Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications

Ziqi Zhai, Yumiao Lu, Guangyong Liu, Wei-Lu Ding, Bobo Cao, Hongyan He

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 3-19. DOI: 10.1007/s40242-024-3259-6
Review

Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications

Author information +
History +

Abstract

Porous carbon materials (PCMs) play a pivotal role in diverse applications, such as energy storage, adsorption, catalysis, environmental remediation, and microwave adsorption. The selection of carbon precursors, in particular, is crucial for tailoring porous structures with specific functionalities. Biomass, with its rich carbon feedstock, abundant availability, renewability, and versatile structures, has emerged as a promising precursor for porous carbon material synthesis. This review comprehensively summarizes the recent advances in biomass-derived porous carbon materials (BPCMs) encompassing synthetic strategy, morphology, structural composition, and multiple applications. We first review synthetic approaches aiming at regulating porosity, followed by morphological and composition features of BPCMs, with a special emphasis on elucidating the dimensional clarification and heteroatom doping effects. The discussion then extends to the wide-ranging applications of BPCMs, covering energy-related applications and CO2 adsorption to environmental remediation. Finally, the review outlines the existing challenges and prospects in the field. In summary, this review systematically describes BPCMs and provides valuable guidance for researchers to select and synthesize BPCMs that meet specific functional requirements.

Keywords

Biomass / Porous carbon / Pyrolysis / Heteroatom-doping / Supercapacitor / CO2 adsorption

Cite this article

Download citation ▾
Ziqi Zhai, Yumiao Lu, Guangyong Liu, Wei-Lu Ding, Bobo Cao, Hongyan He. Recent Advances in Biomass-derived Porous Carbon Materials: Synthesis, Composition and Applications. Chemical Research in Chinese Universities, 2024, 40(1): 3‒19 https://doi.org/10.1007/s40242-024-3259-6

References

[1]
Baskar C, Baskar S, Dhillon R S. . Biomass Conversion: the Interface of Biotechnology, Chemistry and Materials Science, 2012 Berlin Springer 241,
CrossRef Google scholar
[2]
Bar-On Y M, Phillips R, Milo R. . Proc. Natl. Acad. Sci. USA, 2018, 115(25): 6506,
CrossRef Google scholar
[3]
Liu B, Liu Y, Chen H, Yang M, Li H. . J. Power Sources, 2017, 341: 309,
CrossRef Google scholar
[4]
Liu J, Liu H, Zhao G, Sun Z. . Chin. J. Process Eng., 2020, 20(1): 108
[5]
Rahbar-Shamskar K, Rashidi A, Baniyaghoob S, Khodabakhshi S. . J. Anal. Appl. Pyrolysis, 2022, 164: 105520,
CrossRef Google scholar
[6]
Yakaboylu G A, Yumak T, Jiang C, Zondlo J W, Wang J, Sabolsky E M. . Energy Fuels, 2019, 33(9): 9309,
