Boosting the Activity and Stability of the Photoreduction of Diluted CO2 by Copper Oxide Decorated CeO2 Hetero-shells

Mingjiao Xiao , Di Li , Yanze Wei , Yilei He , Zumin Wang , Ranbo Yu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 513 -520.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 513 -520. DOI: 10.1007/s40242-024-4051-3
Article

Boosting the Activity and Stability of the Photoreduction of Diluted CO2 by Copper Oxide Decorated CeO2 Hetero-shells

Author information +
History +
PDF

Abstract

Inspired by the natural photosynthesis systems, the integrated harnessing and conversion of CO2 present a promising solution for addressing the ever-rising global atmospheric concentration of CO2. Hollow multi-shelled structured (HoMS) photocatalysts, featuring alternating shells and cavities, have recently gained recognition as efficient nano-reactors for capturing CO2 molecules and facilitating effective photoreduction within these hierarchical structures, leveraging the preeminent enrichment effect. In this work, to augment the photocatalytic efficacy of HoMS in CO2 treatment, highly dispersed Cu xO nanoparticles (NPs) were incorporated on the CeO2 shells through a polymer-assisted impregnation method to create more active sites and strengthen the interaction between the hetero-shells and CO2 molecules. The photoreduction of the CO2-to-CO rate under a diluted CO2 (15%, volume fraction) atmosphere is improved by the introduction of Cu xO NPs, with the highest CO yielding rate reaching 120 µmol·h−1·g−1 without any sacrificial reagents. Further comparison experiments and theoretical calculations reveal that the Cu xO NPs promote the adsorption of CO2 molecules in HoMS, accelerate the charge transfer efficiency, and stabilize the surface oxygen vacancies (Ovs) during the photoreduction CO2 conversion process. We hope these easy-to-prepare HoMS nanoreactors can contribute to the effective enrichment and valorization of CO2 in industrial exhaust gases.

Keywords

Photoreduction CO2 / Cu xO/CeO2 hollow multi-shell structure (HoMS) / Hetero-shell

Cite this article

Download citation ▾
Mingjiao Xiao, Di Li, Yanze Wei, Yilei He, Zumin Wang, Ranbo Yu. Boosting the Activity and Stability of the Photoreduction of Diluted CO2 by Copper Oxide Decorated CeO2 Hetero-shells. Chemical Research in Chinese Universities, 2024, 40(3): 513-520 DOI:10.1007/s40242-024-4051-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wagner A, Sahm C D, Reisner E. Nature Catalysis, 2020, 3: 775.

[2]

Gray H B. Nature Chemistry, 2009, 1: 112.

[3]

Graetzel M, Janssen R A J, Mitzi D B, Sargent E H. Nature, 2012, 488: 304.

[4]

Wang T X, Mu Z J, Ding X S, Han B H. Chemical Research in Chinese Universities, 2022, 38: 446.

[5]

Wang J-C, Zhang L, Fang W-X, Ren J, Li Y-Y, Yao H-C, Wang J-S, Li Z-J. ACS Applied Materials & Interfaces, 2015, 7: 8631.

[6]

Dai W L, Yu J J, Luo S L, Hu X, Yang L X, Zhang S Q, Li B, Luo X B, Zou J P. Chemical Engineering Journal, 2020, 389: 123430.

[7]

Liu X, Sayed M, Bie C, Cheng B, Hu B, Yu J, Zhang L. Journal of Materiomics, 2021, 7: 419.

[8]

Miao T C, Di X, Hao F N, Zheng G F, Han Q. Chemical Research in Chinese Universities, 2022, 38: 1197.

[9]

Liu L Z, Huang H W, Chen F, Yu H J, Tian N, Zhang Y H, Zhang T R. Science Bulletin, 2020, 65: 934.

[10]

Zhu B C, Hong X Y, Tang L Y, Liu Q Q, Tang H. Acta Physico-Chimica Sinica, 2022, 38: 2111008.

[11]

Chen G X, Xu C F, Huang X Q, Ye J Y, Gu L, Li G, Tang Z C, Wu B H, Yang H Y, Zhao Z P, Zhou Z Y, Fu G, Zheng N F. Nature Materials, 201, 15: 564.

[12]

Yuan Q, Duan H H, Li L L, Sun L D, Zhang Y W, Yan C H. Journal of Colloid and Interface Science, 2009, 335: 151.

[13]

Li B Y, Ou H H, Chen S H, Su Y Q, Wang D S. Chemical Research in Chinese Universities, 2023, 39: 527.

[14]

You F F, Wan J W, Qi J, Mao D, Yang N L, Zhang Q H, Gu L, Wang D. Angewandte Chemie-International Edition, 2020, 59: 721.

[15]

Wang C, Thompson R L, Ohodnicki P, Baltrus J, Matranga C. Journal of Materials Chemistry, 2011, 21: 13452.

[16]

Shin S, Han H S, Kim J S, Park I J, Lee M H, Hong K S, Cho I S. Journal of Materials Chemistry A, 2015, 3: 12920.

[17]

Wen F H, Liu W L. Journal of Materials Chemistry A, 2021, 9: 18129.

[18]

Tang R, Sun H Y, Zhang Z Y, Liu L, Meng F N, Zhang X M, Yang W J, Li Z T, Zhao Z F, Zheng R K, Huang J. Chemical Engineering Journal, 2022, 429: 132137.

[19]

Zhao Y F, Chen G B, Bian T, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Smith L J, O’Hare D, Zhang T R. Advanced Materials, 2015, 27: 7824.

