In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries

Renju Dou, Qin Wang, Xiaoyan Ren, Lehui Lu

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 279-286. DOI: 10.1007/s40242-024-4027-3
Article

In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries

Author information +
History +

Abstract

Here we employ in-situ UV-Vis spectroscopy to monitor the sulfur redox reaction with oxygen-containing molecules as an additive, for example, biphenyl-4,4′-dicarboxylic acid (BDC). Furthermore, Raman spectrum, electron paramagnetic resonance (EPR), and electrospray ionization-mass spectrometry (ESI-MS) measurements reveal that the formation of BDC-S3 •‒ complexes can establish the long-term stability of polysulfide radicals, change the kinetics of sulfur redox reaction, and then generate decent capacity retention and rate capability. According to the density functional theory (DFT) analysis, S3 •‒ radicals are the underlying product of S6 2‒ cleavage, owing to the decreased chemical energy and the increased stability of S3 •‒ radicals through Lewis acid-base interaction. The assembled Li-S batteries with BDC additive deliver a high reversible capacity of 420 mA·h·g−1 over 200 cycles with over 98% Coulombic efficiency, under the current density of 0.2 C.

Keywords

Radical / Polysulfide / In-situ UV-Vis Spectroscopy / Electrolyte additive / Lithium-sulfur battery

Cite this article

Download citation ▾
Renju Dou, Qin Wang, Xiaoyan Ren, Lehui Lu. In-situ UV-Vis Spectroscopy of Trisulfur Radicals in Lithium-Sulfur Batteries. Chemical Research in Chinese Universities, 2024, 40(2): 279‒286 https://doi.org/10.1007/s40242-024-4027-3

