Construction of MoP/MoS2 Core-shell Structure Electrocatalyst for Boosting Hydrogen Evolution Reaction

Dan Meng, Shunjiang Ran, Ling Gao, Yue Zhang, Xiaoguang San, Lei Zhang, Ruixiang Li, Quan Jin

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (3) : 490-498. DOI: 10.1007/s40242-024-4040-6
Article

Construction of MoP/MoS2 Core-shell Structure Electrocatalyst for Boosting Hydrogen Evolution Reaction

Author information +
History +

Abstract

Hydrogen energy stands out as one of the most promising alternative energy sources due to its cleanliness and renewability. Electrocatalytic water splitting offers a sustainable pathway for hydrogen production. However, the kinetic rate of the hydrogen evolution reaction (HER) is sluggish, emphasizing the critical need for stable and highly active electrocatalysts to facilitate HER and enhance reaction efficiency. Transition metal-based catalysts have garnered attention for their favorable catalytic activity in electrochemical hydrogen evolution in alkaline electrolytes. In this investigation, flower-like nanorods of MoS2 were directly synthesized in situ on a nickel foam substrate, followed by the formation of MoP/MoS2-nickel foam (NF) heterostructures through high-temperature phosphating in a tube furnace environment. The findings reveal that MoP/MoS2-NF-450 exhibits outstanding electrocatalytic performance in an alkaline milieu, demonstrating a low overpotential (90 mV) and remarkable durability at a current density of 10 mA/cm2. Comprehensive analysis indicates that the introduction of phosphorus (P) atoms enhances the synergistic effect with MoS2, while the distinctive flower-like nanorod structure of MoS2 exposes more active sites. Moreover, the interface between the MoP/MoS2 heterostructure and NF facilitates electron transfer during hydrogen evolution, thereby enhancing electrocatalytic performance. The design and synthesis of such catalysts offer a valuable approach for the development of high-performance hydrogen evolution electrocatalysts.

Keywords

MoP/MoS2 / Core-shell structure / Heterostructure / Synergistic effect / Hydrogen evolution reaction

Cite this article

Download citation ▾
Dan Meng, Shunjiang Ran, Ling Gao, Yue Zhang, Xiaoguang San, Lei Zhang, Ruixiang Li, Quan Jin. Construction of MoP/MoS2 Core-shell Structure Electrocatalyst for Boosting Hydrogen Evolution Reaction. Chemical Research in Chinese Universities, 2024, 40(3): 490‒498 https://doi.org/10.1007/s40242-024-4040-6