CrossRef Google scholar
[7]
Liu F, Wang Z, Zhang H, Jin L, Chu X, Gu B, Huang H, Yang W. . Carbon, 2019, 149: 105,
CrossRef Google scholar
[8]
Luo H, Yang Y, Zhao X, Zhang J, Chen Y. . Electrochim. Acta, 2015, 169: 13,
CrossRef Google scholar
[9]
Tchapda A H, Krishnamoorthy V, Yeboah Y D, Pisupati S V. . J. Anal. Appl. Pyrolysis, 2017, 128: 379,
CrossRef Google scholar
[10]
Chaudhari K N, Song M Y, Yu J S. . Small, 2014, 10(13): 2625,
CrossRef Google scholar
[11]
Wang C, Xie N, Zhang Y, Huang Z, Xia K, Wang H, Guo S, Xu B, Zhang Y. . Chem. Mater., 2019, 31(3): 1023,
CrossRef Google scholar
[12]
Li Y, Huang J, Rao G, Wu C, Du X, Sun Y, Wang X, Yang C. . Appl. Surf. Sci., 2020, 530: 147192,
CrossRef Google scholar
[13]
Wang H, Wang H, Liu G, Yan Q. . Sci. Total Environ., 2021, 771: 145424,
CrossRef Google scholar
[14]
Yang H, Yan R, Chen H, Lee D H, Zheng C. . Fuel, 2007, 86(12): 1781,
CrossRef Google scholar
[15]
Brebu M, Vasile C. . Cellul. Chem. Technol., 2010, 44: 353
[16]
Li Z, Cai Z, Zeng Q, Zhang T, France L J, Song C, Zhang Y, He H, Jiang L, Long J, Li X. . Green Chem., 2018, 20(16): 3743,
CrossRef Google scholar
[17]
Li L, Kong J, Zhang H, Liu S, Zeng Q, Zhang Y, Ma H, He H, Long J, Li X. . Appl. Catal., B, 2020, 279: 119343,
CrossRef Google scholar
[18]
Zhang Y, Liu S, Zheng X, Wang X, Xu Y, Tang H, Kang F, Yang Q-H, Luo J. . Adv. Funct. Mater., 2017, 27(3): 1604687,
CrossRef Google scholar
[19]
Wu H, Yuan W, Yuan X, Cheng L. . Energy Stor. Mater., 2022, 50: 514
[20]
Bi Y, Ye L, Mao Y, Wang L, Qu H, Liu J, Zheng L. . Biosens. Bioelectron., 2019, 140: 111271,
CrossRef Google scholar
[21]
Zhang Z, Gao X, Dou M, Ji J, Wang F. . Small, 2017, 13(22): 1604290,
CrossRef Google scholar
[22]
Liu J, Deng Y, Li X, Wang L. . ACS Sustainable Chem. Eng., 2016, 4(1): 177,
CrossRef Google scholar
[23]
Li K, Chen W, Yang H, Chen Y, Xia S, Xia M, Tu X, Chen H. . Bioresour. Technol., 2019, 280: 260,
CrossRef Google scholar
[24]
Zhang X, Ma X, Yu Z, Yi Y, Huang Z, Lu C. . Bioresour. Technol., 2022, 360: 127520,
CrossRef Google scholar
[25]
Gunasekaran S S, Gopalakrishnan A, Subashchandrabose R, Badhulika S. . J. Energy Storage, 2021, 42: 103048,
CrossRef Google scholar
[26]
Zhang S, Zhu S, Zhang H, Liu X, Xiong Y. . J. Anal. Appl. Pyrolysis, 2020, 147: 104806,
CrossRef Google scholar
[27]
He J, Zhang D, Wang Y, Zhang J, Yang B, Shi H, Wang K, Wang Y. . Appl. Surf. Sci., 2020, 515: 146020,
CrossRef Google scholar
[28]
Li L, Wang J, Jia C, Lv Y, Liu Y. . J. Water Process Eng., 2021, 39: 101753,
CrossRef Google scholar
[29]
Liu X, Zhou Y, Zhou W, Li L, Huang S, Chen S. . Nanoscale, 2015, 7(14): 6136,
CrossRef Google scholar
[30]
Zbair M, Ait Ahsaine H, Anfar Z. . J. Cleaner Prod., 2018, 202: 571,
CrossRef Google scholar
[31]