[20]

Wang X Y, Zhao Z W, Zahra K, Li J J, Zhang Z C. Chemical Research in Chinese Universities, 2023, 39: 580.

[21]

Ji Y C, Xu J Y, Sun H C, Liu J Q. Chemical Research in Chinese Universities, 2022, 38: 688.

[22]

Wei Y Z, Zhao D C, Wan J W, Wang D. Trends in Chemistry, 2022, 4: 1021.

[23]

Wei Y Z, Zhao D C, Wang D. Advanced Science, 2024, 11: 2305408.

[24]

Wang J Y, Wan J W, Yang N L, Li Q, Wang D. Nature Reviews Chemistry, 2020, 4: 159.

[25]

Han W S, Wei Y Z, Wan J W, Nakagawa N, Wang D. Inorganic Chemistry, 2022, 61: 5397.

[26]

Lien D-H, Dong Z, Retamal J R D, Wang H-P, Wei T-C, Wang D, He J-H, Cui Y. Advanced Materials, 2018, 30: 1801972.

[27]

Zhang X, He Y L, Wei Y Z, Yu R B. Materials Chemistry Frontiers, 2021, 5: 8010.

[28]

Wei Y Z, Wan J W, Yang N L, Yang Y, Ma Y W, Wang S C, Wang J Y, Yu R B, Gu L, Wang L H, Wang L Z, Huang W, Wang D. National Science Review, 2020, 7: 1638.

[29]

Wei Y Z, Wang J Y, Yu R B, Wan J W, Wang D. Angewandte Chemie-International Edition, 2019, 58: 1422.

[30]

Wang L, Wan J W, Zhao Y S, Yang N L, Wang D. Journal of the American Chemical Society, 2019, 141: 2238.

[31]

Wei Y Z, You F F, Zhao D C, Wan J W, Gu L, Wang D. Angewandte Chemie-International Edition, 2022, 61: e202212049.

[32]

Mao D, Wan J W, Wang J Y, Wang D. Advanced Materials, 2019, 31: 2101802874.

[33]

Li X, Yu J, Jaroniec M, Chen X. Chemical Reviews, 2019, 119: 3962.

[34]

Wei Y Z, Yang N L, Huang K K, Wan J W, You F F, Yu R B, Feng S H, Wang D. Advanced Materials, 2020, 32: 202002556.

[35]

Tao J, Su X, Li J, Shi W, Teng Z, Wang L. Biomaterials Science, 2021, 9: 1609.

[36]

Wei Y. Z., Li J., Zhao D. C., Zhao Y. S., Zhang Q. H., Gu L., Wan J. W., Wang D., CCS Chemistry, 2024, DOI: https://doi.org/10.31635/ccschem.024.202303604.

[37]

Paier J, Penschke C, Sauer J. Chemical Reviews, 2013, 113: 3949.

[38]

Kamachi T, Siddiki S M A H, Morita Y, Rashed M N, Kon K, Toyao T, Shimizu K-i, Yoshizawa K. Catalysis Today, 2018, 303: 256.

[39]

Wang M, Shen M, Jin X X, Tian J J, Zhou Y J, Shao Y R, Zhang L X, Li Y S, Shi J L. Nanoscale, 2020, 12: 12374.

[40]

Zhou G L, Dai B C, Xie H M, Zhang G Z, Xiong K, Zheng X X. Journal of CO2 Utilization, 2017, 21: 292.

[41]

Shi S-J, Zhou S-S, Liu S-Q, Chen Z-G. Environmental Progress & Sustainable Energy, 2018, 37: 655.

[42]

Xing X, Zhao T, Cheng J, Duan X X, Li W P, Li G G, Zhang Z S, Hao Z P. Chinese Chemical Letters, 2022, 33: 3065.

[43]

Laguna O H, Hernandez W Y, Arzamendi G, Gandia L M, Centeno M A, Odriozola J A. Fuel, 2014, 118: 176.

[44]

Ge C T, Sun J F, Tong Q, Zou W X, Li L, Dong L. Journal of Rare Earths, 2022, 40: 1211.

[45]

Trogadas P, Parrondo J, Ramani V. ACS Applied Materials & Interfaces, 2012, 4: 5098.

[46]

Zhai H T, Wang R R, Wang X, Cheng Y, Shi L L, Sun J. Nano Research, 201, 9: 3924.

[47]

Liu Y Y, Chen Y J, Zhou W, Jiang B J, Zhang X, Tian G H. Catalysis Science & Technology, 2018, 8: 5535.

[48]

Prajapati P K, Garg D, Malik A, Kumar D, Amoli V, Jain S L. Journal of Environmental Chemical Engineering, 2022, 10: 108147.

[49]

Bazin D, Rehr J J. Journal of Physical Chemistry C, 2011, 115: 23233.

[50]

Dai W L, Hu X, Wang T Y, Xiong W W, Luo X B, Zou J P. Applied Surface Science, 2018, 434: 481.

[51]

Zhu S Q, Li T H, Cai W-B, Shao M H. ACS Energy Letters, 2019, 4: 682.

[52]

Wang Y H, Kattel S, Gao W G, Li K Z, Liu P, Chen J G, Wang H. Nature Communications, 2019, 10: 1166.

[53]

Liu LJ, Jiang Y Q, Zhao H L, Chen J T, Cheng J L, Yang K S, Li Y. ACS Catalysis, 201, 6: 1097.

[54]

Wang M, Shen M, Jin X X, Tian J J, Li M L, Zhou Y J, Zhang L X, Li Y S, Shi J L. ACS Catalysis, 2019, 9: 4573.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/