References

[1]
Zhang J J, Li M Y, Li X, Bao W W, Jin C Q, Feng X H, Liu G, Yang C M, Zhang N N. . Nanomaterials, 2022, 12: 1227,
CrossRef Google scholar
[2]
Li X, Liu Y, Zhang J J, Yan B, Jin C, Dou J, Li M, Feng X, Liu G. . Chem. Mater., 2022, 34: 1385,
CrossRef Google scholar
[3]
Lao J, Li D, Jiang C, Luo R, Peng H, Qi R, Lin H, Huang R, Waterhouse G I N, Luo C. . Int. J. Hydrogen Energy, 2020, 45: 28616,
CrossRef Google scholar
[4]
Wang J, Zhang Z, Song H, Zhang B, Liu J, Shai X, Miao L. . Adv. Funct. Mater., 2021, 31: 2008578,
CrossRef Google scholar
[5]
Sun M, Zhang Q, Chen Q, Hou X, Peng W, Li Y, Zhang F, Xia Q, Fan X. . Catalysts, 2022, 12: 594,
CrossRef Google scholar
[6]
Ai T, Wang H, Bao W, Feng L, Zou X, Wei X, Ding L, Deng Z, Rao B. . Chem. Eng. J., 2022, 450: 138358,
CrossRef Google scholar
[7]
Du X, Ma G, Zhang X. . Dalton Trans., 2019, 48: 10116,
CrossRef Google scholar
[8]
Fei B, Chen Z, Liu J, Xu H, Yan X, Qing H, Chen M, Wu R. . Adv. Energy Mater., 2020, 10: 2001963,
CrossRef Google scholar
[9]
Zhao K, Pang W Y, Jiang S Y, Liu P R, Cui D D, An X F, Tian B J, Gao C, Zhang P, Tian M, Fu D, Zhao H J. . Nano Res., 2023, 16: 4812,
CrossRef Google scholar
[10]
Pang W Y, Jiang S Y, Sun Y L, Zhong Y L, Zhang P, Zhou J Y, Fu D, Zhao K, Zhao H J. . Mater. Res. Bull., 2023, 161: 112145,
CrossRef Google scholar
[11]
Meng C, Wang Z M, Zhang L J, Ji X Y, Yu R B. . ACS Appl. Inorg. Chem., 2022, 61: 9832,
CrossRef Google scholar
[12]
He Y L, Zhang L J, Wei Y Z, Zhang X, Wang Z M, Yu R B. . Small Methods., 2022, 6: 2101567,
CrossRef Google scholar
[13]
Wang Z M, Meng C, Wang J, Song Z F, Yu R B. . Eur. J. Inorg. Chem., 2023, 26: e202300014,
CrossRef Google scholar
[14]
Laursen A B, Kegnæs S, Dahl S, Chorkendorff I. . Energy Environ. Sci., 2012, 5: 5577,
CrossRef Google scholar
[15]
Zhu Y A, Dai W, Zhong X, Lu T, Pan Y. . J. Colloid Interface Sci., 2021, 602: 55,
CrossRef Google scholar
[16]
Li A, Zhu W, Li C, Wang T, Gong J. . Chem. Soc. Rev., 2019, 48: 1874,
CrossRef Google scholar
[17]
Xie Y H, Chang C F, Luo F, Yang Z H. . ACS Appl., Mater., Interfaces, 2023, 15: 20081,
CrossRef Google scholar
[18]
Wu G, Chen W, Zheng X, He D, Luo Y, Wang X, Yang J, Wu Y, Yan W, Zhuang Z. . Nano Energy, 2017, 38: 167,
CrossRef Google scholar
[19]
Zhang X, Zhou F, Zhang S, Liang Y, Wang R. . Adv. Sci., 2019, 6: 1900
[20]
Benson E E, Zhang H, Schuman S A, Nanayakkara S U, Bronstein N D, Ferrere S, Blackburn J L, Miller E M. . J. Am. Chem. Soc., 2018, 140: 441,
CrossRef Google scholar
[21]
Hansen L P, Ramasse Q M, Kisielowski C, Brorson M, Johnson E, Topsøe H, Helveg S. . Angew. Chem. Int. Ed., 2011, 50: 10153,
CrossRef Google scholar
[22]
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W, Xie Y. . Adv Mater., 2013, 25: 5807,
CrossRef Google scholar
[23]
Duan J, Chen S, Ortíz-Ledón C A, Jaroniec M, Qiao S Z. . Angew. Chem. Int. Ed., 2020, 59: 8181,
CrossRef Google scholar
[24]
Wu W, Niu C, Wei C, Jia Y, Li C, Xu Q. . Angew. Chem. Int. Ed., 2019, 58: 2029,
CrossRef Google scholar
[25]
Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F. . Nat. Mater., 2012, 11: 963,
CrossRef Google scholar
[26]
Xu J, Cui J, Guo C, Zhao Z, Jiang R, Xu S, Zhuang Z, Huang Y, Wang L, Li Y. . Angew. Chem. Int. Ed., 2016, 55: 6502,
CrossRef Google scholar
[27]
Ouyang C, Feng S, Huo J, Wang S. . Green Energy Environ., 2017, 2: 134,
CrossRef Google scholar
[28]
Chi J Q, Chai Y M, Shang X, Dong B, Liu C G, Zhang W, Jin Z. . J. Mater. Chem. A, 2018, 6: 24783,
CrossRef Google scholar
[29]
Cabán-Acevedo M, Stone M L, Schmidt J R, Thomas J G, Ding Q, Chang H C, Tsai M L, He J H, Jin S. . Nat. Mater., 2015, 14: 1245,
CrossRef Google scholar
[30]
Wu A, Tian C, Yan H, Jiao Y, Yan Q, Yang G, Fu H. . Nanoscale, 2016, 8: 11052,
CrossRef Google scholar
[31]
Xu Y, Wang R, Wang J, Li J, Jiao T, Liu Z. . Chem. Eng. J., 2021, 417: 129233,