References

[[1]]
Ji X, Lee K T, Nazar L F. . Nat. Mater., 2009, 8(6): 500,
CrossRef Pubmed Google scholar
[[2]]
Deng R, Wang M, Yu H, Luo S, Li J, Chu F, Liu B, Wu F. . Energy Environ. Mater., 2022, 5: 777,
CrossRef Google scholar
[[3]]
Cheng X-B, Zhang R, Zhao C-Z, Zhang Q. . Chem. Rev., 2017, 117: 10403,
CrossRef Pubmed Google scholar
[[4]]
Shi Z, Tian Z, Guo D, Wang Y, Bayhan Z, Alzahrani A S, Alshareef H N. . ACS Energy Lett., 2023, 8(7): 3054,
CrossRef Google scholar
[[5]]
Pang Q, Liang X, Kwok C Y, Nazar L F. . Nat. Energy, 2016, 1: 16132,
CrossRef Google scholar
[[6]]
Liu R, Wei Z, Peng L, Zhang L, Zohar A, Schoeppner R, Wang P, Wan C, Zhu D, Liu H, Wang Z, Tolbert S H, Dunn B, Huang Y, Sautet P, Duan X. . Nature, 2024, 626: 98,
CrossRef Pubmed Google scholar
[[7]]
Lin Y, Zheng J, Wang C, Qi Y. . Nano Energy, 2020, 75: 104915,
CrossRef Google scholar
[[8]]
Meng R, He X, Ong S J H, Cui C, Song S, Paoprasert P, Pang Q, Xu Z J, Liang X. . Angew. Chem. Int. Ed., 2023, 62(38): e202309046,
CrossRef Google scholar
[[9]]
Steudel R, Chivers T. . Chem. Soc. Rev., 2019, 48(12): 3279,
CrossRef Pubmed Google scholar
[[10]]
Shin H, Baek M, Gupta A, Char K, Manthiram A, Choi J W. . Adv. Energy Mater., 2020, 10: 2001456,
CrossRef Google scholar
[[11]]
Zhong N, Lei C, Meng R, Li J, He X, Liang X. . Small, 2022, 18: 2200046,
CrossRef Google scholar
[[12]]
Baek M, Shin H, Char K, Choi J W. . Adv. Mater., 2020, 32: 2005022,
CrossRef Google scholar
[[13]]
Shen Z, Gao Q, Zhu X, Guo Z, Guo K, Song X, Zhao Y. . Energy Storage Mater., 2023, 57: 299,
CrossRef Google scholar
[[14]]
Zhang G, Peng H J, Zhao C Z, Chen X, Zhao L D, Li P, Huang J Q, Zhang Q. . Angew. Chem. Int. Ed., 2018, 57(51): 16732,
CrossRef Google scholar
[[15]]
Feng S, Fu Z-H, Chen X, Li B-Q, Peng H-J, Yao N, Shen X, Yu L, Gao Y-C, Zhang R, Zhang Q. . Angew. Chem. Int. Ed., 2022, 61(52): e202211448,
CrossRef Google scholar
[[16]]
Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. . Angew. Chem. Int. Ed., 2017, 56(28): 8178,
CrossRef Google scholar
[[17]]
Jin W, Zhang X, Liu M, Zhao Y, Zhang P. . Energy Storage Mater., 2024, 67: 103223,
CrossRef Google scholar
[[18]]
Lee D J, Agostini M, Park J W, Sun Y K, Hassoun J, Scrosati B. . ChemSusChem, 2013, 6(12): 2245,
CrossRef Pubmed Google scholar
[[19]]
Lian J, Guo W, Fu Y. . J. Am. Chem. Soc., 2021, 143(29): 11063,
CrossRef Pubmed Google scholar
[[20]]
Zhang G, Zhang Z W, Peng H J, Huang J Q, Zhang Q. . Small Methods, 2017, 1(7): 1700134,
CrossRef Google scholar
[[21]]
Cui Y, Fang W, Zhang J, Li J, Wu H, Sun Z, Cai Y, Zhang H, Zhang S. . Nano Energy, 2024, 122: 109343,
CrossRef Google scholar
[[22]]
Fu B, Chen J, Cao Y, Li H, Gao F, Guo D-Y, Wang F, Pan Q. . Sensor Actuat. B-Chem., 2022, 369: 132261,
CrossRef Google scholar
[[23]]
Yang W, Yang Y, Lin D, Li H, Yang W, Guo D, Pan Q. . Inorg. Chem. Front., 2020, 7: 3718,
CrossRef Google scholar
[[24]]
Chen X, Wang F, Hyun J Y, Wei T, Qiang J, Ren X, Shin I, Yoon J. . Chem. Soc. Rev., 2016, 45(10): 2976,
CrossRef Pubmed Google scholar
[[25]]
Ren X, Wang J, Peng Z, Lu L. . Chem. Sci., 2018, 9: 231,
CrossRef Pubmed Google scholar
[[26]]
Frisch M. J., Gaussian 09, Gaussian Inc., 2009
[[27]]
Boys S F, Bernardi F. . Mol. Phys., 1970, 19: 553,
CrossRef Google scholar
[[28]]
Lee C, Yang W, Parr R G. . Phys. Rev. B, 1988, 37: 785,
CrossRef Google scholar
[[29]]
Lee B-J, Zhao C, Yu J-H, Kang T-H, Park H-Y, Kang J, Jung Y, Liu X, Li T, Xu W, Zuo X-B, Xu G-L, Amine K, Yu J-S. . Nat. Commun., 2022, 13: 4629, pmcid: 9360432
CrossRef Pubmed Google scholar
[[30]]
Chaouche M, Gao X X, Cyr M, Cotte M, Frouin L. . J. Am. Ceram. Soc., 2017, 100(4): 1707,
CrossRef Google scholar
[[31]]
Wang Q, Zheng J, Walter E, Pan H, Lv D, Zuo P, Chen H, Deng Z D, Liaw B Y, Yu X, Yang X, Zhang J-G, Liu J, Xiao J. . J. Electrochem. Soc., 2015, 162(3): A474,
CrossRef Google scholar
[[32]]
Feng S, Fu Z-H, Chen X, Li B-Q, Peng H-J, Yao N, Shen X, Yu L, Gao Y-C, Zhang R, Zhang Q. . Angew. Chem. Int. Ed., 2022, 61(52): e202211448,
CrossRef Google scholar
[[33]]
Chivers T. . Nature, 1974, 252: 32,
CrossRef Google scholar
[[34]]
Zou Q, Lu Y C. . J. Phys. Chem. Lett., 2016, 7(8): 1518,
CrossRef Pubmed Google scholar
[[35]]
Wujcik K H, Wang D R, Raghunathan A, Drake M, Pasca T A, Prendergast D, Balsara N P. . J. Phys. Chem. C, 2016, 120(33): 18403,
CrossRef Google scholar
[[36]]
Zhu Y, Zuo Y, Jiao X, Manjunatha R, Ezeigwe E R, Yan W, Zhang J. . Carbon Energy, 2023, 5: e249,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/