Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals
Xiaoyang Han, Huicong Xia, Weifeng Tu, Yifan Wei, Dongping Xue, Minhan Li, Wenfu Yan, Jia-Nan Zhang, Yi-Fan Han
Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals
Zeolite-confined Fe-site catalysts (ZFCs) have emerged as superior materials for sustainably producing high-value chemicals through CO2 hydrogenation, owing to their adaptable framework, customizable composition, and thermal robustness. They excel in activating, adsorbing, and converting CO2 with remarkable efficiency and consistency in performance. This has sparked a surge in research interest in recent years. The review delves into the latest advancements in CO2 catalytic hydrogenation to olefins, alcohols, aromatics, and other liquid hydrocarbons, examining the synthesis, modification tactics, and the correlation between structure and performance across various ZFCs. Additionally, it underscores the pivotal factors affecting performance and sheds light on the mechanisms behind selectivity control in the CO2 hydrogenation process facilitated by ZFCs. To conclude, it presents pressing challenges and strategic recommendations to inspire the development of high-performance, durable ZFCs for CO2 hydrogenation applications.
Zeolite-confined Fe-site catalyst / CO2 hydrogenation / Modification strategy / High-value chemical
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
Xu G., Zhang X., Dong Z., Liang W., Xiao T., Chen H., Ma Y., Pan Y., Fu Y., Angew. Chem. Int. Ed. Engl., 2023, e202305915
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
Amoo C. C., Orege J. I., Ge Q., Sun J., Appl. Catal., B, 2024, 340
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
Yue M., Jiang X., Zhang H., Zhang S., Xue T., Li Y., Micropor. Mesopor. Mater., 2020, 294
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
Niu K., Li G., Liu J., Wei Y., J. Solid State Chem., 2020, 287
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
/
〈 | 〉 |