Predication of Selective Ring-opening Hydrogenolysis for Furfuryl Alcohol to Produce Pentanediol over Dual-atom Catalysts

Tingting Wang, Jia Wang, Yongjie Xi, Bin Hu, Fuwei Li

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 55-63.

Chemical Research in Chinese Universities All Journals
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 55-63. DOI: 10.1007/s40242-024-3243-1
Article

Predication of Selective Ring-opening Hydrogenolysis for Furfuryl Alcohol to Produce Pentanediol over Dual-atom Catalysts

Author information +
History +

Abstract

Selective activation of C-O bond is of fundamental importance in the precise conversion of oxygenates into value-added compounds in an atom-economic and sustainable manner, and meanwhile, the structurally well-defined dual-atoms catalysts (DACs) have been scarcely investigated in this field. In this study, a series of transition metal DACs anchored on nitrogen-doped graphene (TM2/NC, TM= Pt, Ir, Rh, Pd, Ru, Co, Ni and Cu) was constructed to make a comprehensive investigation of their selectivity in the hydrogenative transformation of furfuryl alcohol (FAL), an important biomass platform molecule, to 1,2-pentanediol (1,2-PeD) via selective cleavage of furanic C5-O bond, by density functional theory (DFT) calculations and microkinetic modeling. We found that Ir2/NC demonstrated a high selectivity for the cleavage of furanic C5-O bond to produce 1,2-PeD, while the production of THFAL or 1,5-pentanediol (1,5-PeD) on other TM2/NC catalysts are more favorable. Furthermore, we found that the selective C-O bond cleavage of FAL furan ring is affected by the orbital overlap between the d-orbitals of the anchored metal atoms and the p-orbitals of the adsorbed C atom in FAL, suggesting that the selectivity of the C-O bond cleavage is inextricably related with the electronic property of the anchored metals.

Keywords

Furfuryl alcohol / Hydrogenation / Dual-atom catalyst / Density functional theory (DFT) calculation

Cite this article

Download citation ▾
Tingting Wang, Jia Wang, Yongjie Xi, Bin Hu, Fuwei Li. Predication of Selective Ring-opening Hydrogenolysis for Furfuryl Alcohol to Produce Pentanediol over Dual-atom Catalysts. Chemical Research in Chinese Universities, 2024, 40(1): 55‒63 https://doi.org/10.1007/s40242-024-3243-1
This is a preview of subscription content, contact us for subscripton.

