Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification

Yanyue Chen , Jiali Liu , Jiawen Liu , Rong Hu , Yunhui Yang , Xiaobing Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 305 -310.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 305 -310. DOI: 10.1007/s40242-024-3283-6
Article

Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification

Author information +
History +
PDF

Abstract

The insufficient internal resorption of iodide ions (I) leads to thyroid disorders, such as goiter, hypothyroidism, and cretinism in adults. In this paper, a portable point-of-care testing (POCT) platform was developed for the dual-modal analysis of I, seamlessly integrating both colorimetric and photothermal thermometer techniques. The quantification of results was achieved using a standard thermometer or smartphone. G-Quadruplex/Hemin (G4/Hemin) is the DNAzyme with peroxidase-like activity. The catalytic efficacy of G-quadruplex structures can be enhanced with the help of I, manifesting as multicolor transitions from colorless to green and then blue, and accompanied by the increase of temperature, which can be used for the quantitative detection of I. Additionally, digital analysis according to the three-color channels (R/G/B) by a cellphone eliminated the requirement for intricate instruments. This dual-modal method for portable I determination is cost-effectiveness, simplicity, remarkable sensitivity (0.5 nmol/L) and selectivity. Besides, it was applied to determining the concentration of I in spiked serum samples.

Keywords

Dual-modal platform / G-Quadruplex / Iodide ion / Point-of-care testing (POCT) / Aptasensor

Cite this article

Download citation ▾
Yanyue Chen, Jiali Liu, Jiawen Liu, Rong Hu, Yunhui Yang, Xiaobing Zhang. Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification. Chemical Research in Chinese Universities, 2024, 40(2): 305-310 DOI:10.1007/s40242-024-3283-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Laschinsky C, Theurer S, Herold T, Rawitzer J, Weber F, Herrmann K, Weber M. Nucl. Med., 2023, 4(12): 1865.

[2]

Shim S R, Kitahara C M, Cha E S, Kim S J, Bang Y J, Lee W J. JAMA Netw Open, 2021, 4(9): e2125072.

[3]

Wu J, Zhao X, Sun J, Cheng C, Yin C, Bai R. Front Oncol., 2022, 2(12): 932729.

[4]

Opazo M C, Coronado-Arrázola I, Vallejos O P, Moreno-Reyes R, Fardella C, Mosso L, Kalergis A M, Bueno S M, Riedel C A. Crit. Rev. Food Sci. Nutr., 2020, 62(6): 1466.

[5]

Hwang C, Kwak T, Kim C, Kim J H, Park S. Sensor Actuat. B: Chem., 2021, 353: 131144.

[6]

Liang L, Zheng X, Hu J, Zhang Q, Wang S, Huang F. J. Endocrinol., 2019, 42: 673.

[7]

Wang S, Xie T, Dong X, Hu J, Men L, Cao J. Food Anal. Methods, 2019, 12: 2139.

[8]

Chen P, Yang P, Zhou R, Yang X, Chen J, Hou X. Chem. Commun., 2018, 54(37): 4696.

[9]

Trinta V O, Padilha P C, Petronilho S, Santelli R E, Braz B F, Freire A S, Saunders C, Rocha H F D, Sanz-Medel A, Fernández-Sánchez M L. Food Chem., 2020, 326: 126978.

[10]

Wei M M, Rao H H, Niu Z R, Xue X, Luo M Y, Zhang X Y, Huang H Y, Xue Z H, Lu X Q. Coord. Chem. Rev., 2021, 447: 214149.

[11]

Yi D, Wei Z, Zheng W, Pan Y, Long Y, Zheng H. Sensor Actuat. B: Chem., 2020, 323: 128691.

[12]

Li J, Xun K, Zheng L, Peng X, Qiu L, Tan W. J. Am. Chem. Soc., 2021, 143(12): 4585.

