Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification

Yanyue Chen, Jiali Liu, Jiawen Liu, Rong Hu, Yunhui Yang, Xiaobing Zhang

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (2) : 305-310. DOI: 10.1007/s40242-024-3283-6
Article

Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification

Author information +
History +

Abstract

The insufficient internal resorption of iodide ions (I) leads to thyroid disorders, such as goiter, hypothyroidism, and cretinism in adults. In this paper, a portable point-of-care testing (POCT) platform was developed for the dual-modal analysis of I, seamlessly integrating both colorimetric and photothermal thermometer techniques. The quantification of results was achieved using a standard thermometer or smartphone. G-Quadruplex/Hemin (G4/Hemin) is the DNAzyme with peroxidase-like activity. The catalytic efficacy of G-quadruplex structures can be enhanced with the help of I, manifesting as multicolor transitions from colorless to green and then blue, and accompanied by the increase of temperature, which can be used for the quantitative detection of I. Additionally, digital analysis according to the three-color channels (R/G/B) by a cellphone eliminated the requirement for intricate instruments. This dual-modal method for portable I determination is cost-effectiveness, simplicity, remarkable sensitivity (0.5 nmol/L) and selectivity. Besides, it was applied to determining the concentration of I in spiked serum samples.

Keywords

Dual-modal platform / G-Quadruplex / Iodide ion / Point-of-care testing (POCT) / Aptasensor

Cite this article

Download citation ▾
Yanyue Chen, Jiali Liu, Jiawen Liu, Rong Hu, Yunhui Yang, Xiaobing Zhang. Colorimetric and Photothermal Dual-modal Visual Detection of Iodide Ion Based on G-Quadruplex-Hemin Cascade Signal Amplification. Chemical Research in Chinese Universities, 2024, 40(2): 305‒310 https://doi.org/10.1007/s40242-024-3283-6