Zhang X, Ma X, Yu Z, Yi Y, Lu C, Lu X. . J. Anal. Appl. Pyrolysis, 2023, 173: 106061,
CrossRef Google scholar
[32]
Bergius F., Die Anwendung hoher drucke bei chemischen Vorgängen und eine nechbildung des Entstehungsprozesses der Steinkohle, Wilhelm Knapp, Halle a. d. Saale, 1913, 167
[33]
Shrestha A, Acharya B, Farooque A A. . Renew. Energ., 2021, 163: 589,
CrossRef Google scholar
[34]
Titirici M M, White R J, Brun N, Budarin V L, Su D S, del Monte F, Clark J H, MacLachlan M J. . Chem. Soc. Rev., 2015, 44(1): 250,
CrossRef Google scholar
[35]
Xie W, Yao X, Li H, Li H, He L. . ChemSusChem, 2022, 15(18): e202201004,
CrossRef Google scholar
[36]
Hirst E A, Taylor A, Mokaya R. . J. Mater. Chem. A, 2018, 6(26): 12393,
CrossRef Google scholar
[37]
Bai C, Shen F, Qi X. . Chin. Chem. Lett., 2017, 28(5): 960,
CrossRef Google scholar
[38]
Li Q, He T, Zhang Y, Wu H, Liu J, Qi Y, Lei Y, Chen H, Sun Z, Peng C, Yi L, Zhang Y. . ACS Sustain. Chem. Eng., 2019, 7(20): 17039,
CrossRef Google scholar
[39]
Wang Z, Zhang X, Liu X, Zhang Y, Zhao W, Li Y, Qin C, Bakenov Z. . J. Colloid Interface Sci., 2020, 569: 22,
CrossRef Google scholar
[40]
Tang D, Luo Y, Lei W, Xiang Q, Ren W, Song W, Chen K, Sun J. . Appl. Surf. Sci., 2018, 462: 862,
CrossRef Google scholar
[41]
Li H, Shi F, An Q, Zhai S, Wang K, Tong Y. . Int. J. Biol. Macromol., 2021, 166: 923,
CrossRef Google scholar
[42]
Ge L, Wu Y, Wang F, Huang Y. . Energy Fuels, 2021, 35(18): 15118,
CrossRef Google scholar
[43]
Jiang X, Guo F, Jia X, Liang S, Peng K, Qian L. . Ionics, 2020, 26(7): 3655,
CrossRef Google scholar
[44]
Ma L, Goldfarb J L, Song J, Chang C, Ma Q. . J. Cleaner Prod., 2022, 366: 132991,
CrossRef Google scholar
[45]
Ma H, Liu Z, Wang X, Zhang C, Jiang R. . J. Renewable Sustainable Energy, 2017, 9(4): 044105,
CrossRef Google scholar
[46]
Hu J, Hong C, Zhao C, Si Y, Xing Y, Ling W, Zhang B, Li Z, Wang Y, Feng L, Yang J. . J. Alloys Compd., 2022, 918: 165452,
CrossRef Google scholar
[47]
Luo L, Luo L, Deng J, Chen T, Du G, Fan M, Zhao W. . Int. J. Hydrogen Energy, 2021, 46(63): 31927,
CrossRef Google scholar
[48]
Chai X, He H, Fan H, Kang X, Song X. . Bioresour. Technol., 2019, 282: 142,
CrossRef Google scholar
[49]
Dai C, Wan J, Yang J, Qu S, Jin T, Ma F, Shao J. . Appl. Surf. Sci., 2018, 444: 105,
CrossRef Google scholar
[50]
Wang Q, Li Y, Yu Z, Li X, Yin S, Ji W, Hu Y, Cai W, Wang X. . Colloids Surf. A: Physicochem. Eng. Asp., 2023, 673: 131787,
CrossRef Google scholar
[51]
Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K. . J. Mater. Chem. A, 2018, 6(3): 1244,
CrossRef Google scholar
[52]
Wang Y, Li Z, Li Y, Wang J, Liu X, Song T, Yang X, Hao J. . ACS Appl. Mater. Interfaces, 2018, 10(12): 10490,
CrossRef Google scholar
[53]
Jiang X-F, Li R, Hu M, Hu Z, Golberg D, Bando Y, Wang X. . Adv. Mater., 2019, 31(25): 1901186,
