Halogenated Thienoacene Derivatives with Improved Emission Properties

Jingmei Zhang, Zhihao Meng, Yonggang Zhen, Ping He, Panpan Yu, Wenping Hu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (4) : 699-703. DOI: 10.1007/s40242-024-4038-0
Article

Halogenated Thienoacene Derivatives with Improved Emission Properties

Author information +
History +

Abstract

Thienoacenes is one of most important groups of semiconducting materials due to the high stability and superior mobility. However, there are scarce studies on the emission properties of thienoacenes to date. Herein, we synthesized fluorinated and chlorinated dibenzo[d,d’]thieno[3,2-b;4,5-b’]dithiophenes (DBTDTs) derivatives F6-DBTDT and Cl6-DBTDT by sulfoxide cyclization, significantly lowering the energy levels relative to the parent compound DBTDT. According to single crystal structure analysis, F6-DBTDT molecules adopt one-dimensional slipped stacking with close π-π interactions of 3.43 Å (1 Å=0.1 nm), which is different from the parent compound DBTDT with herringbone stacking motif. Interestingly, the halogenated DBTDT derivatives exhibit enhanced emission properties both in solution and in the solid state, opening up possiblities to improve photoluminescence of thienoacences by halogenation.

Keywords

Thienoacene / Halogenation / Photoluminescence / Aggregation structure

Cite this article

Download citation ▾
Jingmei Zhang, Zhihao Meng, Yonggang Zhen, Ping He, Panpan Yu, Wenping Hu. Halogenated Thienoacene Derivatives with Improved Emission Properties. Chemical Research in Chinese Universities, 2024, 40(4): 699‒703 https://doi.org/10.1007/s40242-024-4038-0

References

[[1]]
Takimiya K, Shinamura S, Osaka I, Miyazaki E. . Adv. Mater., 2011, 23: 4347,
CrossRef Pubmed Google scholar
[[2]]
Takimiya K, Ebata H, Sakamoto K, Izawa T, Otsubo T, Kunugi Y. . J. Am. Chem. Soc., 2006, 128: 12604,
CrossRef Pubmed Google scholar
[[3]]
He P, Tu Z, Zhao G, Zhen Y, Geng H, Yi Y, Wang Z, Zhang H, Xu C, Liu J, Lu X, Fu X, Zhao Q, Zhang X, Ji D, Jiang L, Dong H, Hu W. . Adv. Mater., 2015, 27: 825,
CrossRef Pubmed Google scholar
[[4]]
Zhang H, Yu X, Li M, Zhang Z, Song Z, Zong X, Duan G, Zhang W, Chen C, Zhang W-H, Liu Y, Liang M. . Angew. Chem. Int. Ed., 2023, 62: e202314270,
CrossRef Google scholar
[[5]]
Huang J, Wang W, Zhang L, Meng X. . Chin. Chem. Lett., 2023, 34: 108003,
CrossRef Google scholar
[[6]]
Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. . J. Am. Chem. Soc., 2007, 129: 15732,
CrossRef Pubmed Google scholar
[[7]]
Gao J H, Li R J, Li L Q, Meng Q, Jiang H, Li H X, Hu W P. . Adv. Mater., 2007, 19: 3008,
CrossRef Google scholar
[[8]]
Li R, Jiang L, Meng Q, Gao J, Li H, Tang Q, He M, Hu W, Liu Y, Zhu D. . Adv. Mater., 2009, 21: 4492,
CrossRef Google scholar
[[9]]
Miyata Y, Yoshikawa E, Minari T, Tsukagoshi K, Yamaguchi S. . J. Mater. Chem., 2012, 22: 7715,
CrossRef Google scholar
[[10]]
Liu S, Fang X, Lu B, Yan D. . Nat. Commun., 2020, 11: 4649, pmcid: 7494901
CrossRef Pubmed Google scholar
[[11]]
Huang Y, Xing J, Gong Q, Chen L-C, Liu G, Yao C, Wang Z, Zhang H-L, Chen Z, Zhang Q. . Nat. Commun., 2019, 10: 169, pmcid: 6329816
CrossRef Pubmed Google scholar
[[12]]
An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. . Nat. Mater., 2015, 14: 685,
CrossRef Pubmed Google scholar
[[13]]
Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L, Wang Y, Yu J, Sun Y, Hu W, Heeger A J. . Nat. Commun., 2015, 6: 10032,
CrossRef Pubmed Google scholar
[[14]]
Guo R, Zhang J, Jia X, Shi C, Qie F, Zhen Y. . Chem. Res. Chinese Universities, 2023, 39: 1106,
CrossRef Google scholar
[[15]]
Qin Z, Wang T, Gao H, Li Y, Dong H, Hu W. . Adv. Mater., 2023, 35: 2301955,
CrossRef Google scholar
[[16]]
Eshun A, Cai Z, Awies M, Yu L, Goodson T. . J. Phys. Chem. A, 2018, 122: 8167,
CrossRef Pubmed Google scholar
[[17]]
Zhu L, Liu Y, Wang X, Zhang K, Tai J-W, Sun Y-Q, Wang C-K, Ding L, Fung M-K, Fan J. . Chem. Eng. J., 2023, 473: 145449,
CrossRef Google scholar
[[18]]
Sirringhaus H, H. Friend R, Wang C, Leuninger J, Müllen K. . J. Mater. Chem., 1999, 9: 2095,
CrossRef Google scholar
[[19]]
Xiong Y, Qiao X, Wu H, Huang Q, Wu Q, Li J, Gao X, Li H. . J. Org. Chem., 2014, 79: 1138,
CrossRef Pubmed Google scholar
[[20]]
Miyata Y., Suzuki Y., Preparation of Bis(benzo[4,5]chalcogeno) [3,2-c:2′3′-e]chalcogenophenes under Mild Conditions, WO2012137694, 2012.
[[21]]
Okamoto T, Kudoh K, Wakamiya A, Yamaguchi S. . Org. Lett., 2005, 7: 5301,
CrossRef Pubmed Google scholar
[[22]]
Yu P, Zhen Y, Dong H, Hu W. . Chem., 2019, 5: 2814,
CrossRef Google scholar
[[23]]
Wang Y, Hu Y, Guo J, Wang Z, Li Y, Qie F, Shi C, Zhang L, Zhen Y. . Sci. China Chem., 2023, 66: 1450,
CrossRef Google scholar
[[24]]
Wang Z, Hu Y, Xie Y, Qie F, Guo J, Zhang L, Shi C, Glöcklhofer F, Zhen Y. . Sci. China Mater., 2023, 66: 2429,
CrossRef Google scholar
[[25]]
Hestand N J, Spano F C. . Chem. Rev., 2018, 118: 7069,
CrossRef Pubmed Google scholar
[[26]]
Spano F C. . Acc. Chem. Res., 2010, 43: 429,
CrossRef Pubmed Google scholar
[[27]]
Liu J, Zhu W, Zhou K, Wang Z, Zou Y, Meng Q, Li J, Zhen Y, Hu W. . J. Mater. Chem. C, 2016, 4: 3621,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/