Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals

Xiaoyang Han, Huicong Xia, Weifeng Tu, Yifan Wei, Dongping Xue, Minhan Li, Wenfu Yan, Jia-Nan Zhang, Yi-Fan Han

Chemical Research in Chinese Universities ›› 2023, Vol. 40 ›› Issue (1) : 78-95. DOI: 10.1007/s40242-023-3269-9
Review

Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals

Author information +
History +

Abstract

Zeolite-confined Fe-site catalysts (ZFCs) have emerged as superior materials for sustainably producing high-value chemicals through CO2 hydrogenation, owing to their adaptable framework, customizable composition, and thermal robustness. They excel in activating, adsorbing, and converting CO2 with remarkable efficiency and consistency in performance. This has sparked a surge in research interest in recent years. The review delves into the latest advancements in CO2 catalytic hydrogenation to olefins, alcohols, aromatics, and other liquid hydrocarbons, examining the synthesis, modification tactics, and the correlation between structure and performance across various ZFCs. Additionally, it underscores the pivotal factors affecting performance and sheds light on the mechanisms behind selectivity control in the CO2 hydrogenation process facilitated by ZFCs. To conclude, it presents pressing challenges and strategic recommendations to inspire the development of high-performance, durable ZFCs for CO2 hydrogenation applications.

Keywords

Zeolite-confined Fe-site catalyst / CO2 hydrogenation / Modification strategy / High-value chemical

Cite this article

Download citation ▾
Xiaoyang Han, Huicong Xia, Weifeng Tu, Yifan Wei, Dongping Xue, Minhan Li, Wenfu Yan, Jia-Nan Zhang, Yi-Fan Han. Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals. Chemical Research in Chinese Universities, 2023, 40(1): 78‒95 https://doi.org/10.1007/s40242-023-3269-9