CrossRef Google scholar
[54]
Johar P, Rylott E L, McElroy C R, Matharu A S, Clark J H. . Green Chem., 2021, 23(2): 808,
CrossRef Google scholar
[55]
Wang L, Peng H, Xie W, Shi S, Yuan M, Zhao D, Wang S, Chen C. . Chem. Eng. Sci., 2022, 256: 117675,
CrossRef Google scholar
[56]
Selvam S M, Paramasivan B. . Chemosphere, 2022, 286: 131631,
CrossRef Google scholar
[57]
Sun L, Gong Y, Li D, Pan C. . Green Chem., 2022, 24(10): 3864,
CrossRef Google scholar
[58]
Wang Y, Zhang M, Shen X, Wang H, Wang H, Xia K, Yin Z, Zhang Y. . Small, 2021, 17(40): 2008079,
CrossRef Google scholar
[59]
Wang J, Zhang X, Li Z, Ma Y, Ma L. . J. Power Sources, 2020, 451: 227794,
CrossRef Google scholar
[60]
Sun J, Wu Z, Ma C, Xu M, Luo S, Li W, Liu S. . J. Mater. Chem. A, 2021, 9(24): 13822,
CrossRef Google scholar
[61]
Liu G, Wang Q, Yan D, Zhang Y, Wang C, Liang S, Jiang L, He H. . Green Chem., 2021, 23(4): 1665,
CrossRef Google scholar
[62]
Liu G., Lu Y., Lu J., Wang Y., Liang S., He H., Jiang L., Nano Res., 2023, https://doi.org/10.1007/s12274-023-6086-z
[63]
Ma W, Liu G, Wang Q, Liu J, Yuan X, Xin J, Wang S, He H. . J. Mol. Liq., 2022, 367: 120407,
CrossRef Google scholar
[64]
Roberts A D, Li X, Zhang H. . Chem. Soc. Rev., 2014, 43(13): 4341,
CrossRef Google scholar
[65]
Perumal S, Atchudan R, Edison T N J I, Lee Y R. . J. Environ. Chem. Eng., 2021, 9(4): 105802,
CrossRef Google scholar
[66]
Wu Y, Gao X, Nguyen T T, Wu J, Guo M, Liu W, Du C. . Polymers, 2022, 14(13): 2591,
CrossRef Google scholar
[67]
Jiang E, Song N, Hong S, Xiao M, Zhu D, Yan Z, Sun J, Chen G, Li C, Dong H. . Electrochim. Acta, 2022, 407: 139895,
CrossRef Google scholar
[68]
Sekhon S S, Park J. . Chem. Eng. J., 2021, 425: 129017,
CrossRef Google scholar
[69]
Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J. . Adv. Funct. Mater., 2016, 26(1): 111,
CrossRef Google scholar
[70]
Zhou X-L, Zhang H, Shao L, F, He P-J. . Waste Biomass Valorization, 2021, 12: 1699,
CrossRef Google scholar
[71]
Kaur P, Verma G, Sekhon S. . Prog. Mater Sci., 2019, 102: 1,
CrossRef Google scholar
[72]
Matsagar B M, Yang R, Dutta S, Ok Y S, Wu K C. . J. Mater. Chem. A, 2021, 9(7): 3703,
CrossRef Google scholar
[73]
Chakraborty R, Vilya K, Pradhan M, Nayak A K. . J. Mater. Chem. A, 2022, 10(13): 6965,
CrossRef Google scholar
[74]
Liu H, Wu S, Tian N, Yan F, You C, Yang Y. . J. Mater. Chem. A, 2020, 8(45): 23699,
CrossRef Google scholar
[75]
Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen C. . J. Mater. Chem. A, 2019, 7(27): 16028,
CrossRef Google scholar
[76]
Zhang X, Han R, Liu Y, Li H, Shi W, Yan X, Zhao X, Li Y, Liu B. . Chem. Eng. J., 2023, 460: 141607,
CrossRef Google scholar
[77]
Malavika J P, Shobana C, Sundarraj S, Ganeshbabu M, Kumar P, Selvan R K. . Biomater. Adv., 2022, 136: 212756,
CrossRef Google scholar
[78]
