Elaborate Design of Two Novel Fluorescent Zinc-based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection

He Tao, Chengshan Ji, Jian Zhang, Yuanyuan Yin, Wenwen Jia, Xin Jiang, Jie Xu, Yulin Yang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 499-507. DOI: 10.1007/s40242-024-4043-3
Article

Elaborate Design of Two Novel Fluorescent Zinc-based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection

Author information +
History +

Abstract

The abuse of tetracycline antibiotics has caused great harm to human health and ecosystems. Developing inexpensive, convenient and sensitive methods for the detection of tetracycline antibiotics is highly desirable. Herein, based on the H4ddp ligand [H4ddp=3-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid], two novel zinc-based metal-organic frameworks (MOFs) {[Zn3(ddp)2(H2O)4]·3H2O} n (Zn1-ddp) and {[Zn3(ddp)2(H2O)4]·3H2O} n (Zn2-ddp) were successfully designed by delicate structural regulation. Both Zn1-ddp and Zn2-ddp exhibited excellent water and chemical stability and showed excellent fluorescence quenching performance for tetracycline antibiotics. Notably, the more advanced framework structure and better fluorescent performance make Zn1-ddp more sensitive than Zn2-ddp in fluorescent detection with a detection limit of 0.29 µmol/L for tetracycline (TC), 0.09 µmol/L for doxycycline (DOX), 0.10 µmol/L for minocycline (MIN) and metacycline (MEL), 0.19 µmol/L for chlortetracycline (CTC), and 0.67 µmol/L for oxytetracycline (OTC) among tetracycline antibiotics. The fluorescence quenching mechanism of Zn1-ddp and Zn2-ddp for tetracycline antibiotics detection was deeply investigated. The reasons for the superior detection performance of Zn1-ddp over Zn2-ddp were also analyzed in depth through Fourier transform infrared spectrophotometry (FTIR), X-ray photoelectron spectroscopy (XPS) analysis and framework structure analysis. The developed method opens up a new perspective for antibiotics detection based on zinc-based MOFs.

Keywords

Water system / Metal-organic framework / Fluorescent detection / Tetracycline antibiotic

Cite this article

Download citation ▾
He Tao, Chengshan Ji, Jian Zhang, Yuanyuan Yin, Wenwen Jia, Xin Jiang, Jie Xu, Yulin Yang. Elaborate Design of Two Novel Fluorescent Zinc-based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection. Chemical Research in Chinese Universities, 2024, 40(3): 499‒507 https://doi.org/10.1007/s40242-024-4043-3