References

[1]
Goldthau A. . Nature, 2017, 546: 203,
CrossRef Google scholar
[2]
Porosoff M D, Yan B, Chen J G. . Energy Environ. Sci., 2016, 9: 62,
CrossRef Google scholar
[3]
Sullivan I, Goryachev A, Digdaya I A, Li X, Atwater H A, Vermaas D A, Xiang C. . Nat. Cata., 2021, 4: 952,
CrossRef Google scholar
[4]
Wang X, Zhao Z, Zahra K, Li J, Zhang Z. . Chem. Res. Chinese Universities, 2023, 39(4): 580,
CrossRef Google scholar
[5]
Zhao B, Sun M, Chen F, Shi Y, Yu Y, Li X, Zhang B. . Angew. Chem. Int. Ed., 2021, 60: 4496,
CrossRef Google scholar
[6]
Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y. . Chem. Soc. Rev., 2019, 48: 3193,
CrossRef Google scholar
[7]
Ma Y, Wang J, Yu J, Zhou J, Zhou X, Li H, He Z, Long H, Wang Y, Lu P, Yin J, Sun H, Zhang Z, Fan Z. . Matter, 2021, 4: 888,
CrossRef Google scholar
[8]
Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. . RSC Adv., 2018, 8: 7651,
CrossRef Google scholar
[9]
Yao R, Wei J, Ge Q, Xu J, Han Y, Xu H, Sun J. . Catal. Today, 2021, 371: 134,
CrossRef Google scholar
[10]
Yao B, Xiao T, Makgae O A, Jie X, Gonzalez-Cortes S, Guan S, Kirkland A I, Dilworth J R, Al-Megren H A, Alshihri S M, Dobson P J, Owen G P, Thomas J M, Edwards P P. . Nat. Commun., 2020, 11: 6395,
CrossRef Google scholar
[11]
Chen G, Gao R, Zhao Y, Li Z, Waterhouse G I N, Shi R, Zhao J, Zhang M, Shang L, Sheng G, Zhang X, Wen X, Wu L Z, Tung C H, Zhang T. . Adv. Mater., 2018, 30: 1704663,
CrossRef Google scholar
[12]
Ye R P, Ding J, Gong W, Argyle M D, Zhong Q, Wang Y, Russell C K, Xu Z, Russell A G, Li Q, Fan M, Yao Y G. . Nat. Commun., 2019, 10: 5698,
CrossRef Google scholar
[13]
Zhang Z, Chen B, Jia L, Liu W, Gao X, Gao J, Meng B, Tan Y, He Y, Tu W, Han Y-F. . Appl. Catal., B, 2023, 327: 122449,
CrossRef Google scholar
[14]
Shin H H, Lu L, Yang Z, Kiely C J, McIntosh S. . ACS Catal., 2016, 6: 2811,
CrossRef Google scholar
[15]
Li W, Nie X, Jiang X, Zhang A, Ding F, Liu M, Liu Z, Guo X, Song C. . Appl. Catal., B, 2018, 220: 397,
CrossRef Google scholar
[16]
Wang H, Xu K, Yao X, Ye D, Pei Y, Hu H, Qiao M, Li Z H, Zhang X, Zong B. . ACS Catal., 2018, 8: 1207,
CrossRef Google scholar
[17]
Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas C G. . ACS Catal., 2012, 2: 770,
CrossRef Google scholar
[18]
Zhang T, Zheng P, Gu F, Xu W, Chen W, Zhu T, Han Y-F, Xu G, Zhong Z, Su F. . Appl. Catal., B, 2023, 323: 122190,
CrossRef Google scholar
[19]
Liu W, Cheng S, Malhi H S, Gao X, Zhang Z, Tu W. . Catalysts, 2022, 12: 1432,
CrossRef Google scholar
[20]
Fedorov A, Lund H, Kondratenko V A, Kondratenko E V, Linke D. . Appl. Catal., B, 2023, 328: 122505,
CrossRef Google scholar
[21]
Chai Y, Dai W, Wu G, Guan N, Li L. . Acc. Chem. Res., 2021, 54: 2894,
CrossRef Google scholar
[22]
Zhang J, Tang X, Yi H, Yu Q, Zhang Y, Wei J, Yuan Y. . Appl. Catal., A, 2022, 630: 118467,
CrossRef Google scholar
[23]
Cheng D, Meng X. . Chem. Res. Chinese Universities, 2022, 38(3): 716,
CrossRef Google scholar
[24]
Chen H, Wang B, Zhang B, Chen J, Gui J, Shi X, Yan W, Li J, Li L. . Chem. Sci., 2023, 14: 7068,
CrossRef Google scholar
[25]
Ramirez A, Gong X, Caglayan M, Nastase S F, Abou-Hamad E, Gevers L, Cavallo L, Dutta Chowdhury A, Gascon J. . Nat. Commun., 2021, 12: 5914,