Wang T, Sun Y, Zhang L, Li K, Yi Y, Song S, Li M, Qiao Z, Dai S. . Adv. Mater., 2019, 31(16): 1807876,
CrossRef Google scholar
[79]
Zhu L, Shen D, Wu C, Gu S. . Ind. Eng. Chem. Res., 2020, 59(51): 22017,
CrossRef Google scholar
[80]
Jing S, Zhao Y, Sun R, Zhong L, Peng X. . ACS Sustain. Chem. Eng., 2019, 7(8): 7833,
CrossRef Google scholar
[81]
Yan Z, Gao Z, Zhang Z, Dai C, Wei W, Shen P K. . Small, 2021, 17(18): 2007915,
CrossRef Google scholar
[82]
Zhang X, Qiu Z, Li Q, Liang L, Yang X, Lu S, Xiang D, Lai F. . Front. Chem., 2022, 10: 828381,
CrossRef Google scholar
[83]
Xu M., Fu S., Wen Y., Li W., Zhuo Q., Zhu H., Zheng Z., Chen Y., Wang A., Yan K., Green Energy Environ., 2023, https://doi.org/10.1016/j.gee.2023.10.005
[84]
Zhang X, Zhang K, Li H, Cao Q, Jin L E, Li P. . J. Power Sources, 2017, 344: 176,
CrossRef Google scholar
[85]
Jiang J, Zhu J, Ai W, Fan Z, Shen X, Zou C, Liu J, Zhang H, Yu T. . Energy Environ. Sci., 2014, 7(8): 2670,
CrossRef Google scholar
[86]
Zhan H, Wu K, Hu Y, Liu J, Li H, Guo X, Xu J, Yang Y, Yu Z, Gao H, Luo X, Chen J, Ni Y, Yu S. . Chem, 2019, 5(7): 1871,
CrossRef Google scholar
[87]
Yang X, Mao L, Peng W, Jin J, Yang S, Li G. . ChemistrySelect, 2020, 5(8): 2602,
CrossRef Google scholar
[88]
Zhang Y, Hui S, Lin X, Ying Z, Li Y, Xie J. . J. Alloys Compd., 2021, 883: 160713,
CrossRef Google scholar
[89]
Ying Z, Zhang Y, Lin X, Hui S, Wang Y, Yang Y, Li Y. . Chem. Commun., 2020, 56(73): 10730,
CrossRef Google scholar
[90]
Wang X, Sun J, Li T, Song Z, Wu D, Zhao B, Xiang K, Ai W, Fu X, Luo J. . Energy Stor. Mater., 2021, 36: 409
[91]
Zhou L, Yang Y, Yang J, Ye P, Ali T, Wang H, Ning J, Zhong Y, Hu Y. . Appl. Surf. Sci., 2022, 604: 154526,
CrossRef Google scholar
[92]
Taer E, Yanti N, Padang E, Apriwandi A, Zulkarnain Z, Haryanti N H, Deraman M, Taslim R. . J. Sci. FoodAgric., 2023, 103(15): 7411,
CrossRef Google scholar
[93]
Shi M, Lu K, Hong X, Qiang H, Liu C, Ding Z, Wang F, Xia M. . Chem. Eng. J., 2023, 471: 144465,
CrossRef Google scholar
[94]
Singh G, Bahadur R, Ruban A M, Davidraj J M, Su D, Vinu A. . Green Chem., 2021, 23(15): 5571,
CrossRef Google scholar
[95]
Rangraz Y, Heravi M M, Elhampour A. . Chem. Rec., 2021, 21(8): 1985,
CrossRef Google scholar
[96]
Ejaz M, Mohamed M G, Chen Y, Zhang K, Kuo S. . J. Energy Storage, 2024, 78: 110166,
CrossRef Google scholar
[97]
Li H, Li Y, Li Y, Shen H, Zhu S, Zhu Y, Lian K. . J. Energy Storage, 2024, 77: 110000,
CrossRef Google scholar
[98]
Wang H, Shao Y, Mei S, Lu Y, Zhang M, Sun J, Matyjaszewski K, Antonietti M, Yuan J. . Chem. Rev., 2020, 120(17): 9363,
CrossRef Google scholar
[99]
Ma C, Gong J, Zhao S, Liu X, Mu X, Wang Y, Chen X, Tang T. . Green Energy Environ., 2022, 7(4): 818,
CrossRef Google scholar
[100]
Chen Z, Zhang M, Wang Y, Yang Z, Hu D, Tang Y, Yan K. . Green Energy Environ., 2021, 6(6): 929,