[13]

Masuzawa T, Sato S, Niwa T, Taguchi H, Nakamura H, Oyoshi T. Chem. Commun., 2020, 56(78): 11641.

[14]

Tsukakoshi K, Yamagishi Y, Kanazashi M, Nakama K, Oshikawa D, Savory N, Matsugami A, Hayashi F, Lee J, Saito T, Sode K, Khunathai K, Kuno H, Ikebukuro K. Nucleic Acids Res., 2021, 49(11): 6069.

[15]

Einarson O J, Sen D. Nucleic Acids Res., 2017, 45(17): 9813.

[16]

Su Z, Wen Q, Li S, Guo L, Li M, Xiong Y, Li W, Ren J. Anal. Chim. Acta, 2022, 1221: 340143.

[17]

Chen X, Yang A, Wang G, Wei M, Liu N, Li B, Wu L. Chem. Eng. J., 2022, 446: 137134.

[18]

Fu G, Sanjay S T, Zhou W, Brekken R A, Kirken R A, Li X. Anal. Chem., 2018, 90(9): 5930.

[19]

Wang X, Jin Y, Ai W, Wang S, Zhang Z, Zhou T, Wang F, Zhang G. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 307: 123626.

[20]

Zhang J, Lan T, Lu Y. Trends Analyt. Chem., 2020, 124: 115782.

[21]

Luo M, Xue X, Rao H, Wang H, Liu X, Zhou X, Xue Z, Lu X. Sensor Actuat. B: Chem., 2020, 309: 127707.

[22]

Schrittwieser J H, Velikogne S, Hall M, Kroutil W. Chem. Rev., 2017, 118(1): 270.

[23]

Sun Z, Zhao Q, Haag R, Wu C. Angew. Chem., 2021, 133(15): 8491.

[24]

Yi Y, Hu J, Ding S, Mei J, Wang X, Zhang Y, Ying G. J. Pharm. Anal., 2022, 12(3): 415.

[25]

Zhou H, Yuan D, Gao W, Tian J, Sun H, Yu S, Wang J, Sun L. IUBMB Life, 2020, 72(8): 1659.

[26]

Stratton A, Ericksen M, Harris T V, Symmonds N, Silverstein T P. Protein Sci., 2017, 26(2): 292.

[27]

Yang S, Liao Y, Karthikeyan K G, Pan X. Environ. Pollut., 2021, 286: 117324.

[28]

Lin P, Yang H, Nakata E, Morii T. Molecules, 2022, 27(19): 6309.

[29]

Zhou C, Chuai Y, Lin C, Wang D, Wang Q, Zou H. Anal. Chim. Acta, 2023, 1275: 341590.

[30]

Qiu D, Mo J, Liu Y, Zhang J, Cheng Y, Zhang X. Molecules, 2020, 25(15): 3425.

[31]

Zhang X, Qiu D, Chen J, Zhang Y, Wang J, Chen D, Liu Y, Cheng M, Monchaud D, Mergny J L, Ju H, Zhou J. J. Am. Chem. Soc., 2023, 145(8): 4517.

[32]

Tang J, Liu J, Wang F, Yao Y, Hu R. Food Chem., 2024, 439: 137968.

[33]

Feng T, Yuan Y, Chen X, Zhao S, Cao M, Feng L, Wang N. Cell Rep. Phys. Sci., 2022, 3(11): 101143.

[34]

Babal A S, Mollick S, Kamal W, Elston S, Castrejón-Pita A A, Morris S M, Tan J. Mater. Today, 2022, 58: 91.

[35]

Zhang P, Xiong C, Liu Z, Chen H, Li S. Microchem. J., 2023, 90: 108651.

[36]

Yuan X, Mi X, Liu C, Zhang Z, Wei X, Wang D. Biosens. Bioelectron., 2023, 235: 115365.

[37]

Tatarczak-Michalewska M, Flieger J, Kawka J, Flieger W, Blicharska E. Molecules, 2019, 4(7): 1243.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/