Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging

Xia Zhang, Guocheng Li, Wei Pan, Na Li, Yanhua Li, Bo Tang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 225-236. DOI: 10.1007/s40242-024-3290-7
Review

Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging

Author information +
History +

Abstract

Cysteine is an important regulator of redox processes. Due to the nucleophilic and oxidative sensitivity, cysteine residues in proteins can be oxidized by intracellular reactive oxygen species (ROS), which can lead to protein structural and functional changes. Hence, the development of fluorescent probes to image cysteine and cysteine oxidation is of great significance for the study of redox homeostasis in living system. In this review, the development of fluorescent probes for imaging cysteine and cysteine oxidation was summarized. Moreover, we further analyzed defects of the reported fluorescent probes and made suggestions for the future development of fluorescent probes. We expect that this review can not only provide a deeper understanding of the role of cysteine and cysteine oxidation in oxidative stress, but also broaden the application of fluorescent probes in imaging cysteine and cysteine oxidation.

Keywords

Cysteine / Cysteine oxidation / Fluorescent probe / Oxidative stress

Cite this article

Download citation ▾
Xia Zhang, Guocheng Li, Wei Pan, Na Li, Yanhua Li, Bo Tang. Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging. Chemical Research in Chinese Universities, 2024, 40(2): 225‒236 https://doi.org/10.1007/s40242-024-3290-7