CrossRef Google scholar
[26]
Ramirez A, Dutta Chowdhury A, Dokania A, Cnudde P, Caglayan M, Yarulina I, Abou-Hamad E, Gevers L, Ould-Chikh S, De Wispelaere K, van Speybroeck V, Gascon J. . ACS Catal., 2019, 9: 6320,
CrossRef Google scholar
[27]
Dong C, Mu R, Li R, Wang J, Song T, Qu Z, Fu Q, Bao X. . J. Am. Chem. Soc., 2023, 145: 17056,
CrossRef Google scholar
[28]
Wang Y, Wang G, van der Wal L I, Cheng K, Zhang Q, de Jong K P, Wang Y. . Angew. Chem. Int. Ed. Engl., 2021, 60: 1773
[29]
Zhang Q, Gao S, Yu J. . Chem. Rev., 2023, 123: 6039,
CrossRef Google scholar
[30]
Choi P H, Jun K-W, Lee S-J, Choi M-J, Lee K-W. . Catal. Lett., 1996, 40: 115,
CrossRef Google scholar
[31]
Li S, Fan L, Song L, Cheng D, Chen F. . Chin. J. Chem. Eng., 2021, 33: 132,
CrossRef Google scholar
[32]
Xia Y, Zhan W, Guo Y, Guo Y, Lu G. . Chin. J. Catal., 2016, 37: 2069,
CrossRef Google scholar
[33]
Liu R, Ma Z, Sears J D, Juneau M, Neidig M L, Porosoff M D. . J. CO2 Util., 2020, 41: 101290,
CrossRef Google scholar
[34]
Xu G., Zhang X., Dong Z., Liang W., Xiao T., Chen H., Ma Y., Pan Y., Fu Y., Angew. Chem. Int. Ed. Engl., 2023, e202305915
[35]
Snyder B E R, Bols M L, Rhoda H M, Plessers D, Schoonheydt R A, Sels B F, Solomon E I. . Science, 2021, 373: 327,
CrossRef Google scholar
[36]
Rojas-Buzo S, Concepción P, Corma A, Moliner M, Boronat M. . ACS Catal., 2021, 11: 8049,
CrossRef Google scholar
[37]
Melián-Cabrera I, van Eck E R H, Espinosa S, Siles-Quesada S, Falco L, Kentgens A P M, Kapteijn F, Moulijn J A. . Appl. Catal., B, 2017, 203: 218,
CrossRef Google scholar
[38]
Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J. . Angew. Chem. Int. Ed., 2019, 58: 18570,
CrossRef Google scholar
[39]
Fernandez E, Liu L, Boronat M, Arenal R, Concepcion P, Corma A. . ACS Catal., 2019, 9: 11530,
CrossRef Google scholar
[40]
Moliner M, Gabay J, Kliewer C, Serna P, Corma A. . ACS Catal., 2018, 8: 9520,
CrossRef Google scholar
[41]
Amoo C. C., Orege J. I., Ge Q., Sun J., Appl. Catal., B, 2024, 340
[42]
Wang J, Xu J, Li B, Zhang G, Wu N, Mao L. . Mater. Lett., 2014, 124: 54,
CrossRef Google scholar
[43]
Lázár K. . Pure Appl. Chem., 2017, 89: 471,
CrossRef Google scholar
[44]
Kessouri A, Boukoussa B, Bengueddach A, Hamacha R. . Res. Chem. Intermed., 2017, 44: 2475,
CrossRef Google scholar
[45]
Yi H, Feng Y, Yu Q, Tang X, Zhang Y, Zhuang R. . Sep. Purif. Technol., 2020, 251: 117363,
CrossRef Google scholar
[46]
Yue M., Jiang X., Zhang H., Zhang S., Xue T., Li Y., Micropor. Mesopor. Mater., 2020, 294
[47]
Wu G, Hei F, Guan N, Li L. . Catal. Sci. Technol., 2013, 3: 1333,
CrossRef Google scholar
[48]
Sazama P, Moravkova J, Sklenak S, Vondrova A, Tabor E, Sadovska G, Pilar R. . ACS Catal., 2020, 10: 3984,
CrossRef Google scholar
[49]
Rache M L, Garcia A R, Zea H R, Silva A M T, Madeira L M, Ramírez J H. . Appl. Catal., B, 2014, 146: 192,
CrossRef Google scholar
[50]
Zhao G, Chodyko K, Benhelal E, Adesina A, Kennedy E, Stockenhuber M. . J. Catal., 2021, 400: 10,
CrossRef Google scholar
[51]
Hashemi H S, Nezamzadeh-Ejhieh A, Karimi-Shamsabadi M. . Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 58: 286,
