Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging

Xia Zhang , Guocheng Li , Wei Pan , Na Li , Yanhua Li , Bo Tang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 225 -236.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 225 -236. DOI: 10.1007/s40242-024-3290-7
Review

Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging

Author information +
History +
PDF

Abstract

Cysteine is an important regulator of redox processes. Due to the nucleophilic and oxidative sensitivity, cysteine residues in proteins can be oxidized by intracellular reactive oxygen species (ROS), which can lead to protein structural and functional changes. Hence, the development of fluorescent probes to image cysteine and cysteine oxidation is of great significance for the study of redox homeostasis in living system. In this review, the development of fluorescent probes for imaging cysteine and cysteine oxidation was summarized. Moreover, we further analyzed defects of the reported fluorescent probes and made suggestions for the future development of fluorescent probes. We expect that this review can not only provide a deeper understanding of the role of cysteine and cysteine oxidation in oxidative stress, but also broaden the application of fluorescent probes in imaging cysteine and cysteine oxidation.

Keywords

Cysteine / Cysteine oxidation / Fluorescent probe / Oxidative stress

Cite this article

Download citation ▾
Xia Zhang, Guocheng Li, Wei Pan, Na Li, Yanhua Li, Bo Tang. Fluorescent Probes for Cysteine and Cysteine Oxidation Imaging. Chemical Research in Chinese Universities, 2024, 40(2): 225-236 DOI:10.1007/s40242-024-3290-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nagendraraj T, Priya S V, Annaraj J, Sagadevan S. Coord. Chem. Rev., 2023, 495: 215368.

[2]

Tan X, Ji K, Wang X, Yao R, Han G, Villamena F A, Zweier J L, Song Y, Rockenbauer A, Liu Y. Angew. Chem. Int. Ed., 2020, 59: 928.

[3]

Yin G-X, Niu T-T, Gan Y-B, Yu T, Yin P, Chen H-M, Zhang Y-Y, Li H-T, Yao S-Z. Angew. Chem. Int. Ed., 2018, 57: 4991.

[4]

Zhang M, Bi H, Li C, Du Y, Wei L. Biol Trace Elem Res., 2018, 185: 509.

[5]

Zhang T, Bauer C, Newman A C, Uribe A H, Athineos D, Blyth K, Maddocks O D K. Nat. Metab., 2020, 2: 1062.

[6]

Niu L-Y, Chen Y-Z, Zheng H-R, Wu L-Z, Tung C-H, Yang Q-Z. Chem. Soc. Rev., 2015, 44: 6143.

[7]

Bin P, Huang R, Zhou X. BioMed Res. Int., 2017, 2017: 9584932.

[8]

Li D, Ding Z, Du K, Ye X, Cheng S. Oxidative Med. Cell. Longev., 2021, 2021: 5583215.

[9]

Haque T, Eaves D J, Lin Z, Zampronio C G, Cooper H J, Bosch M, Smirnoff N, Franklin-Tong V E. Plant Physiol., 2020, 183: 1391.

[10]

Chauvin J-P R, Pratt D A. Angew. Chem. Int. Ed., 2017, 56: 6255.

[11]

van Montfort R L M, Congreve M, Tisi D, Carr R, Jhoti H. Nature, 2003, 423: 773.

[12]

Forman H J, Zhang H. Nat. Rev. Drug Discov., 2021, 20: 689.

[13]

Dou W-T, Han H-H, Sedgwick A C, Zhu G-B, Zang Y, Yang X-R, Yoon J, James T D, Li J, He X-P. Sci. Bull., 2022, 67: 853.

[14]

Wu X, Shi W, Li X, Ma H. Acc. Chem. Res., 2019, 52: 1892.

[15]

Chi W, Chen J, Liu W, Wang C, Qi Q, Qiao Q, Tan T M, Xiong K, Liu X, Kang K, Chang Y-T, Xu Z, Liu X. J. Am. Chem. Soc., 2020, 142: 6777.

[16]

Abeywickrama C S. Chem. Commun., 2022, 58: 9855.

[17]

Zhang X, Hu Y, Yang X, Tang Y, Han S, Kang A, Deng H, Chi Y, Zhu D, Lu Y. Biosens. Bioelectron., 2019, 138: 111314.