References

[1]
Nagendraraj T, Priya S V, Annaraj J, Sagadevan S. . Coord. Chem. Rev., 2023, 495: 215368,
CrossRef Google scholar
[2]
Tan X, Ji K, Wang X, Yao R, Han G, Villamena F A, Zweier J L, Song Y, Rockenbauer A, Liu Y. . Angew. Chem. Int. Ed., 2020, 59: 928,
CrossRef Google scholar
[3]
Yin G-X, Niu T-T, Gan Y-B, Yu T, Yin P, Chen H-M, Zhang Y-Y, Li H-T, Yao S-Z. . Angew. Chem. Int. Ed., 2018, 57: 4991,
CrossRef Google scholar
[4]
Zhang M, Bi H, Li C, Du Y, Wei L. . Biol Trace Elem Res., 2018, 185: 509,
CrossRef Google scholar
[5]
Zhang T, Bauer C, Newman A C, Uribe A H, Athineos D, Blyth K, Maddocks O D K. . Nat. Metab., 2020, 2: 1062,
CrossRef Google scholar
[6]
Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. . Chem. Soc. Rev., 2015, 44: 6143,
CrossRef Google scholar
[7]
Bin P, Huang R, Zhou X. . BioMed Res. Int., 2017, 2017: 9584932,
CrossRef Google scholar
[8]
Li D, Ding Z, Du K, Ye X, Cheng S. . Oxidative Med. Cell. Longev., 2021, 2021: 5583215
[9]
Haque T, Eaves D J, Lin Z, Zampronio C G, Cooper H J, Bosch M, Smirnoff N, Franklin-Tong V E. . Plant Physiol., 2020, 183: 1391,
CrossRef Google scholar
[10]
Chauvin J-P R, Pratt D A. . Angew. Chem. Int. Ed., 2017, 56: 6255,
CrossRef Google scholar
[11]
van Montfort R L M, Congreve M, Tisi D, Carr R, Jhoti H. . Nature, 2003, 423: 773,
CrossRef Google scholar
[12]
Forman H J, Zhang H. . Nat. Rev. Drug Discov., 2021, 20: 689,
CrossRef Google scholar
[13]
Dou W-T, Han H-H, Sedgwick A C, Zhu G-B, Zang Y, Yang X-R, Yoon J, James T D, Li J, He X-P. . Sci. Bull., 2022, 67: 853,
CrossRef Google scholar
[14]
Wu X, Shi W, Li X, Ma H. . Acc. Chem. Res., 2019, 52: 1892,
CrossRef Google scholar
[15]
Chi W, Chen J, Liu W, Wang C, Qi Q, Qiao Q, Tan T M, Xiong K, Liu X, Kang K, Chang Y-T, Xu Z, Liu X. . J. Am. Chem. Soc., 2020, 142: 6777,
CrossRef Google scholar
[16]
Abeywickrama C S. . Chem. Commun., 2022, 58: 9855,
CrossRef Google scholar
[17]
Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y. . Biosens. Bioelectron., 2019, 138: 111314,
CrossRef Google scholar
[18]
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce M R, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu J-J, Hu R, Huang X, James T D, Jiang X, Konishi G-I, Kwok R T K, Lam J W Y, Li C, Li H, Li K, Li N, Li W-J, Li Y, Liang X-J, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou X-Y, Luo L, McGonigal P R, Mao Z-W, Niu G, Owyong T C, Pucci A, Qian J, Qin A, Qiu Z, Rogach A L, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang W-X, Wang W-J, Wang X, Wang Y-F, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang H-B, Yang L-L, Yang M, Yang Y-W, Yoon J, Zang S-Q, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu M-Q, Zhu W-H, Zou H, Tang B Z. . ACS Nano, 2023, 17: 14347,
CrossRef Google scholar
[19]
Duan Z, Zhu Y, Yang Y, He Z, Liu J, Li P, Wang H, Tang B. . ChemistryOpen, 2019, 8: 316,
CrossRef Google scholar
[20]
Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, Bo Q. . Spectrochim. Acta Part A, 2017, 173: 918,
CrossRef Google scholar
[21]
Li S-J, Fu Y-J, Li C-Y, Li Y-F, Yi L-H, Ou-Yang J. . Anal. Chim. Acta, 2017, 994: 73,
CrossRef Google scholar
[22]
Yu Y, Yang J, Xu X, Jiang Y, Wang B. . Sens. Actuators B: Chem., 2017, 251: 902,
CrossRef Google scholar
[23]
Chen Z, Sun Q, Yao Y, Fan X, Zhang W, Qian J. . Biosens. Bioelectron., 2017, 91: 553,
CrossRef Google scholar
[24]
Tong H, Zhao J, Li X, Zhang Y, Ma S, Lou K, Wang W. . Chem. Commun., 2017, 53: 3583,
CrossRef Google scholar
[25]
Pal A, Karmakar M, Bhatta S R, Thakur A. . Coord. Chem. Rev., 2021, 448: 214167,
CrossRef Google scholar
[26]
Li S, Song D, Huang W, Li Z, Liu Z. . Anal. Chem., 2020, 92: 2802,
CrossRef Google scholar
[27]
Zhang Y, Wang X, Bai X, Li P, Su D, Zhang W, Zhang W, Tang B. . Anal. Chem., 2019, 91: 8591,
CrossRef Google scholar
[28]
Wang X, Zha J, Zhang W, Zhang W, Tang B. . Analyst, 2020, 145: 6119,
CrossRef Google scholar
[29]
Chen Z, Wang B, Liang Y, Shi L, Cen X, Zheng L, Liang E, Huang L, Cheng K. . Anal. Chem., 2022, 94: 10737,
CrossRef Google scholar
[30]
He L, Yang X, Xu K, Lin W. . Anal. Chem., 2017, 89: 9567,
CrossRef Google scholar
[31]
Bai Y, Wu M-X, Ma Q-J, Wang C-Y, Sun J-G, Tian M-J, Li J-S. . New J. Chem., 2019, 43: 14763,
CrossRef Google scholar
[32]
Niu G, Zhang R, Shi X, Park H, Xie S, Kwok R T K, Lam J W Y, Tang B Z. . TrAC Trends in Anal. Chem., 2020, 123: 115769,
CrossRef Google scholar
[33]
Jiang G, Liu X, Chen Q, Zeng G, Wu Y, Dong X, Zhang G, Li Y, Fan X, Wang J. . Sens. Actuators B: Chem., 2017, 252: 712,
CrossRef Google scholar
[34]