References

[1]
De S, Dutta S, Saha B. Catal. Sci. Technol., 201, 6(20): 7364.
CrossRef Google scholar
[2]
Delidovich I, Hausoul P J C, Deng L, Pfützenreuter R, Rose M, Palkovits R. Chem. Rev., 201, 116(3): 1540.
CrossRef Google scholar
[3]
Cai C M, Zhang T, Kumar R, Wyman C E. J. Chem. Technol. Biotechnol., 2014, 89(1): 2.
CrossRef Google scholar
[4]
Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S. Chem. Rev., 2018, 118(22): 11023.
CrossRef Google scholar
[5]
Zhao Z, Yang C, Sun P, Gao G, Liu Q, Huang Z, Li F. ACS Catal., 2023, 13(8): 5170.
CrossRef Google scholar
[6]
Zhao Z, Gao G, Xi Y, Wang J, Sun P, Liu Q, Yan W, Cui Y, Jiang Z, Li F. Chem, 2022, 8(4): 1034.
CrossRef Google scholar
[7]
Zhang B, Zhu Y, Ding G, Zheng H, Li Y. Green Chem., 2012, 14(12): 3402.
CrossRef Google scholar
[8]
Wijaya H W, Kojima T, Hara T, Ichikuni N, Shimazu S. ChemCatChem, 2017, 9(14): 2869.
CrossRef Google scholar
[9]
Zhao Z, Bababrik R, Xue W, Li Y, Briggs N M, Nguyen D-T, Nguyen U, Crossley S P, Wang S, Wang B, Resasco D E. Nat. Catal, 2019, 2(5): 431.
CrossRef Google scholar
[10]
Delaney H. Synthesis of the Fungicide Propiconazole a Systemic Foliar Fungicide, 2000, Ireland: Technological University Dublin
[11]
Southby D. T., Szajewski R. P., Szajewski R., Southby D., Aqueous Inkjet Ink Useful for Printing Photo-Image on Both Photo-Glossy Receiver and Plain Paper Comprises Water, 1,2-Pentanediol, Humectant Distinct from 1,2-Pentanediol, and Dispersed Pigment Colorant, US2009169762-A1; WO2009085168-A1; EP2225335-A1; US8356892-B2; EP2225335-B1, 2009
[12]
Liu H, Huang Z, Kang H, Xia C, Chen J. Chinese Journal of Catalysis, 201, 37(5): 700.
CrossRef Google scholar
[13]
Mizugaki T, Yamakawa T, Nagatsu Y, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K. ACS Sustainable Chem. Eng., 2014, 2(10): 2243.
CrossRef Google scholar
[14]
Zhu Y, Zhao W, Zhang J, An Z, Ma X, Zhang Z, Jiang Y, Zheng L, Shu X, Song H, Xiang X, He J. ACS Catal., 2020, 10(15): 8032.
CrossRef Google scholar
[15]
Ma R, Wu X-P, Tong T, Shao Z-J, Wang Y, Liu X, Xia Q, Gong X-Q. ACS Catal., 2017, 7(1): 333.
CrossRef Google scholar
[16]
Jenness G R, Wan W, Chen J G, Vlachos D G. ACS Catal., 201, 6(10): 700.
CrossRef Google scholar
[17]
Dai D, Feng C, Wang M, Du Q, Liu D, Pan Y, Liu Y. Catal. Sci. Technol., 2022, 12(19): 5879.
CrossRef Google scholar
[18]
Ying Y, Luo X, Qiao J, Huang H. Adv. Funct. Mater., 2021, 31(3): 2007423.
CrossRef Google scholar
[19]
Pan Y, Zhang C, Liu Z, Chen C, Li Y. Matter, 2020, 2(1): 78.
CrossRef Google scholar
[20]
Cao X, Zhao L, Wulan B, Tan D, Chen Q, Ma J, Zhang J. Angew. Chem. Int Ed., 2022, 61(6): e202113918.
CrossRef Google scholar
[21]
Li X, Zhong W, Cui P, Li J, Jiang J. J. Phys. Chem. Lett., 201, 7(9): 1750.
CrossRef Google scholar
[22]
Chen Z W, Yan J, Jiang Q. Small Methods., 2019, 3(6): 1800291.
CrossRef Google scholar
[23]
Di Liberto G, Cipriano L A, Pacchioni G. J. Am. Chem. Soc., 2021, 143(48): 20431.
CrossRef Google scholar
[24]
Cui X, Tang C, Zhang Q. Advanced Energy Materials, 2018, 8(22): 1800369.
CrossRef Google scholar
[25]
Ren W, Tan X, Yang W, Jia C, Xu S, Wang K, Smith S C, Zhao C. Angew. Chem. Int. Ed., 2019, 58(21): 6972.
CrossRef Google scholar
[26]
Zhao S, Yi H, Tang X, Gao F, Wang J, Huang Y, Yang Z. Adsorption, 2017, 23(7/8): 1013.
CrossRef Google scholar
[27]
Blöchl P E. Phys. Rev. B, 1994, 50(24): 17953.
CrossRef Google scholar
[28]
Kresse G, Joubert D. Phys. Rev. B, 1999, 59(3): 1758.
CrossRef Google scholar
[29]
Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 199, 77(18): 3865.
CrossRef Google scholar
[30]
Kresse G. Computational Materials Science, 199, 6(1): 15.
CrossRef Google scholar
[31]
Kresse G, Furthmüller J. Phys. Rev. B, 199, 54(16): 11169.
CrossRef Google scholar
[32]
Grimme S, Antony J, Ehrlich S, Krieg H. The Journal of Chemical Physics, 2010, 132(15): 154104.
CrossRef Google scholar
[33]
Henkelman G. The Journal of Chemical Physics, 2000, 113(22): 9901.
CrossRef Google scholar
[34]
Henkelman G, Jónsson H. The Journal of Chemical Physics, 1999, 111(15): 7010.
CrossRef Google scholar
[35]
Heyden A, Bell A T, Keil F J. The Journal of Chemical Physics, 2005, 123(22): 224101.
CrossRef Google scholar
[36]
Ribeiro R F, Marenich A V, Cramer C J, Truhlar D G. J. Phys. Chem. B, 2011, 115(49): 14556.
CrossRef Google scholar
[37]
Ulissi Z W, Medford A J, Bligaard T, Nørskov J K. Nat. Commun., 2017, 8(1): 14621.
CrossRef Google scholar
[38]
Deringer V L, Tchougréeff A L, Dronskowski R. J. Phys. Chem. A, 2011, 115(21): 5461.
CrossRef Google scholar
[39]
Maintz S, Deringer V L, Tchougréeff A L, Dronskowski R. J. Comput. Chem., 201, 37(11): 1030.
CrossRef Google scholar
[40]
Qian X. J. Phys. Chem. B, 2013, 117(39): 11460.
CrossRef Google scholar
[41]
Gilkey M J, Mironenko A V, Yang L, Vlachos D G, Xu B. ChemSusChem, 201, 9(21): 3113.
CrossRef Google scholar
[42]
Trinh Q T, Chethana B K, Mushrif S H. J. Phys. Chem. C, 2015, 119(30): 17137.
CrossRef Google scholar
[43]
Banerjee A, Mushrif S H. ChemCatChem, 2017, 9(14): 2828.
CrossRef Google scholar

50

Accesses

0

Citations

Detail

Sections
Recommended

/