[18]

Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce M R, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu J-J, Hu R, Huang X, James T D, Jiang X, Konishi G-I, Kwok R T K, Lam J W Y, Li C, Li H, Li K, Li N, Li W-J, Li Y, Liang X-J, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou X-Y, Luo L, McGonigal P R, Mao Z-W, Niu G, Owyong T C, Pucci A, Qian J, Qin A, Qiu Z, Rogach A L, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang W-X, Wang W-J, Wang X, Wang Y-F, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang H-B, Yang L-L, Yang M, Yang Y-W, Yoon J, Zang S-Q, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu M-Q, Zhu W-H, Zou H, Tang B Z. ACS Nano, 2023, 17: 14347.

[19]

Duan Z, Zhu Y, Yang Y, He Z, Liu J, Li P, Wang H, Tang B. ChemistryOpen, 2019, 8: 316.

[20]

Fan W, Huang X, Shi X, Wang Z, Lu Z, Fan C, Bo Q. Spectrochim. Acta Part A, 2017, 173: 918.

[21]

Li S-J, Fu Y-J, Li C-Y, Li Y-F, Yi L-H, Ou-Yang J. Anal. Chim. Acta, 2017, 994: 73.

[22]

Yu Y, Yang J, Xu X, Jiang Y, Wang B. Sens. Actuators B: Chem., 2017, 251: 902.

[23]

Chen Z, Sun Q, Yao Y, Fan X, Zhang W, Qian J. Biosens. Bioelectron., 2017, 91: 553.

[24]

Tong H, Zhao J, Li X, Zhang Y, Ma S, Lou K, Wang W. Chem. Commun., 2017, 53: 3583.

[25]

Pal A, Karmakar M, Bhatta S R, Thakur A. Coord. Chem. Rev., 2021, 448: 214167.

[26]

Li S, Song D, Huang W, Li Z, Liu Z. Anal. Chem., 2020, 92: 2802.

[27]

Zhang Y, Wang X, Bai X, Li P, Su D, Zhang W, Zhang W, Tang B. Anal. Chem., 2019, 91: 8591.

[28]

Wang X, Zha J, Zhang W, Zhang W, Tang B. Analyst, 2020, 145: 6119.

[29]

Chen Z, Wang B, Liang Y, Shi L, Cen X, Zheng L, Liang E, Huang L, Cheng K. Anal. Chem., 2022, 94: 10737.

[30]

He L, Yang X, Xu K, Lin W. Anal. Chem., 2017, 89: 9567.

[31]

Bai Y, Wu M-X, Ma Q-J, Wang C-Y, Sun J-G, Tian M-J, Li J-S. New J. Chem., 2019, 43: 14763.

[32]

Niu G, Zhang R, Shi X, Park H, Xie S, Kwok R T K, Lam J W Y, Tang B Z. TrAC Trends in Anal. Chem., 2020, 123: 115769.

[33]

Jiang G, Liu X, Chen Q, Zeng G, Wu Y, Dong X, Zhang G, Li Y, Fan X, Wang J. Sens. Actuators B: Chem., 2017, 252: 712.

[34]

Cai Y, Fang J, Zhu H, Qin W, Cao Y, Yu H, Shao G, Liu Y, Liu W. Sens. Actuators B: Chem., 2020, 303: 127214.

[35]

Fang Z, Chen D, Xu J, Wang J, Li S, Tian X, Tian Y, Zhang Q. Anal. Chem., 2022, 94: 14769.

[36]

Maniam S, Higginbotham H F, Bell T D M, Langford S J. Chem. Eur. J., 2019, 25: 7044.

[37]

Jia Z, Shi C, Yang X, Zhang J, Sun X, Guo Y, Ying X. Compr. Rev. Food Sci. Food Saf., 2023, 22: 4644.

[38]

Algar W R, Massey M, Rees K, Higgins R, Krause K D, Darwish G H, Peveler W J, Xiao Z, Tsai H-Y, Gupta R, Lix K, Tran M V, Kim H. Chem. Rev., 2021, 121: 9243.

[39]

Wagner A M, Knipe J M, Orive G, Peppas N A. Acta Biomater., 2019, 94: 44.

[40]

Montalti M, Cantelli A, Battistelli G. Chem. Soc. Rev., 2015, 44: 4853.

[41]

Gu T, Zou W, Gong F, Xia J, Chen C, Chen X. Biosens. Bioelectron., 2018, 100: 79.

[42]

Li H, Xu T, Zhang Z, Chen J, She M, Ji Y, Zheng B, Yang Z, Zhang S, Li J. Chem. Eng. J., 2023, 453: 139722.

