In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries

Renju Dou , Qin Wang , Xiaoyan Ren , Lehui Lu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 279 -286.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 279 -286. DOI: 10.1007/s40242-024-4027-3
Article

In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries

Author information +
History +
PDF

Abstract

Here we employ in-situ UV-Vis spectroscopy to monitor the sulfur redox reaction with oxygen-containing molecules as an additive, for example, biphenyl-4,4′-dicarboxylic acid (BDC). Furthermore, Raman spectrum, electron paramagnetic resonance (EPR), and electrospray ionization-mass spectrometry (ESI-MS) measurements reveal that the formation of BDC-S3 •‒ complexes can establish the long-term stability of polysulfide radicals, change the kinetics of sulfur redox reaction, and then generate decent capacity retention and rate capability. According to the density functional theory (DFT) analysis, S3 •‒ radicals are the underlying product of S6 2‒ cleavage, owing to the decreased chemical energy and the increased stability of S3 •‒ radicals through Lewis acid-base interaction. The assembled Li-S batteries with BDC additive deliver a high reversible capacity of 420 mA·h·g−1 over 200 cycles with over 98% Coulombic efficiency, under the current density of 0.2 C.

Keywords

Radical / Polysulfide / In-situ UV-Vis Spectroscopy / Electrolyte additive / Lithium-sulfur battery

Cite this article

Download citation ▾
Renju Dou, Qin Wang, Xiaoyan Ren, Lehui Lu. In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries. Chemical Research in Chinese Universities, 2024, 40(2): 279-286 DOI:10.1007/s40242-024-4027-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji X, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

[2]

Deng R, Wang M, Yu H, Luo S, Li J, Chu F, Liu B, Wu F. Energy Environ. Mater., 2022, 5: 777.

[3]

Cheng X-B, Zhang R, Zhao C-Z, Zhang Q. Chem. Rev., 2017, 117: 10403.

[4]

Shi Z, Tian Z, Guo D, Wang Y, Bayhan Z, Alzahrani A S, Alshareef H N. ACS Energy Lett., 2023, 8(7): 3054.

[5]

Pang Q, Liang X, Kwok C Y, Nazar L F. Nat. Energy, 201, 1: 16132.

[6]

Liu R, Wei Z, Peng L, Zhang L, Zohar A, Schoeppner R, Wang P, Wan C, Zhu D, Liu H, Wang Z, Tolbert S H, Dunn B, Huang Y, Sautet P, Duan X. Nature, 2024, 626: 98.

[7]

Lin Y, Zheng J, Wang C, Qi Y. Nano Energy, 2020, 75: 104915.

[8]

Meng R, He X, Ong S J H, Cui C, Song S, Paoprasert P, Pang Q, Xu Z J, Liang X. Angew. Chem. Int. Ed., 2023, 62(38): e202309046.

[9]

Steudel R, Chivers T. Chem. Soc. Rev., 2019, 48(12): 3279.

[10]

Shin H, Baek M, Gupta A, Char K, Manthiram A, Choi J W. Adv. Energy Mater., 2020, 10: 2001456.

[11]

Zhong N, Lei C, Meng R, Li J, He X, Liang X. Small, 2022, 18: 2200046.

[12]

Baek M, Shin H, Char K, Choi J W. Adv. Mater., 2020, 32: 2005022.

[13]

Shen Z, Gao Q, Zhu X, Guo Z, Guo K, Song X, Zhao Y. Energy Storage Mater., 2023, 57: 299.

[14]

Zhang G, Peng H J, Zhao C Z, Chen X, Zhao L D, Li P, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(51): 16732.

[15]

Feng S, Fu Z-H, Chen X, Li B-Q, Peng H-J, Yao N, Shen X, Yu L, Gao Y-C, Zhang R, Zhang Q. Angew. Chem. Int. Ed., 2022, 61(52): e202211448.

[16]

Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(28): 8178.

[17]

Jin W, Zhang X, Liu M, Zhao Y, Zhang P. Energy Storage Mater., 2024, 67: 103223.

[18]

Lee D J, Agostini M, Park J W, Sun Y K, Hassoun J, Scrosati B. ChemSusChem, 2013, 6(12): 2245.

[19]

Lian J, Guo W, Fu Y. J. Am. Chem. Soc., 2021, 143(29): 11063.

[20]

Zhang G, Zhang Z W, Peng H J, Huang J Q, Zhang Q. Small Methods, 2017, 1(7): 1700134.

[21]

Cui Y, Fang W, Zhang J, Li J, Wu H, Sun Z, Cai Y, Zhang H, Zhang S. Nano Energy, 2024, 122: 109343.

[22]

Fu B, Chen J, Cao Y, Li H, Gao F, Guo D-Y, Wang F, Pan Q. Sensor Actuat. B-Chem., 2022, 369: 132261.

[23]

Yang W, Yang Y, Lin D, Li H, Yang W, Guo D, Pan Q. Inorg. Chem. Front., 2020, 7: 3718.

[24]

Chen X, Wang F, Hyun J Y, Wei T, Qiang J, Ren X, Shin I, Yoon J. Chem. Soc. Rev., 201, 45(10): 2976.

[25]

Ren X, Wang J, Peng Z, Lu L. Chem. Sci., 2018, 9: 231.

[26]

Frisch M. J., Gaussian 09, Gaussian Inc., 2009

[27]

Boys S F, Bernardi F. Mol. Phys., 1970, 19: 553.

[28]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.

[29]

Lee B-J, Zhao C, Yu J-H, Kang T-H, Park H-Y, Kang J, Jung Y, Liu X, Li T, Xu W, Zuo X-B, Xu G-L, Amine K, Yu J-S. Nat. Commun., 2022, 13: 4629.

[30]

Chaouche M, Gao X X, Cyr M, Cotte M, Frouin L. J. Am. Ceram. Soc., 2017, 100(4): 1707.

[31]

Wang Q, Zheng J, Walter E, Pan H, Lv D, Zuo P, Chen H, Deng Z D, Liaw B Y, Yu X, Yang X, Zhang J-G, Liu J, Xiao J. J. Electrochem. Soc., 2015, 162(3): A474.

[32]

Feng S, Fu Z-H, Chen X, Li B-Q, Peng H-J, Yao N, Shen X, Yu L, Gao Y-C, Zhang R, Zhang Q. Angew. Chem. Int. Ed., 2022, 61(52): e202211448.

[33]

Chivers T. Nature, 1974, 252: 32.

[34]

Zou Q, Lu Y C. J. Phys. Chem. Lett., 201, 7(8): 1518.

[35]

Wujcik K H, Wang D R, Raghunathan A, Drake M, Pasca T A, Prendergast D, Balsara N P. J. Phys. Chem. C, 201, 120(33): 18403.

[36]

Zhu Y, Zuo Y, Jiao X, Manjunatha R, Ezeigwe E R, Yan W, Zhang J. Carbon Energy, 2023, 5: e249.

AI Summary AI Mindmap
PDF

225

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/