CrossRef Google scholar
[101]
Zhang J, Xia Z, Dai L. . Sci. Adv., 2015, 1(7): e1500564,
CrossRef Google scholar
[102]
Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. . Energy Environ. Sci., 2019, 12(1): 322,
CrossRef Google scholar
[103]
Wu J, Liu M, Sharma P P, Yadav R M, Ma L, Yang Y, Zou X, Zhou X-D, Vajtai R, Yakobson B I, Lou J, Ajayan P M. . Nano Lett., 2016, 16(1): 466,
CrossRef Google scholar
[104]
Chai G, Guo Z. . Chem. Sci., 2016, 7(2): 1268,
CrossRef Google scholar
[105]
Pang R, Lu T, Shao J, Wang L, Wu X, Qian X, Hu X. . Energy Fuels, 2021, 35(2): 1620,
CrossRef Google scholar
[106]
Yue X, Yang H, An P, Gao Z, Li H, Ye F. . Dalton Trans., 2022, 51(32): 12125,
CrossRef Google scholar
[107]
Guo X., Qiao Y., Yi Z., Pedersen C. M., Wang Y., Tian X., Han P., Green Energy Environ., 2023, https://doi.org/10.1016/j.gee.2023.05.007
[108]
Poornima B, Vijayakumar T. . Inorg. Chem. Commun., 2022, 145: 109953,
CrossRef Google scholar
[109]
Nirosha B, Selvakumar R, Jeyanthi J, Vairam S. . NewJ. Chem., 2020, 44(1): 181,
CrossRef Google scholar
[110]
Lin G, Wang Q, Yang X, Cai Z, Xiong Y, Huang B. . RSC Adv., 2020, 10(30): 17768,
CrossRef Google scholar
[111]
Dai X, Zheng L, Tang B, Peng J, Chen H. . Ionics, 2021, 27(4): 1439,
CrossRef Google scholar
[112]
Guo Y J, Liu Y J, Liu Y R, Zhang C R, Jia K L, Su J B, Wang K. . Catalysts, 2022, 12(7): 739,
CrossRef Google scholar
[113]
Qian W W, Tan Y L, Yu Y C, Zhang L, Wu X K, Xue B. . J. Alloys Compd., 2022, 918: 165741,
CrossRef Google scholar
[114]
Kim T, Song H J, Dar M A, Lee H, Kim D. . Appl. Surf. Sci., 2018, 439: 364,
CrossRef Google scholar
[115]
Kang D, Yu X, Ge M, Xiao F, Xu H. . J. Environ. Sci., 2017, 54: 1,
CrossRef Google scholar
[116]
Feng Y, Long S, Yan G, Jia W, Sun Y, Tang X, Zhang Z, Zeng X, Lin L. . J. Catal., 2021, 397: 148,
CrossRef Google scholar
[117]
Jin L, Zhao X, Qian X, Dong M. . J. Colloid Interface Sci., 2018, 509: 245,
CrossRef Google scholar
[118]
Deng W, Feng Y, Fu J, Guo H, Guo Y, Han B, Jiang Z, Kong L, Li C, Liu H, Nguyen P T T, Ren P, Wang F, Wang S, Wang Y, Wang Y, Wong S S, Yan K, Yan N, Yang X, Zhang Y, Zhang Z, Zeng X, Zhou H. . Green Energy Environ., 2023, 8(1): 10,
CrossRef Google scholar
[119]
Xiao W, Jiang X, Liu X, Zhou W, Garba Z N, Lawan I, Wang L, Yuan Z. . J. Cleaner Prod., 2021, 284: 124773,
CrossRef Google scholar
[120]
Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S. . Adv. Funct. Mater., 2020, 30(17): 1909265,
CrossRef Google scholar
[121]
Zhang W, Yin J, Wang C, Zhao L, Jian W, Lu K, Lin H, Qiu X, Alshareef H N. . Small Methods, 2021, 5(11): 2100896,
CrossRef Google scholar
[122]
Guo X, Zhang X, Wang Y, Tian X, Qiao Y. . Green Energy Environ., 2022, 7(6): 1270,
CrossRef Google scholar
[123]