CrossRef Google scholar
[52]
Li L, Shen Q, Li J, Hao Z, Xu Z P, Lu G Q M. . Appl. Catal., A, 2008, 344: 131,
CrossRef Google scholar
[53]
Nezamzadeh-Ejhieh A, Shahriari E. . J. Ind. Eng. Chem., 2014, 20: 2719,
CrossRef Google scholar
[54]
Jíša K, Nováková J, Schwarze M, Vondrová A, Sklenák S, Sobalik Z. . Journal of Catalysis, 2009, 262: 27,
CrossRef Google scholar
[55]
Naraki Y, Ariga K, Oka H, Kurashige H, Sano T. . J Nanosci. Nanotechnol., 2018, 18: 11,
CrossRef Google scholar
[56]
Zhao G, Benhelal E, Adesina A, Kennedy E, Stockenhuber M. . J. Phys. Chem. C, 2019, 123: 27436,
CrossRef Google scholar
[57]
Zhang W, Wang B, Yang J, Rui P, Fan N, Liao W, Shu X. . Catal. Commun., 2018, 110: 97,
CrossRef Google scholar
[58]
Jamalluddin N A, Abdullah A Z. . Ultrason. Sonochem., 2014, 21: 743,
CrossRef Google scholar
[59]
Diallo M M, Laforge S, Pouilloux Y, Mijoin J. . Catal. Commun., 2019, 126: 21,
CrossRef Google scholar
[60]
Bandala E R, Sadek R, Gurgul J, Łątka K, Zimowska M, Valentin L, Rodriguez-Narvaez O M, Dzwigaj S. . Chem. Eng. J., 2021, 409: 127379,
CrossRef Google scholar
[61]
Ramakrishna C, Krishna R, Gopi T, Swetha G, Saini B, Chandra Shekar S, Srivastava A. . Chin. J. Catal., 2016, 37: 240,
CrossRef Google scholar
[62]
Wu Q, Xu C, Zhu L, Meng X, Xiao F-S. . Catal. Today, 2022, 390/391: 2,
CrossRef Google scholar
[63]
Lin W C, Wu S, Li G, Ho P L, Ye Y, Zhao P, Day S, Tang C, Chen W, Zheng A, Lo B T W, Edman Tsang S C. . Chem. Sci., 2020, 12: 210,
CrossRef Google scholar
[64]
Simancas R, Chokkalingam A, Elangovan S P, Liu Z, Sano T, Iyoki K, Wakihara T, Okubo T. . Chem. Sci., 2021, 12: 7677,
CrossRef Google scholar
[65]
Zhang T, Qiu Y, Liu G, Chen J, Peng Y, Liu B, Li J. . J. Catal., 2020, 392: 322,
CrossRef Google scholar
[66]
Ali M, Dilek F B, Ipek B. . Sustain. Chem. Pharm., 2023, 31: 100928,
CrossRef Google scholar
[67]
Liu L, Wang N, Zhu C, Liu X, Zhu Y, Guo P, Alfilfil L, Dong X, Zhang D, Han Y. . Angew. Chem. Int. Ed., 2020, 59: 819,
CrossRef Google scholar
[68]
Ting K W, Kamakura H, Poly S S, Takao M, Siddiki S M A H, Maeno Z, Matsushita K, Shimizu K-I, Toyao T. . ACS Catal., 2021, 11: 5829,
CrossRef Google scholar
[69]
Fang Y, Su X, Bai X, Wu W, Wang G, Xiao L, Yu A. . J. Energy Chem., 2017, 26: 768,
CrossRef Google scholar
[70]
Long R Q, Yang R T. . Catal. Lett., 2001, 74: 201,
CrossRef Google scholar
[71]
Wang N, Sun Q, Zhang T, Mayoral A, Li L, Zhou X, Xu J, Zhang P, Yu J. . J. Am. Chem. Soc., 2021, 143: 6905,
CrossRef Google scholar
[72]
Chow Y K, Dummer N F, Carter J H, Williams C, Shaw G, Willock D J, Taylor S H, Yacob S, Meyer R J, Bhasin M M, Hutchings G J. . Catal. Sci. Technol., 2018, 8: 154,
CrossRef Google scholar
[73]
Orege J I, Kifle G A, Yu Y, Wei J, Ge Q, Sun J. . Matter, 2023, 6: 1404,
CrossRef Google scholar
[74]
Zhang W, Wang B, Rui P, Fan N, Liao W. . Catal. Lett., 2021, 151: 2716,
CrossRef Google scholar
[75]
Yue M, Jiang X, Zhang H, Zhang S, Xue T, Li Y. . Micropor. Mesopor. Mater., 2020, 294: 109891,
CrossRef Google scholar
[76]
Iwasaki M, Yamazaki K, Banno K, Shinjoh H. . J. Catal., 2008, 260: 205,
CrossRef Google scholar
[77]
Miyake K, Hirota Y, Ono K, Uchida Y, Miyamoto M, Nishiyama N. . New J. Chem., 2017, 41: 2235,