References

[1]
Gao Y, Wu J, Wang J, Fan Y, Zhang S, Dai W. . ACS Appl. Mater. Interfaces, 2020, 12: 11036,
CrossRef Google scholar
[2]
Xu Q-W, Ga D, Cui R, Li X. . CrystEngComm, 2020, 22: 740,
CrossRef Google scholar
[3]
Liu L, Chen Q, Lv J, Li Y, Wang K, Li J-R. . Inorg. Chem., 2022, 61: 8015,
CrossRef Google scholar
[4]
Ding L, Cao Y, Li H, Wang F, Guo D-Y, Yang W-T, Pan Q. . Food Chemistry, 2022, 373: 131669,
CrossRef Google scholar
[5]
Yao C-X, Zhao N, Liu J-C, Chen L-J, Liu J-M, Fang G-Z, Wang S. . Polymers, 2020, 12: 691,
CrossRef Google scholar
[6]
Cong Z, Song Z, Ma Y, Zhu M, Zhang Y, Wu S, Gao E. . Chem. Asian J., 2021, 16: 1773,
CrossRef Google scholar
[7]
Liu L, Chen X-L, Cai M, Yan R-K, Cui H-L, Yang H, Wang J-J. . Spectrochim Acta A: Mol. Biomol. Spectrosc., 2023, 289: 122228,
CrossRef Google scholar
[8]
Cui L-S, Zhu B, Huang K-R, Gao Y-L, Li Y-C, Long J-Q. . Journal of Solid State Chemistry, 2020, 290: 121526,
CrossRef Google scholar
[9]
Chen J, Zhang Q, Xu F, Li S. . Microchemical Journal, 2021, 170: 106673,
CrossRef Google scholar
[10]
Zhang Y-Q, Wu X-H, Mao S, Tao W-Q, Li Z. . Talanta, 2019, 204: 344,
CrossRef Google scholar
[11]
Zhong W-B, Li R-X, Lv J, He T, Xu M-M, Wang B, Xie L-H, Li J-R. . Inorganic Chemistry Frontiers., 2020, 7: 1161,
CrossRef Google scholar
[12]
Li C, Zhu L, Yang W, He X, Zhao S, Zhang X, Tang W, Wang J, Yue T, Li Z. . J. Agric. Food Chem., 2019, 67: 1277,
CrossRef Google scholar
[13]
Xia T, Yang X, Zhang R, Huang A, Hu K, Hao F, Liu Y, Deng Q, Yang S, Wen X. . Talanta, 2023, 256: 124316,
CrossRef Google scholar
[14]
Zhu X, Gu S, Guo D, Huang X, Chen N, Niu B, Deng X. . Food Hydrocolloids, 2023, 134: 107978,
CrossRef Google scholar
[15]
Han Q, Liu Y, Huo Y, Li D, Yang X. . Molecules, 2022, 27: 2694,
CrossRef Google scholar
[16]
Jia W, Zhang J, Fan R, Zhu K, Gai S, Tao H, Ji N H, Yang Y. . ACS Appl. Mater. Interfaces, 2023, 15: 11163,
CrossRef Google scholar
[17]
Jia W, Fan R, Zhang J, Geng Z, Li P, Sun J, Gai S, Zhu K, Jiang X, Yang Y. . Food Chemistry, 2022, 377: 132054,
CrossRef Google scholar
[18]
Gai S, Zhang J, Fan R, Xing K, Chen W, Zhu K, Zheng X, Wang P, Fang X, Yang Y. . ACS Appl. Mater. Interfaces, 2020, 12: 8650,
CrossRef Google scholar
[19]
Fu B, Chen J, Cao Y, Li H, Gao F, Guo D-Y, Wang F, Pan Q. . Sensors and Actuators B: Chemical, 2022, 369: 132261,
CrossRef Google scholar
[20]
Li J, Yao R, Deng B, Li Z, Tuo K, Fan C, Liu G, Pu S. . Chemical Engineering Journal, 2023, 464: 142626,
CrossRef Google scholar
[21]
Wang X, Zhu R, Wang X, Liu F, Gao Y, Guan R, Chen Y. . Inorganic Chemistry Communications, 2023, 149: 110423,
CrossRef Google scholar
[22]
Zhang Y, Liu Y, Karmaker P, Zhang L, Yang K, Chen L, Yang X. . ACS Appl. Mater. Interfaces, 2023, 15: 6177,
CrossRef Google scholar
[23]
Wang C, Ren G, Tan Q, Che G, Luo J, Li M, Zhou Q, Guo D-Y, Pan Q. . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 299: 122813,
CrossRef Google scholar
[24]
Yang W, Zheng X, Gao F, Li H, Fu B, Guo D-Y, Wang F, Pan Q. . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 270: 120785,
CrossRef Google scholar
[25]
Cai G, Yan P, Zhang L, Zhou H-C, Jiang H-L. . Chemical Reviews, 2021, 121: 12278,
CrossRef Google scholar
[26]
Chen Z, Li X, Yang C, Cheng K, Tan T, Lv Y, Liu Y. . Advanced Science, 2021, 8: 2108113
[27]
Ali R, Meng H, Li Z. . Molecules, 2022, 27: 100
[28]
Lu G, Meng G, Liu Q, Feng L, Luo J, Liu X, Luo Y, Chu P. . Advanced Powder Materials, 2024, 3: 100154,
CrossRef Google scholar
[29]