Cai Y, Fang J, Zhu H, Qin W, Cao Y, Yu H, Shao G, Liu Y, Liu W. . Sens. Actuators B: Chem., 2020, 303: 127214,
CrossRef Google scholar
[35]
Fang Z, Chen D, Xu J, Wang J, Li S, Tian X, Tian Y, Zhang Q. . Anal. Chem., 2022, 94: 14769,
CrossRef Google scholar
[36]
Maniam S, Higginbotham H F, Bell T D M, Langford S J. . Chem. Eur. J., 2019, 25: 7044,
CrossRef Google scholar
[37]
Jia Z, Shi C, Yang X, Zhang J, Sun X, Guo Y, Ying X. . Compr. Rev. Food Sci. Food Saf., 2023, 22: 4644,
CrossRef Google scholar
[38]
Algar W R, Massey M, Rees K, Higgins R, Krause K D, Darwish G H, Peveler W J, Xiao Z, Tsai H-Y, Gupta R, Lix K, Tran M V, Kim H. . Chem. Rev., 2021, 121: 9243,
CrossRef Google scholar
[39]
Wagner A M, Knipe J M, Orive G, Peppas N A. . Acta Biomater., 2019, 94: 44,
CrossRef Google scholar
[40]
Montalti M, Cantelli A, Battistelli G. . Chem. Soc. Rev., 2015, 44: 4853,
CrossRef Google scholar
[41]
Gu T, Zou W, Gong F, Xia J, Chen C, Chen X. . Biosens. Bioelectron., 2018, 100: 79,
CrossRef Google scholar
[42]
Li H, Xu T, Zhang Z, Chen J, She M, Ji Y, Zheng B, Yang Z, Zhang S, Li J. . Chem. Eng. J., 2023, 453: 139722,
CrossRef Google scholar
[43]
Wu Y, Ali M R K, Chen K, Fang N, El-Sayed M A. . Nano Today, 2019, 24: 120,
CrossRef Google scholar
[44]
Chang H-C, Chang Y-F, Fan N-C, Ho J-A A. . ACS Appl. Mater. Interfaces, 2014, 6: 18824,
CrossRef Google scholar
[45]
Vesali-Naseh M, Mortazavi Y, Khodadadi A A, Parsaeian P, Moosavi-Movahedi A A. . Sens. Actuators B: Chem., 2013, 188: 488,
CrossRef Google scholar
[46]
Jouha J, Xiong H. . Small, 2021, 17: 2105439,
CrossRef Google scholar
[47]
Tang Z, Lin Z, Li G, Hu Y. . Anal. Chem., 2017, 89: 4238,
CrossRef Google scholar
[48]
Deng J, Lu Q, Hou Y, Liu M, Li H, Zhang Y, Yao S. . Anal. Chem., 2015, 87: 2195,
CrossRef Google scholar
[49]
Yan F, Shi D, Zheng T, Yun K, Zhou X, Chen L. . Sens. Actuators B: Chem., 2016, 224: 926,
CrossRef Google scholar
[50]
Liang Y-C, Zhao Q, Wu X-Y, Li Z, Lu Y-J, Liu Q, Dong L, Shan C-X. . J. Alloys Compd., 2019, 788: 615,
CrossRef Google scholar
[51]
Niu Y, Chen Z, Jiang Z, Yang Y, Liu G, Cheng X, Jiang Z, Zhang G, Tong L, Tang B. . ACS Chem. Biol., 2023, 18: 1351,
CrossRef Google scholar
[52]
Crane E J, Vervoort J, Claiborne A. . Biochemistry, 1997, 36: 8611,
CrossRef Google scholar
[53]
Benitez L V, Allison W S. . J. Biol. Chem., 1974, 249: 6234,
CrossRef Google scholar
[54]
Poole L B, Klomsiri C, Knaggs S A, Furdui C M, Nelson K J, Thomas M J, Fetrow J S, Daniel L W, King S B. . Bioconjugate Chem., 2007, 18: 2004,
CrossRef Google scholar
[55]
Cilibrizzi A, Fedorova M, Collins J, Leatherbarrow R, Woscholski R, Vilar R. . Dalton Trans., 2017, 46: 6994,
CrossRef Google scholar
[56]
Cilibrizzi A, Terenghi M, Fedorova M, Woscholski R, Klug D, Vilar R. . Sens. Actuators B Chem., 2017, 248: 437,
CrossRef Google scholar
[57]
Gao Y, Sun R, Zhao M, Ding J, Wang A, Ye S, Zhang Y, Mao Q, Xie W, Ma G, Shi H. . Anal. Chem., 2020, 92: 6977,
CrossRef Google scholar
[58]
Cheng X, Zhou X, Xu J, Sun R, Xia H, Ding J, Chin Y E, Chai Z, Shi H, Gao M. . Anal. Chem., 2021, 93: 9277,
CrossRef Google scholar
[59]
Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, Lou X, Gao M, Pu K. . ACS Nano, 2018, 12: 1801,
CrossRef Google scholar
[60]
Lyu Y, Zhen X, Miao Y, Pu K. . ACS Nano, 2017, 11: 358,
CrossRef Google scholar
[61]
Ding J, Mao Q, Zhao M, Gao Y, Wang A, Ye S, Wang X, Xie W, Shi H. . Nanoscale, 2020, 12: 22963,
CrossRef Google scholar
[62]
Micovic K, Satkunarajah T, Carnet A, Hurst M, Viirre R, Olson M F. . Current Protocols, 2022, 2: e559,
CrossRef Google scholar
[63]
Alcock L J, Oliveira B L, Deery M J, Pukala T L, Perkins M V, Bernardes G J L, Chalker J M. . ACS Chem Biol., 2019, 14: 594,
CrossRef Google scholar
[64]
Scinto S L, Ekanayake O, Seneviratne U, Pigga J E, Boyd S J, Taylor M T, Liu J, Ende C W, Rozovsky S, Fox J M. . J. Am. Chem. Soc., 2019, 141: 10932,
CrossRef Google scholar
[65]
McGarry D J, Shchepinova M M, Lilla S, Hartley R C, Olson M F. . ACS Chem. Biol., 2016, 11: 3300,
CrossRef Google scholar
[66]
Li M, Wang B, Li M, Li X, Wang L, Li N, Rao L, Wan C, Liu C, Liu C. . Sens. Actuators B: Chem., 2022, 354: 131235,
CrossRef Google scholar
[67]
Ferreira R B, Fu L, Jung Y, Yang J, Carroll K S. . Nat. Commun., 2022, 13: 5522,
CrossRef Google scholar
[68]
Urmey A R, Zondlo N J. . Free Radical Bio. Med., 2020, 152: 166,
CrossRef Google scholar
[69]
Kang Q, Xiao Y, Hu W, Wang Y. . J. Mater. Chem. C, 2018, 6: 12529,
CrossRef Google scholar
[70]
Huang X, Zhang S, Liu Z, Cao W, Li G, Gao W, Tang B. . Anal. Chem., 2023, 95: 1967,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/