CrossRef Google scholar
[32]
Kibsgaard J, Jaramillo T F. . Angew. Chem. Int. Ed., 2014, 53: 14433,
CrossRef Google scholar
[33]
Ye R, del Angel-Vicente P, Liu Y, Arellano-Jimenez M J, Peng Z, Wang T, Li Y, Yakobson B I, Wei S H, Yacaman M J. . Adv. Mater., 2016, 28: 1427,
CrossRef Google scholar
[34]
Zhao G, Rui K, Dou S X, Sun W. . Adv. Funct. Mater., 2018, 28: 1803291,
CrossRef Google scholar
[35]
Sivanantham A, Ganesan P, Shanmugam S. . Adv. Funct. Mater., 2016, 26: 4661,
CrossRef Google scholar
[36]
Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou X W. . Energy Environ. Sci., 2012, 5: 7883,
CrossRef Google scholar
[37]
Wu Z, Wang J, Xia K, Lei W, Liu X, Wang D. . J. Mater. Chem. A, 2018, 6: 616,
CrossRef Google scholar
[38]
Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B. . Adv. Mater., 2015, 27: 4752,
CrossRef Google scholar
[39]
Li F, Zhang L, Li J, Lin X, Li X, Fang Y, Huang J, Li W, Tian M, Jin J. . J. Power Sources, 2015, 292: 15,
CrossRef Google scholar
[40]
Zhou H, Xia X, Lv P, Zhang J, Hou X, Zhao M, Ao K, Wang D, Lu K, Qiao H. . ChemSusChem, 2018, 11: 4060,
CrossRef Google scholar
[41]
Yang J, Zhang F, Wang X, He D, Wu G, Yang Q, Hong X, Wu Y, Li Y. . Angew. Chem. Int. Ed., 2016, 55: 12854,
CrossRef Google scholar
[42]
Pu Z, Wei S, Chen Z, Mu S. . Appl. Catal. B, 2016, 196: 193,
CrossRef Google scholar
[43]
Zhang P, Xiang H, Tao L, Dong H, Zhou Y, Hu T S, Chen X, Liu S, Wang S, Garaj S. . Nano Energy, 2019, 57: 535,
CrossRef Google scholar
[44]
Schmidt T J, Ross P N, Markovic N M. . J. Electroanal. Chem., 2002, 524/525: 252,
CrossRef Google scholar
[45]
Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. . Science, 2007, 317: 100,
CrossRef Google scholar
[46]
Agbossou-Niedercorn F, Paul J F. . Eur. J. Inorg. Chem., 2006, 2006: 4338,
CrossRef Google scholar
[47]
Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. . J. Electrochem. Soc., 2005, 152: J23,
CrossRef Google scholar
[48]
Yang L., Zhou W., Hou D., Zhou K., Li G., Tang. Z., Li L., Chen S., Nanoscale, 2015, 5203.
[49]
Wang D Y, Gong M, Chou H L, Pan C J, Chen H A, Wu Y, Lin M C, Guan M, Yang J, Chen C W. . J. Am. Chem. Soc., 2015, 137: 1587,
CrossRef Google scholar
[50]
Yang S, Wang Y, Zhang H, Zhang Y, Liu L, Fang L, Yang X, Gu X, Wang Y. . J. Catal., 2019, 371: 20,
CrossRef Google scholar
[51]
Zhou Q, Feng J, Peng X, Zhong L, Sun R. . J. Energy Chem., 2020, 45: 45,
CrossRef Google scholar
[52]
Yang Y, Yao H, Yu Z, Islam S M, He H, Yuan M, Yue Y, Xu K, Hao W, Sun G. . J. Am. Chem. Soc., 2019, 141: 10417,
CrossRef Google scholar
[53]
Lv J J, Zhao J, Fang H, Jiang L P, Li L L, Ma J, Zhu J J. . Small, 2017, 13: 1700264,
CrossRef Google scholar
[54]
Wu Y, Liu Y, Li G D, Zou X, Lian X, Wang D, Sun L, Asefa T, Zou X. . Nano Energy, 2017, 35: 161,
CrossRef Google scholar
[55]
Wu Y, Li G D, Liu Y, Yang L, Lian X, Asefa T, Zou X. . Adv. Funct. Mater., 2016, 26: 4839,
CrossRef Google scholar
[56]
Fang W, Liu D, Lu Q, Sun X, Asiri A M. . Electrochem. Commun., 2016, 63: 60,
CrossRef Google scholar
[57]
Luo P, Zhang H, Liu L, Zhang Y, Deng J, Xu C, Hu N, Wang Y. . ACS Appl. Mater. Interfaces, 2017, 9: 2500,
CrossRef Google scholar
[58]
Zhou Z, Wei L, Wang Y, Karahan H E, Chen Z, Lei Y, Chen X, Zhai S, Liao X, Chen Y. . J. Mater. Chem. A, 2017, 5: 20390,
CrossRef Google scholar
[59]
Liu J, Zhu D, Ling T, Vasileff A, Qiao S Z. . Nano Energy, 2017, 40: 264,
CrossRef Google scholar
[60]
Ansovini D, Jun Lee C J, Chua C S, Ong L T, Tan H R, Webb W R, Raja R, Lim Y F. . J. Mater. Chem. A, 2016, 4: 9744,
CrossRef Google scholar
[61]
You B, Liu X, Jiang N, Sun Y. . J. Am. Chem. Soc., 2016, 138: 13639,
CrossRef Google scholar
[62]
Xu R, Wu R, Shi Y, Zhang J, Zhang B. . Nano Energy, 2016, 24: 103,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/