CrossRef Google scholar
[78]
Niu K., Li G., Liu J., Wei Y., J. Solid State Chem., 2020, 287
[79]
Bhagiyalakshmi M, Anuradha R, Palanichamy M, Jang H T. . J. Non-Cyst. Solids, 2010, 356: 1204,
CrossRef Google scholar
[80]
Zhou H, Zhu W, Shi L, Liu H, Liu S, Xu S, Ni Y, Liu Y, Li L, Liu Z. . Catal. Sci. Technol., 2015, 5: 1961,
CrossRef Google scholar
[81]
Han Z, Zhang F, Zhao X. . Micropor. Mesopor. Mater., 2019, 290: 109679,
CrossRef Google scholar
[82]
Azim M M, Stark A. . Micropor. Mesopor. Mater., 2018, 272: 251,
CrossRef Google scholar
[83]
Zhao X, Duan W, Wang Q, Ji D, Zhao Y, Li G. . Micropor. Mesopor. Mater., 2019, 275: 253,
CrossRef Google scholar
[84]
Zeng J, Chen S, Fan Z, Wang C, Chang H, Li J. . Ind. Eng. Chem. Res., 2020, 59: 19500,
CrossRef Google scholar
[85]
Ma W, Wang K, Pan S, Wang H. . Langmuir, 2020, 36: 6924,
CrossRef Google scholar
[86]
Devos J, Bols M L, Plessers D, Goethem C V, Seo J W, Hwang S-J, Sels B F, Dusselier M. . Chem. Mater., 2019, 32: 273,
CrossRef Google scholar
[87]
Fang Z, Murayama H, Zhao Q, Liu B, Jiang F, Xu Y, Tokunaga M, Liu X. . Catal. Sci. Technol., 2019, 9: 6946,
CrossRef Google scholar
[88]
Long R Q, Yang R T. . J. Catal., 2002, 207: 274,
CrossRef Google scholar
[89]
Zhao G, Yan P, Procter K, Adesina A, Jin Y, Kennedy E, Stockenhuber M. . J. Catal., 2023, 417: 140,
CrossRef Google scholar
[90]
Zhao G, Adesina A, Kennedy E, Stockenhuber M. . ACS Catal., 2019, 10: 1406,
CrossRef Google scholar
[91]
Kurbanova A, Zákutná D, Gołąbek K, Mazur M, Přech J. . Catal. Today, 2022, 390/391: 306,
CrossRef Google scholar
[92]
Mlekodaj K, Lemishka M, Kornas A, Wierzbicki D K, Olszowka J E, Jirglová H, Dedecek J, Tabor E. . ACS Catalysis, 2023, 13: 3345,
CrossRef Google scholar
[93]
Sádovská G, Tabor E, Sazama P, Lhotka M, Bernauer M, Sobalik Z. . Catal. Commun., 2017, 89: 133,
CrossRef Google scholar
[94]
Bols M L, Hallaert S D, Snyder B E R, Devos J, Plessers D, Rhoda H M, Dusselier M, Schoonheydt R A, Pierloot K, Solomon E I, Sels B F. . J. Am. Chem. Soc., 2018, 140: 12021,
CrossRef Google scholar
[95]
Wang S, Wu T, Lin J, Tian J, Ji Y, Pei Y, Yan S, Qiao M, Xu H, Zong B. . ACS Sustainable Chem. Eng., 2019, 7: 17825,
CrossRef Google scholar
[96]
Xiang X, Guo T, Yin Y, Gao Z, Wang Y, Wang R, An M, Guo Q, Hu X. . Ind. Eng. Chem. Res., 2023, 62: 5420,
CrossRef Google scholar
[97]
Cheng Q, Li G, Yao X, Zheng L, Wang J, Emwas A H, Castano P, Ruiz-Martinez J, Han Y. . J. Am. Chem. Soc., 2023, 145: 5888,
CrossRef Google scholar
[98]
Bols M L, Devos J, Rhoda H M, Plessers D, Solomon E I, Schoonheydt R A, Sels B F, Dusselier M. . J. Am. Chem. Soc., 2021, 143: 16243,
CrossRef Google scholar
[99]
Turrina A, Iulian Dugulan A, Collier J E, Walton R I, Casci J L, Wright P A. . Catal. Sci. Technol., 2017, 7: 4366,
CrossRef Google scholar
[100]
Hammond C, Dimitratos N, Lopez-Sanchez J A, Jenkins R L, Whiting G, Kondrat S A, Rahim M H A, Forde M M, Thetford A, Hagen H, Stangland E E, Moulijn J M, Taylor S H, Willock D J, Hutchings G J. . ACS Catal., 2013, 3: 1835,
CrossRef Google scholar
[101]
Li Y, Zeng L, Pang G, Wei X, Wang M, Cheng K, Kang J, Serra J M, Zhang Q, Wang Y. . Appl. Catal., B, 2023, 324: 122299,
