Recent Advances in Microbial Production of Terpenoids from Biomass-derived Feedstocks

Yujin Cao, Mo Xian

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 20-28. DOI: 10.1007/s40242-024-3242-2
Review

Recent Advances in Microbial Production of Terpenoids from Biomass-derived Feedstocks

Author information +
History +

Abstract

Terpenoids are a diverse class of natural products widely used as pharmaceuticals, perfumes, flavors, and biofuels. Traditionally, terpenoids are obtained from natural sources, such as plants, but their production is limited by the insufficiency of resources and low yields of extraction. Microbial production of terpenoids has emerged as a promising alternative due to that it is sustainable and easy to scale up. This review aims to summarize recent advances in microbial production of terpenoids from inexpensive biomass-derived feedstocks. Metabolic pathways and key enzymes involved in terpenoid biosynthesis are introduced. Microorganisms that can utilize low-cost lignocellulosic feedstocks for terpenoid production are highlighted. The challenges and prospects faced by microbial terpenoid production are proposed. We believe that continuous progress in the fields of biomass transformation and synthetic biology will ultimately achieve industrial production of microbial terpenoids.

Keywords

Terpenoid / Microbial production / Biomass-derived feedstock / Metabolic pathway

Cite this article

Download citation ▾
Yujin Cao, Mo Xian. Recent Advances in Microbial Production of Terpenoids from Biomass-derived Feedstocks. Chemical Research in Chinese Universities, 2024, 40(1): 20‒28 https://doi.org/10.1007/s40242-024-3242-2