Vicentini R, Nunes W G, Costa L H, Pascon A, da Silva L M, Baldan M, Zanin H. . IEEE Trans. Nanaotechnol., 2018, 18: 73,
CrossRef Google scholar
[124]
Ji L, Wang B, Yu Y, Wang N, Zhao J. . Electrochim. Acta, 2020, 331: 135348,
CrossRef Google scholar
[125]
Hu W, Wang B, Yu Y, Wang N, Wu X. . J. Alloys Compd., 2021, 884: 161149,
CrossRef Google scholar
[126]
Hsiao C, Lee C, Tai N. . RSC Adv., 2020, 10(12): 6960,
CrossRef Google scholar
[127]
Gao Y, Zheng S, Fu H, Ma J, Xu X, Guan L, Wu H, Wu Z. . Carbon, 2020, 168: 701,
CrossRef Google scholar
[128]
Yang Y, Wang J, Zuo P, Qu S, Shen W. . Chem. Eng. J., 2021, 425: 130609,
CrossRef Google scholar
[129]
Wang Q, Xia T, Jia X, Zhao J, Li Q, Ao C, Deng X, Zhang X, Zhang W, Lu C. . Carbohydr. Polym., 2020, 245: 116554,
CrossRef Google scholar
[130]
Song C, Zhang B, Hao L, Min J, Liu N, Niu R, Gong J, Tang T. . Green Energy Environ., 2022, 7(3): 411,
CrossRef Google scholar
[131]
Zhang S, Pan Q, Wang Y. . Green Energy Environ., 2022, 7(3): 566,
CrossRef Google scholar
[132]
Wang R, Wang P, Yan X, Lang J, Peng C, Xue Q. . ACS Appl. Mater. Inter., 2012, 4(11): 5800,
CrossRef Google scholar
[133]
Li Y, Wang X, Cao M. . J. CO2 Util., 2018, 27: 204,
CrossRef Google scholar
[134]
Kim M-J, Choi S W, Kim H, Mun S, Lee K B. . Chem. Eng. J., 2020, 397: 125404,
CrossRef Google scholar
[135]
Petrovic B, Gorbounov M, Masoudi Soltani S. . Carbon Capture Sci. Technol., 2022, 3: 100045,
CrossRef Google scholar
[136]
Sun F, Liu X, Gao J, Pi X, Wang L, Qu Z, Qin Y. . J. Mater. Chem. A, 2016, 4(47): 18248,
CrossRef Google scholar
[137]
Ma X, Li L, Chen R, Wang C, Li H, Wang S. . Appl. Surf. Sci., 2018, 435: 494,
CrossRef Google scholar
[138]
Luo J, Liu B, Shi R, Guo Y, Feng Q, Liu Z, Li L, Norinaga K. . Microporous Mesoporous Mater., 2021, 327: 111404,
CrossRef Google scholar
[139]
Rehman A, Nazir G, Rhee K Y, Park S-J. . Sci. Total Environ., 2022, 849: 157805,
CrossRef Google scholar
[140]
Singh J, Bhunia H, Basu S. . J. Ind. Eng. Chem., 2018, 60: 321,
CrossRef Google scholar
[141]
Wu D, Yang Y, Liu J, Zheng Y. . Energy Fuels, 2020, 34(5): 6077,
CrossRef Google scholar
[142]
Nazir G, Rehman A, Park S. . J. Environ. Manage., 2021, 299: 113661,
CrossRef Google scholar
[143]
Wang L, Wang T, Hao R, Wang Y. . Chemosphere, 2023, 339: 139635,
CrossRef Google scholar
[144]
Chakraborty R, K V, Pradhan M, Nayak A K. . J. Mater. Chem. A, 2022, 10(13): 6965,
CrossRef Google scholar
[145]
Michaelis E, Nie R, Austin D, Yue Y. . Green Energy Environ., 2023, 8(5): 1308,
CrossRef Google scholar
[146]
Zou H, Zhao J, He F, Zhong Z, Huang J, Zheng Y, Zhang Y, Yang Y, Yu F, Bashir M A, Gao B. . J. Hazard. Mater., 2021, 413: 125252,
CrossRef Google scholar
[147]
Sajjadi B, Shrestha R M, Chen W, Mattern D L, Hammer N, Raman V, Dorris A. . J. Water Process. Eng., 2021, 39: 101677,