CrossRef Google scholar
[102]
Wen C, Jin K, Lu L, Jiang Q, Wu J, Zhuang X, Zhang X, Chen L, Wang C, Ma L. . Fuel, 2023, 331: 125855,
CrossRef Google scholar
[103]
Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S S, An H, Yan N, Xie J, Yu C, Zhang P, Du Y, Xi S, Zheng L, Cao X, Wu Y, Wang Y, Wang C, Wen H, Chen L, Xing H, Wang J. . Science, 2021, 373: 315,
CrossRef Google scholar
[104]
Wang X, Yang G, Zhang J, Chen S, Wu Y, Zhang Q, Wang J, Han Y, Tan Y. . Chem. Commun., 2016, 52: 7352,
CrossRef Google scholar
[105]
Motuzas J, Drobek M, Martens D L, Vallicari C, Julbe A, Diniz da Costa J C. . Environ. Sci. Pollut. Res. Int., 2018, 25(4): 3628,
CrossRef Google scholar
[106]
Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. . Nat. Commun., 2017, 8: 15174,
CrossRef Google scholar
[107]
Sazama P, Wichterlová B, Tábor E, Št’astný P, Sathu N K, Sobalík Z, Dědeček J, Sklenák Š, Klein P, Vondrová A. . J. Catal., 2014, 312: 123,
CrossRef Google scholar
[108]
Wang Q, Hu K, Gao R, Zhang L, Wang L, Zhang C. . Atmosphere, 2022, 13: 1238,
CrossRef Google scholar
[109]
Cnudde P, Redekop E A, Dai W, Porcaro N G, Waroquier M, Bordiga S, Hunger M, Li L, Olsbye U, Van Speybroeck V. . Angew. Chem. Int. Ed. Engl., 2021, 60: 10016,
CrossRef Google scholar
[110]
Liu J, Xue H, Huang X, Wu P-H, Huang S-J, Liu S-B, Shen W. . Chin. J. Catal., 2010, 31: 729,
CrossRef Google scholar
[111]
Martinez A, Peris E. . Appl. Catal., A, 2016, 515: 32,
CrossRef Google scholar
[112]
Goel S, Wu Z, Zones S I, Iglesia E. . J. Am. Chem. Soc., 2012, 134: 17688,
CrossRef Google scholar
[113]
Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N. . Nat. Cata., 2018, 1: 787,
CrossRef Google scholar
[114]
Tu W, Ren P, Li Y, Yang Y, Tian Y, Zhang Z, Zhu M, Chin Y C, Gong J, Han Y F. . J. Am. Chem. Soc., 2023, 145: 8751,
CrossRef Google scholar
[115]
Liu Y, Wang L, Xiao F-S. . Chem. Res. Chinese Universities, 2022, 38(3): 671,
CrossRef Google scholar
[116]
Qu G, Guo K, Dong J, Huang H, Yuan P, Wang Y, Yuan H, Zheng L, Zhang J-N. . Energy Storage Mater., 2023, 55: 490,
CrossRef Google scholar
[117]
Yang G, Zhu J, Yuan P, Hu Y, Qu G, Lu B A, Xue X, Yin H, Cheng W, Cheng J, Xu W, Li J, Hu J, Mu S, Zhang J N. . Nat. Commun., 2021, 12: 1734,
CrossRef Google scholar
[118]
Xue D, Yuan P, Jiang S, Wei Y, Zhou Y, Dong C-L, Yan W, Mu S, Zhang J-N. . Nano Energy, 2023, 105: 108020,
CrossRef Google scholar
[119]
Liu S, Yang Y, Zhong M, Li S, Shi S, Xiao W, Wang S, Chen C. . Dalton Trans., 2023, 52: 15928,
CrossRef Google scholar
[120]
Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. . Nat. Chem., 2017, 9: 1019,
CrossRef Google scholar
[121]
Cui X, Gao P, Li S, Yang C, Liu Z, Wang H, Zhong L, Sun Y. . ACS Catal., 2019, 9: 3866,
CrossRef Google scholar
[122]
Song G, Li M, Yan P, Nawaz M A, Liu D. . ACS Catal., 2020, 10: 11268,
CrossRef Google scholar
[123]
Wei J, Yao R, Ge Q, Wen Z, Ji X, Fang C, Zhang J, Xu H, Sun J. . ACS Catal., 2018, 8: 9958,
CrossRef Google scholar
[124]
Plana-Pallejà J, Abelló S, Berrueco C, Montan é D. . Appl. Catal., A, 2016, 515: 126,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/