References

[1]
Jaeger R, Cuny E. . Nat. Prod. Commun., 2016, 11: 1373
[2]
Yuan Y, Cheng S, Bian G, Yan P, Ma Z, Dai W, Chen R, Fu S, Huang H, Chi H, Cai Y, Deng Z, Liu T. . Nat. Catal., 2022, 5: 277,
CrossRef Google scholar
[3]
Oldfield E, Lin F. . Angew. Chem. Int. Ed., 2012, 51: 1124,
CrossRef Google scholar
[4]
Agatonovic-Kustrin S, Morton D W. . The Current and Potential Therapeutic Uses of Parthenolide, 2018 Amsterdam Elsevier, 61
CrossRef Google scholar
[5]
Huang L Y, Sun X, Chen M Y, Yan P C, Wang C J. . Chem. Res. Chinese Universities, 2022, 38(2): 622,
CrossRef Google scholar
[6]
Tholl D. . Adv. Biochem. Eng. Biotechnol., 2015, 148: 63
[7]
Julsing M K, Koulman A, Woerdenbag H J, Quax W J, Kayser O. . Biomol. Eng., 2006, 23: 265,
CrossRef Google scholar
[8]
Bastiaanse E M L, Hold K M, VanderLaarse A. . Cardiovasc. Res., 1997, 33: 272,
CrossRef Google scholar
[9]
Pagels F, Vasconcelos V, Guedes A C. . Biomolecules, 2021, 11: 735,
CrossRef Google scholar
[10]
Mewalal R, Rai D K, Kainer D, Chen F, Külheim C, Peter G F, Tuskan G A. . Trends Biotechnol., 2017, 35: 227,
CrossRef Google scholar
[11]
Xu C, Wang J. . Med. Res. Rev., 2021, 41: 2891,
CrossRef Google scholar
[12]
Quílez del Moral J F, Pérez À, Barrero A F. . Phytochem. Rev., 2020, 19: 559,
CrossRef Google scholar
[13]
Gohil N, Bhattacharjee G, Singh V. . An Introduction to Microbial Cell Factories for Production of Biomolecules, 2021 Amsterdam Academic Press, 19
CrossRef Google scholar
[14]
Shen X, Wang J, Li C, Yuan Q, Yan Y. . Curr. Opin. Biotechnol., 2019, 59: 122,
CrossRef Google scholar
[15]
Chen K, Arnold F H. . Nat. Catal., 2020, 3: 203,
CrossRef Google scholar
[16]
Keasling J, Garcia Martin H, Lee T S, Mukhopadhyay A, Singer S W, Sundstrom E. . Nat. Rev. Microbiol., 2021, 19: 701,
CrossRef Google scholar
[17]
Khalil A M. . J. Genet. Eng. Biotechnol., 2020, 18: 68,
CrossRef Google scholar
[18]
Ding Q, Ye C. . Microb. Cell Fact., 2023, 22: 20,
CrossRef Google scholar
[19]
Cao Y, Zhang H, Liu H, Liu W, Zhang R, Xian M, Liu H. . Appl. Microbiol. Biotechnol., 2018, 102: 1535,
CrossRef Google scholar
[20]
Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. . Biochem. J., 1993, 295: 517,
CrossRef Google scholar
[21]
Proteau P J. . Bioorg. Chem., 2004, 32: 483,
CrossRef Google scholar
[22]
Rekittke I, Jomaa H, Ermler U. . FEBSLett., 2012, 586: 3452,
CrossRef Google scholar
[23]
Huang S, Xue Y, Ma Y, Zhou C. . Front. Bioeng. Biotech., 2022, 10: 1057938,
CrossRef Google scholar
[24]
Tippmann S, Ferreira R, Siewers V, Nielsen J, Chen Y. . J. Ind. Microbiol. Biotechnol., 2017, 44: 911,
CrossRef Google scholar
[25]
Cao Y, Zhang R, Liu W, Zhao G, Niu W, Guo J, Xian M, Liu H. . Sci. Rep., 2019, 9: 95,
CrossRef Google scholar
[26]
Friesen J A, Rodwell V W. . Genome Biol., 2004, 5: 248,
CrossRef Google scholar
[27]
Chen C L, Mermoud J C, Paul L N, Steussy C N, Stauffacher C V. . J. Biol. Chem., 2017, 292: 21340,
CrossRef Google scholar
[28]
Christianson D W. . Chem. Rev., 2017, 117: 11570,
CrossRef Google scholar
[29]
Zhou J, Wang C, Yang L, Choi E S, Kim S W. . Enzyme Microb. Technol., 2015, 68: 50,
CrossRef Google scholar
[30]
Thulasiram H V, Poulter C D. . J. Am. Chem. Soc., 2006, 128: 15819,
CrossRef Google scholar
[31]
Song Y, Guan Z, van Merkerk R, Pramastya H, Abdallah I I, Setroikromo R, Quax W J. . J. Agric. Food Chem., 2020, 68: 4447,
CrossRef Google scholar
[32]
Tao H, Lauterbach L, Bian G, Chen R, Hou A, Mori T, Cheng S, Hu B, Lu L, Mu X, Li M, Adachi N, Kawasaki M, Moriya T, Senda T, Wang X, Deng Z, Abe I, Dickschat J S, Liu T. . Nature, 2022, 606: 414,
CrossRef Google scholar
[33]
Zerbe P, Bohlmann J. . Trends Biotechnol., 2015, 33: 419,
CrossRef Google scholar
[34]
Wang Z, Zhang L, Dong C, Guo J, Jin L, Wei P, Li F, Zhang X, Wang R. . BMC Plant Biol., 2021, 21: 32,
CrossRef Google scholar
[35]
Alicandri E, Paolacci A R, Osadolor S, Sorgonà A, Badiani M, Ciaffi M. . J. Mol. Evol., 2020, 88: 253,
CrossRef Google scholar
[36]