CrossRef Google scholar
[148]
Shanmugam S, Karthik K, Veerabagu U, Hari A, Swaminathan K, Al-Kheraif A A, Whangchai K. . Chemosphere, 2021, 277: 130311,
CrossRef Google scholar
[149]
Xue H, Gao X, Seliem M K, Mobarak M, Dong R, Wang X, Fu K, Li Q, Li Z. . Chem. Eng. J., 2023, 451: 138735,
CrossRef Google scholar
[150]
Perumal S, Edison T N J I, Atchudan R, Sundramoorthy A K, Lee Y R. . Catalysts, 2022, 12(9): 937,
CrossRef Google scholar
[151]
Liang Y, Huang G, Zhang Q, Yang Y, Zhou J, Cai J. . J. Mol. Liq., 2021, 330: 115580,
CrossRef Google scholar
[152]
Zhang D, He Q, Hu X, Zhang K, Chen C, Xue Y. . Colloids Surf. A: Physicochem. Eng. Asp., 2021, 615: 126254,
CrossRef Google scholar
[153]
Ge Y, Akpinar I, Li Z, Liu S, Hua J, Li W, Zhao T, Hu X. . Chemosphere, 2021, 282: 131110,
CrossRef Google scholar
[154]
Luo Y, Li Z, Xu H, Xu X, Qiu H, Cao X, Zhao L. . Sci. Total Environ., 2022, 831: 154845,
CrossRef Google scholar
[155]
Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S. . Adv. Funct. Mater., 2020, 30(17): 1909265,
CrossRef Google scholar
[156]
Li S, Ho S-H, Hua T, Zhou Q, Li F, Tang J. . Green Energy Environ., 2021, 6(5): 644,
CrossRef Google scholar
[157]
Zhang F J, Zhang H T. . New Carbon Mater., 2021, 36(1): 82,
CrossRef Google scholar
[158]
Wang J, Zeng S, Chen N, Shang D, Zhang X, Li J. . Chin. J. Process Eng., 2019, 19(1): 14
[159]
Zhao H, Cheng Y, Liu W, Yang L, Zhang B, Wang L P, Ji G, Xu Z J. . Nano-Micro Lett., 2019, 11(1): 24,
CrossRef Google scholar
[160]
Hong S, Song N, Jiang E, Sun J, Chen G, Li C, Liu Y, Dong H. . J. Colloid Interf. Sci., 2022, 608: 1441,
CrossRef Google scholar
[161]
Wang Y, Zhang M, Shen X, Wang H, Wang H, Xia K, Yin Z, Zhang Y. . Small, 2021, 17(40): 2008079,
CrossRef Google scholar
[162]
Nie W, Cheng H, Liu X, Sun Q, Tian F, Yao W, Liang S, Lu X, Zhou J. . J. Power Sources, 2022, 522: 230994,
CrossRef Google scholar
[163]
Ding J, Zhang Y, Huang Y, Wang X, Sun Y, Guo Y, Jia D, Tang X. . J. Alloys Compd., 2021, 851: 156791,
CrossRef Google scholar
[164]
Zhang R, Qiao J, Zhang X, Yang Y, Zheng S, Li B, Liu W, Liu J, Zeng Z. . Mater. Chem. Phys., 2022, 289: 126437,
CrossRef Google scholar
[165]
Yue J, Yu J, Jiang S, Chen Y. . Diamond Relat. Mater., 2022, 126: 109054,
CrossRef Google scholar
[166]
Li Z, He H, Cao H, Sun S, Diao W, Gao D, Lu P, Zhang S, Guo Z, Li M, Liu R, Ren D, Liu C, Zhang Y, Yang Z, Jiang J, Zhang G. . Appl. Catal., B, 2019, 240: 112,
CrossRef Google scholar
[167]
Brandi F, Bäumel M, Molinari V, Shekova I, Lauermann I, Heil T, Antonietti M, Al-Naji M. . Green Chem., 2020, 22(9): 2755,
CrossRef Google scholar
[168]
Feng Y, Long S, Yan G, Chen B, Sperry J, Xu W, Sun Y, Tang X, Zeng X, Lin L. . J. Catal., 2020, 389: 157,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/