[43]

Wu Y, Ali M R K, Chen K, Fang N, El-Sayed M A. Nano Today, 2019, 24: 120.

[44]

Chang H-C, Chang Y-F, Fan N-C, Ho J-A A. ACS Appl. Mater. Interfaces, 2014, 6: 18824.

[45]

Vesali-Naseh M, Mortazavi Y, Khodadadi A A, Parsaeian P, Moosavi-Movahedi A A. Sens. Actuators B: Chem., 2013, 188: 488.

[46]

Jouha J, Xiong H. Small, 2021, 17: 2105439.

[47]

Tang Z, Lin Z, Li G, Hu Y. Anal. Chem., 2017, 89: 4238.

[48]

Deng J, Lu Q, Hou Y, Liu M, Li H, Zhang Y, Yao S. Anal. Chem., 2015, 87: 2195.

[49]

Yan F, Shi D, Zheng T, Yun K, Zhou X, Chen L. Sens. Actuators B: Chem., 201, 224: 926.

[50]

Liang Y-C, Zhao Q, Wu X-Y, Li Z, Lu Y-J, Liu Q, Dong L, Shan C-X. J. Alloys Compd., 2019, 788: 615.

[51]

Niu Y, Chen Z, Jiang Z, Yang Y, Liu G, Cheng X, Jiang Z, Zhang G, Tong L, Tang B. ACS Chem. Biol., 2023, 18: 1351.

[52]

Crane E J, Vervoort J, Claiborne A. Biochemistry, 1997, 36: 8611.

[53]

Benitez L V, Allison W S. J. Biol. Chem., 1974, 249: 6234.

[54]

Poole L B, Klomsiri C, Knaggs S A, Furdui C M, Nelson K J, Thomas M J, Fetrow J S, Daniel L W, King S B. Bioconjugate Chem., 2007, 18: 2004.

[55]

Cilibrizzi A, Fedorova M, Collins J, Leatherbarrow R, Woscholski R, Vilar R. Dalton Trans., 2017, 46: 6994.

[56]

Cilibrizzi A, Terenghi M, Fedorova M, Woscholski R, Klug D, Vilar R. Sens. Actuators B Chem., 2017, 248: 437.

[57]

Gao Y, Sun R, Zhao M, Ding J, Wang A, Ye S, Zhang Y, Mao Q, Xie W, Ma G, Shi H. Anal. Chem., 2020, 92: 6977.

[58]

Cheng X, Zhou X, Xu J, Sun R, Xia H, Ding J, Chin Y E, Chai Z, Shi H, Gao M. Anal. Chem., 2021, 93: 9277.

[59]

Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, Lou X, Gao M, Pu K. ACS Nano, 2018, 12: 1801.

[60]

Lyu Y, Zhen X, Miao Y, Pu K. ACS Nano, 2017, 11: 358.

[61]

Ding J, Mao Q, Zhao M, Gao Y, Wang A, Ye S, Wang X, Xie W, Shi H. Nanoscale, 2020, 12: 22963.

[62]

Micovic K, Satkunarajah T, Carnet A, Hurst M, Viirre R, Olson M F. Current Protocols, 2022, 2: e559.

[63]

Alcock L J, Oliveira B L, Deery M J, Pukala T L, Perkins M V, Bernardes G J L, Chalker J M. ACS Chem Biol., 2019, 14: 594.

[64]

Scinto S L, Ekanayake O, Seneviratne U, Pigga J E, Boyd S J, Taylor M T, Liu J, Ende C W, Rozovsky S, Fox J M. J. Am. Chem. Soc., 2019, 141: 10932.

[65]

McGarry D J, Shchepinova M M, Lilla S, Hartley R C, Olson M F. ACS Chem. Biol., 201, 11: 3300.

[66]

Li M, Wang B, Li M, Li X, Wang L, Li N, Rao L, Wan C, Liu C, Liu C. Sens. Actuators B: Chem., 2022, 354: 131235.

[67]

Ferreira R B, Fu L, Jung Y, Yang J, Carroll K S. Nat. Commun., 2022, 13: 5522.

[68]

Urmey A R, Zondlo N J. Free Radical Bio. Med., 2020, 152: 166.

[69]

Kang Q, Xiao Y, Hu W, Wang Y. J. Mater. Chem. C, 2018, 6: 12529.

[70]

Huang X, Zhang S, Liu Z, Cao W, Li G, Gao W, Tang B. Anal. Chem., 2023, 95: 1967.

AI Summary AI Mindmap
PDF

241

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/