Köksal M, Zimmer I, Schnitzler J P, Christianson D W. . J. Mol. Biol., 2010, 402: 363,
CrossRef Google scholar
[37]
Kumar R P, Morehouse B R, Matos J O, Malik K, Lin H, Krauss I J, Oprian D D. . Biochemistry, 2017, 56: 1716,
CrossRef Google scholar
[38]
Li R, Chou W K W, Himmelberger J A, Litwin K M, Harris G G, Cane D E, Christianson D W. . Biochemistry, 2014, 53: 1155,
CrossRef Google scholar
[39]
Xing B, Yu J, Chi C, Ma X, Xu Q, Li A, Ge Y, Wang Z, Liu T, Jia H, Yin F, Guo J, Huang L, Yang D, Ma M. . Commun. Chem., 2021, 4: 140,
CrossRef Google scholar
[40]
Pu Y, Cao Y, Xian M. . Bioengineering, 2022, 9: 771,
CrossRef Google scholar
[41]
Wang S, Yang J. . Molecules, 2017, 22: 960,
CrossRef Google scholar
[42]
Bai S, Wang T, Tian Z, Cao K, Li J. . Sci. Rep., 2020, 10: 15845,
CrossRef Google scholar
[43]
Wang S, Li R, Yi X, Fang T, Yang J, Bae H. . BioMed Res. Int., 2016, 2016: 4342892
[44]
Duncan S M, Alkasrawi M, Gurram R, Almomani F, Wiberley-Bradford A E, Singsaas E. . Energies, 2020, 13: 4662,
CrossRef Google scholar
[45]
Rinaldi M A, Tait S, Toogood H S, Scrutton N S. . Front. Bioeng. Biotech., 2022, 10: 892896,
CrossRef Google scholar
[46]
Zebec Z, Poberznik M, Lobnik A. . Life-Basel, 2022, 12: 1423,
CrossRef Google scholar
[47]
Lee S, Sohn J H, Bae J H, Kim S C, Sung B H. . Biotechnol. Bioprocess Eng., 2020, 25: 862,
CrossRef Google scholar
[48]
Wang X, Baidoo E E K, Kakumanu R, Xie S, Mukhopadhyay A, Lee T S. . Biotechnol. Biofuels Bioprod., 2022, 15: 137,
CrossRef Google scholar
[49]
Cao Y, Liu H, Liu W, Guo J, Xian M. . Microb. Cell Fact., 2022, 21: 166,
CrossRef Google scholar
[50]
Desvaux M. . Enzyme Microb. Technol., 2005, 37: 373,
CrossRef Google scholar
[51]
Janke C, Gaida S, Jennewein S. . Microbiologyopen, 2020, 9: e1008,
CrossRef Google scholar
[52]
Abdel-Mawgoud A M, Markham K A, Palmer C M, Liu N, Stephanopoulos G, Alper H S. . Metab. Eng., 2018, 50: 192,
CrossRef Google scholar
[53]
Yao F, Liu S C, Wang D N, Liu Z J, Hua Q, Wei L J. . FEMS Yeast Res., 2020, 20: foaa046,
CrossRef Google scholar
[54]
Wei L J, Zhong Y T, Nie M Y, Liu S C, Hua Q. . J. Agric. Food Chem., 2021, 69: 275,
CrossRef Google scholar
[55]
Chen S, Lu Y, Wang W, Hu Y, Wang J, Tang S, Lin C S K, Yang X. . Front. Microbiol., 2022, 13: 960558,
CrossRef Google scholar
[56]
Wen Z, Zhang S, Odoh C K, Jin M, Zhao Z K. . FEMS Yeast Res., 2020, 20: foaa038,
CrossRef Google scholar
[57]
Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi M B, Liu F, Davis R W, Mirsiaghi M, Sundstrom E, Pray T, Skerker J M, George A, Gladden J M. . Microb. Cell Fact., 2019, 18: 54,
CrossRef Google scholar
[58]
Kirby J, Geiselman G M, Yaegashi J, Kim J, Zhuang X, Tran-Gyamfi M B, Prahl J P, Sundstrom E R, Gao Y, Munoz N, Burnum-Johnson K E, Benites V T, Baidoo E E K, Fuhrmann A, Seibel K, Webb-Robertson B J M, Zucker J, Nicora C D, Tanjore D, Magnuson J K, Skerker J M, Gladden J M. . Biotechnol. Biofuels, 2021, 14: 101,
CrossRef Google scholar
[59]
Geiselman G M, Kirby J, Landera A, Otoupal P, Papa G, Barcelos C, Sundstrom E R, Das L, Magurudeniya H D, Wehrs M, Rodriguez A, Simmons B A, Magnuson J K, Mukhopadhyay A, Lee T S, George A, Gladden J M. . Microb. Cell Fact., 2020, 19: 208,
CrossRef Google scholar
[60]
Bertacchi S, Cantu C, Porro D, Branduardi P. . FermentationBasel, 2021, 7: 208,
CrossRef Google scholar
[61]
Dias C, Nobre B, Santos J A L, Reis A, da Silva T L. . App. Biochem. Biotechnol., 2022, 194: 5556,
CrossRef Google scholar
[62]
Chang M C Y, Keasling J D. . Nat. Chem. Biol., 2006, 2: 674,
CrossRef Google scholar
[63]
Palmqvist E, Hahn-Hägerdal B. . Bioresour. Technol., 2000, 74: 17,
CrossRef Google scholar
[64]
Ramamurthy P C, Singh S, Kapoor D, Parihar P, Samuel J, Prasad R, Kumar A, Singh J. . Microb. Cell Fact., 2021, 20: 55,
CrossRef Google scholar
[65]
Dessie W, Luo X, Wang M, Feng L, Liao Y, Wang Z, Yong Z, Qin Z. . Appl. Microbiol. Biotechnol., 2020, 104: 4757,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/