science, 2021, 9: 1609,
CrossRef Google scholar
[36]
Wei Y. Z., Li J., Zhao D. C., Zhao Y. S., Zhang Q. H., Gu L., Wan J. W., Wang D., CCS Chemistry, 2024, DOI: https://doi.org/10.31635/ccschem.024.202303604.
[37]
Paier J, Penschke C, Sauer J. . Chemical Reviews, 2013, 113: 3949,
CrossRef Google scholar
[38]
Kamachi T, Siddiki S M A H, Morita Y, Rashed M N, Kon K, Toyao T, Shimizu K-i, Yoshizawa K. . Catalysis Today, 2018, 303: 256,
CrossRef Google scholar
[39]
Wang M, Shen M, Jin X X, Tian J J, Zhou Y J, Shao Y R, Zhang L X, Li Y S, Shi J L. . Nanoscale, 2020, 12: 12374,
CrossRef Google scholar
[40]
Zhou G L, Dai B C, Xie H M, Zhang G Z, Xiong K, Zheng X X. . Journal of CO2 Utilization, 2017, 21: 292,
CrossRef Google scholar
[41]
Shi S-J, Zhou S-S, Liu S-Q, Chen Z-G. . Environmental Progress & Sustainable Energy, 2018, 37: 655,
CrossRef Google scholar
[42]
Xing X, Zhao T, Cheng J, Duan X X, Li W P, Li G G, Zhang Z S, Hao Z P. . Chinese Chemical Letters, 2022, 33: 3065,
CrossRef Google scholar
[43]
Laguna O H, Hernandez W Y, Arzamendi G, Gandia L M, Centeno M A, Odriozola J A. . Fuel, 2014, 118: 176,
CrossRef Google scholar
[44]
Ge C T, Sun J F, Tong Q, Zou W X, Li L, Dong L. . Journal of Rare Earths, 2022, 40: 1211,
CrossRef Google scholar
[45]
Trogadas P, Parrondo J, Ramani V. . ACS Applied Materials & Interfaces, 2012, 4: 5098,
CrossRef Google scholar
[46]
Zhai H T, Wang R R, Wang X, Cheng Y, Shi L L, Sun J. . Nano Research, 2016, 9: 3924,
CrossRef Google scholar
[47]
Liu Y Y, Chen Y J, Zhou W, Jiang B J, Zhang X, Tian G H. . Catalysis Science & Technology, 2018, 8: 5535,
CrossRef Google scholar
[48]
Prajapati P K, Garg D, Malik A, Kumar D, Amoli V, Jain S L. . Journal of Environmental Chemical Engineering, 2022, 10: 108147,
CrossRef Google scholar
[49]
Bazin D, Rehr J J. . Journal of Physical Chemistry C, 2011, 115: 23233,
CrossRef Google scholar
[50]
Dai W L, Hu X, Wang T Y, Xiong W W, Luo X B, Zou J P. . Applied Surface Science, 2018, 434: 481,
CrossRef Google scholar
[51]
Zhu S Q, Li T H, Cai W-B, Shao M H. . ACS Energy Letters, 2019, 4: 682,
CrossRef Google scholar
[52]
Wang Y H, Kattel S, Gao W G, Li K Z, Liu P, Chen J G, Wang H. . Nature Communications, 2019, 10: 1166,
CrossRef Google scholar
[53]
Liu LJ, Jiang Y Q, Zhao H L, Chen J T, Cheng J L, Yang K S, Li Y. . ACS Catalysis, 2016, 6: 1097,
CrossRef Google scholar
[54]
Wang M, Shen M, Jin X X, Tian J J, Li M L, Zhou Y J, Zhang L X, Li Y S, Shi J L. . ACS Catalysis, 2019, 9: 4573,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/