References

[[1]]
Laschinsky C, Theurer S, Herold T, Rawitzer J, Weber F, Herrmann K, Weber M. . Nucl. Med., 2023, 4(12): 1865,
CrossRef Google scholar
[[2]]
Shim S R, Kitahara C M, Cha E S, Kim S J, Bang Y J, Lee W J. . JAMA Netw Open, 2021, 4(9): e2125072, pmcid: 8449277
CrossRef Pubmed Google scholar
[[3]]
Wu J, Zhao X, Sun J, Cheng C, Yin C, Bai R. . Front Oncol., 2022, 2(12): 932729,
CrossRef Google scholar
[[4]]
Opazo M C, Coronado-Arrázola I, Vallejos O P, Moreno-Reyes R, Fardella C, Mosso L, Kalergis A M, Bueno S M, Riedel C A. . Crit. Rev. Food Sci. Nutr., 2020, 62(6): 1466,
CrossRef Pubmed Google scholar
[[5]]
Hwang C, Kwak T, Kim C, Kim J H, Park S. . Sensor Actuat. B: Chem., 2021, 353: 131144,
CrossRef Google scholar
[[6]]
Liang L, Zheng X, Hu J, Zhang Q, Wang S, Huang F. . J. Endocrinol., 2019, 42: 673
[[7]]
Wang S, Xie T, Dong X, Hu J, Men L, Cao J. . Food Anal. Methods, 2019, 12: 2139,
CrossRef Google scholar
[[8]]
Chen P, Yang P, Zhou R, Yang X, Chen J, Hou X. . Chem. Commun., 2018, 54(37): 4696,
CrossRef Google scholar
[[9]]
Trinta V O, Padilha P C, Petronilho S, Santelli R E, Braz B F, Freire A S, Saunders C, Rocha H F D, Sanz-Medel A, Fernández-Sánchez M L. . Food Chem., 2020, 326: 126978,
CrossRef Pubmed Google scholar
[[10]]
Wei M M, Rao H H, Niu Z R, Xue X, Luo M Y, Zhang X Y, Huang H Y, Xue Z H, Lu X Q. . Coord. Chem. Rev., 2021, 447: 214149,
CrossRef Google scholar
[[11]]
Yi D, Wei Z, Zheng W, Pan Y, Long Y, Zheng H. . Sensor Actuat. B: Chem., 2020, 323: 128691,
CrossRef Google scholar
[[12]]
Li J, Xun K, Zheng L, Peng X, Qiu L, Tan W. . J. Am. Chem. Soc., 2021, 143(12): 4585,
CrossRef Pubmed Google scholar
[[13]]
Masuzawa T, Sato S, Niwa T, Taguchi H, Nakamura H, Oyoshi T. . Chem. Commun., 2020, 56(78): 11641,
CrossRef Google scholar
[[14]]
Tsukakoshi K, Yamagishi Y, Kanazashi M, Nakama K, Oshikawa D, Savory N, Matsugami A, Hayashi F, Lee J, Saito T, Sode K, Khunathai K, Kuno H, Ikebukuro K. . Nucleic Acids Res., 2021, 49(11): 6069, pmcid: 8216272
CrossRef Pubmed Google scholar
[[15]]
Einarson O J, Sen D. . Nucleic Acids Res., 2017, 45(17): 9813, pmcid: 5737693
CrossRef Pubmed Google scholar
[[16]]
Su Z, Wen Q, Li S, Guo L, Li M, Xiong Y, Li W, Ren J. . Anal. Chim. Acta, 2022, 1221: 340143,
CrossRef Pubmed Google scholar
[[17]]
Chen X, Yang A, Wang G, Wei M, Liu N, Li B, Wu L. . Chem. Eng. J., 2022, 446: 137134,
CrossRef Google scholar
[[18]]
Fu G, Sanjay S T, Zhou W, Brekken R A, Kirken R A, Li X. . Anal. Chem., 2018, 90(9): 5930, pmcid: 6177380
CrossRef Pubmed Google scholar
[[19]]
Wang X, Jin Y, Ai W, Wang S, Zhang Z, Zhou T, Wang F, Zhang G. . Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 307: 123626,
CrossRef Pubmed Google scholar
[[20]]
Zhang J, Lan T, Lu Y. . Trends Analyt. Chem., 2020, 124: 115782,
CrossRef Pubmed Google scholar
[[21]]
Luo M, Xue X, Rao H, Wang H, Liu X, Zhou X, Xue Z, Lu X. . Sensor Actuat. B: Chem., 2020, 309: 127707,
CrossRef Google scholar
[[22]]
Schrittwieser J H, Velikogne S, Hall M, Kroutil W. . Chem. Rev., 2017, 118(1): 270,
CrossRef Pubmed Google scholar
[[23]]
Sun Z, Zhao Q, Haag R, Wu C. . Angew. Chem., 2021, 133(15): 8491,
CrossRef Google scholar
[[24]]
Yi Y, Hu J, Ding S, Mei J, Wang X, Zhang Y, Ying G. . J. Pharm. Anal., 2022, 12(3): 415,
CrossRef Pubmed Google scholar
[[25]]
Zhou H, Yuan D, Gao W, Tian J, Sun H, Yu S, Wang J, Sun L. . IUBMB Life, 2020, 72(8): 1659,
CrossRef Pubmed Google scholar
[[26]]
Stratton A, Ericksen M, Harris T V, Symmonds N, Silverstein T P. . Protein Sci., 2017, 26(2): 292, pmcid: 5275735
CrossRef Pubmed Google scholar
[[27]]
Yang S, Liao Y, Karthikeyan K G, Pan X. . Environ. Pollut., 2021, 286: 117324,
CrossRef Pubmed Google scholar
[[28]]
Lin P, Yang H, Nakata E, Morii T. . Molecules, 2022, 27(19): 6309, pmcid: 9572797
CrossRef Pubmed Google scholar
[[29]]
Zhou C, Chuai Y, Lin C, Wang D, Wang Q, Zou H. . Anal. Chim. Acta, 2023, 1275: 341590,
CrossRef Pubmed Google scholar
[[30]]
Qiu D, Mo J, Liu Y, Zhang J, Cheng Y, Zhang X. . Molecules, 2020, 25(15): 3425, pmcid: 7435396
CrossRef Pubmed Google scholar
[[31]]
Zhang X, Qiu D, Chen J, Zhang Y, Wang J, Chen D, Liu Y, Cheng M, Monchaud D, Mergny J L, Ju H, Zhou J. . J. Am. Chem. Soc., 2023, 145(8): 4517,
CrossRef Pubmed Google scholar
[[32]]
Tang J, Liu J, Wang F, Yao Y, Hu R. . Food Chem., 2024, 439: 137968,
CrossRef Pubmed Google scholar
[[33]]
Feng T, Yuan Y, Chen X, Zhao S, Cao M, Feng L, Wang N. . Cell Rep. Phys. Sci., 2022, 3(11): 101143,
CrossRef Google scholar
[[34]]
Babal A S, Mollick S, Kamal W, Elston S, Castrejón-Pita A A, Morris S M, Tan J. . Mater. Today, 2022, 58: 91,
CrossRef Google scholar
[[35]]
Zhang P, Xiong C, Liu Z, Chen H, Li S. . Microchem. J., 2023, 90: 108651,
CrossRef Google scholar
[[36]]
Yuan X, Mi X, Liu C, Zhang Z, Wei X, Wang D. . Biosens. Bioelectron., 2023, 235: 115365,
CrossRef Pubmed Google scholar
[[37]]
Tatarczak-Michalewska M, Flieger J, Kawka J, Flieger W, Blicharska E. . Molecules, 2019, 4(7): 1243,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/