Yuan X, Li L, Shi Z, Liang H, Li S, Qiao Z. . Advanced Powder Materials, 2022, 1: 100026,
CrossRef Google scholar
[30]
Zhu K, Fan R, Zheng X, Wang P, Chen W, Sun T, Gai S, Zhou X, Yang Y. . J. Mater. Chem. C, 2019, 7: 15057,
CrossRef Google scholar
[31]
Zhong J, Yuan X, Xiong J, Wu X, Lou W. . Environmental Research, 2023, 226: 115633,
CrossRef Google scholar
[32]
Pi Y, Cui L, Luo W, Li H, Ma Y, Ta N, Wang X, Gao R, Wang D, Yang Q, Liu J. . Angew. Chem. Int. Ed., 2023, 62: e202307096,
CrossRef Google scholar
[33]
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. . Adv. Mater., 2023, 35: 2203890,
CrossRef Google scholar
[34]
Ma Y, Bi R, Yang M, Wei P, Qi J, Wang J, Yu R, Wang D. . J Nanopart Res., 2023, 25: 14,
CrossRef Google scholar
[35]
Wei Y, Cheng Y, Zhao D, Feng Y, Wei P, Wang J, Ge W, Wang D. . Angew. Chem. Int. Ed., 2023, 62: e202302621,
CrossRef Google scholar
[36]
Yazhini C, Rafi J, Chakrabory P, Kapse S, Thapa R, Neppolian B. . Journal of Cleaner Production., 2022, 373: 133929,
CrossRef Google scholar
[37]
Zhang X-Y, Wang K, Chang Y, Hu X-L, Su Z-M, Zhou E-L. . Journal of Solid State Chemistry, 2022, 313: 123170,
CrossRef Google scholar
[38]
Chen H, Chen J, Yuan C, Yu L, Sun M, Huang D, Liu S, Wang S. . Dyes and Pigments, 2022, 208: 110887,
CrossRef Google scholar
[39]
Wang B, Liu J-H, Yu J, Lv J, Dong C, Li J-R. . J. Hazard Mater., 2020, 382: 121018,
CrossRef Google scholar
[40]
Rosales-Vázquez L, Valdes-García J, Germán-Acacio J, Páez-Franco J, Martínez-Otero D, Vilchis-Nestor A, Barroso-Flores J, Sánchez-Mendieta V, Dorazco-González A. . J. Mater. Chem. C, 2022, 10: 5944,
CrossRef Google scholar
[41]
Hu J-S, Dong S-J, Wu K, Zhang X-L, Jiang J, Yuan J, Zheng M-D. . Sensors and Actuators B: Chemical, 2019, 283: 255,
CrossRef Google scholar
[42]
Zhao D, Liu X-H, Zhao Y, Wang P, Liu Y, Azam M, Al-Resayes S, Lu Y, Sun W-Y. . J. Mater. Chem. A, 2017, 5: 15797,
CrossRef Google scholar
[43]
Zhu G-S, Cheng S-L, Zhou Z-D, Du B, Shen Y-Y, Yu B-Y. . Polyhedron, 2022, 217: 115759,
CrossRef Google scholar
[44]
Sun Z, Sun J, Xi L, Xie J, Wang X, Ma Y, Li L. . Cryst. Growth Des., 2020, 20: 5225,
CrossRef Google scholar
[45]
Li J-J, Fan T-T, Qu X-L, Han H-L, Li X. . Dalton Trans., 2016, 45: 2924,
CrossRef Google scholar
[46]
Yang A-H, Zou J-Y, Wang W-M, Shi X-Y, Gao H-L, Cui J-Z, Zhao B. . Inorg. Chem., 2014, 53: 7092,
CrossRef Google scholar
[47]
Cheng X-H, Liu F-C. . Yunnan Chemical Technology, 1995, 3: 22
[48]
Fan C, Zhang X, Li N, Xu C, Wu R, Zhu B, Zhang G, Bi S, Fan Y. . J. Pharm. Biomed. Anal., 2020, 188: 113444,
CrossRef Google scholar
[49]
Xu F, Wu Y, Wu J, Lv D, Yan J, Wang X, Chen X, Liu Z, Peng G. . Molecules, 2023, 28: 6000,
CrossRef Google scholar
[50]
Sun W, Li M, Fan J, Peng X. . Acc. Chem. Res., 2019, 52: 2818,
CrossRef Google scholar
[51]
Li L, Feng G, Ren A, Sun C. . Chinese Journal of Chemistry, 2011, 29: 2263,
CrossRef Google scholar
[52]
Cui J, Xu X, Yang L, Chen C, Qian J, Chen X, Sun D. . Chemical Engineering Journal, 2020, 395: 125174,
CrossRef Google scholar
[53]
Liu C, Sun J, Tan W-L, Lu J R, Gengenbach T R, McNeill C, Ge Z, Cheng Y-B, Bach U. . Nano Lett., 2020, 20: 1240,
CrossRef Google scholar
[54]
Firooz S-K, Armstrong D-W. . Chemical Reviews, 2012, 112: 869,
CrossRef Google scholar
[55]
Weng X, Huang J, Ye H, Xu H, Cai D, Wang D. . Anal. Methods, 2022, 14: 3000,
CrossRef Google scholar
[56]
Zhang Z, Chen Y, Wang Z, Hu C, Ma D, Chen W, Ao T. . Applied Surface Science, 2021, 542: 148662,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/