Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals

Xiaoyang Han , Huicong Xia , Weifeng Tu , Yifan Wei , Dongping Xue , Minhan Li , Wenfu Yan , Jia-Nan Zhang , Yi-Fan Han

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 78 -95.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 78 -95. DOI: 10.1007/s40242-023-3269-9
Review

Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals

Author information +
History +
PDF

Abstract

Zeolite-confined Fe-site catalysts (ZFCs) have emerged as superior materials for sustainably producing high-value chemicals through CO2 hydrogenation, owing to their adaptable framework, customizable composition, and thermal robustness. They excel in activating, adsorbing, and converting CO2 with remarkable efficiency and consistency in performance. This has sparked a surge in research interest in recent years. The review delves into the latest advancements in CO2 catalytic hydrogenation to olefins, alcohols, aromatics, and other liquid hydrocarbons, examining the synthesis, modification tactics, and the correlation between structure and performance across various ZFCs. Additionally, it underscores the pivotal factors affecting performance and sheds light on the mechanisms behind selectivity control in the CO2 hydrogenation process facilitated by ZFCs. To conclude, it presents pressing challenges and strategic recommendations to inspire the development of high-performance, durable ZFCs for CO2 hydrogenation applications.

Keywords

Zeolite-confined Fe-site catalyst / CO2 hydrogenation / Modification strategy / High-value chemical

Cite this article

Download citation ▾
Xiaoyang Han, Huicong Xia, Weifeng Tu, Yifan Wei, Dongping Xue, Minhan Li, Wenfu Yan, Jia-Nan Zhang, Yi-Fan Han. Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals. Chemical Research in Chinese Universities, 2024, 40(1): 78-95 DOI:10.1007/s40242-023-3269-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goldthau A. Nature, 2017, 546: 203.

[2]

Porosoff M D, Yan B, Chen J G. Energy Environ. Sci., 201, 9: 62.

[3]

Sullivan I, Goryachev A, Digdaya I A, Li X, Atwater H A, Vermaas D A, Xiang C. Nat. Cata., 2021, 4: 952.

[4]

Wang X, Zhao Z, Zahra K, Li J, Zhang Z. Chem. Res. Chinese Universities, 2023, 39(4): 580.

[5]

Zhao B, Sun M, Chen F, Shi Y, Yu Y, Li X, Zhang B. Angew. Chem. Int. Ed., 2021, 60: 4496.

[6]

Zhou W, Cheng K, Kang J, Zhou C, Subramanian V, Zhang Q, Wang Y. Chem. Soc. Rev., 2019, 48: 3193.

[7]

Ma Y, Wang J, Yu J, Zhou J, Zhou X, Li H, He Z, Long H, Wang Y, Lu P, Yin J, Sun H, Zhang Z, Fan Z. Matter, 2021, 4: 888.

[8]

Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. RSC Adv., 2018, 8: 7651.

[9]

Yao R, Wei J, Ge Q, Xu J, Han Y, Xu H, Sun J. Catal. Today, 2021, 371: 134.

[10]

Yao B, Xiao T, Makgae O A, Jie X, Gonzalez-Cortes S, Guan S, Kirkland A I, Dilworth J R, Al-Megren H A, Alshihri S M, Dobson P J, Owen G P, Thomas J M, Edwards P P. Nat. Commun., 2020, 11: 6395.

[11]

Chen G, Gao R, Zhao Y, Li Z, Waterhouse G I N, Shi R, Zhao J, Zhang M, Shang L, Sheng G, Zhang X, Wen X, Wu L Z, Tung C H, Zhang T. Adv. Mater., 2018, 30: 1704663.

[12]

Ye R P, Ding J, Gong W, Argyle M D, Zhong Q, Wang Y, Russell C K, Xu Z, Russell A G, Li Q, Fan M, Yao Y G. Nat. Commun., 2019, 10: 5698.

[13]

Zhang Z, Chen B, Jia L, Liu W, Gao X, Gao J, Meng B, Tan Y, He Y, Tu W, Han Y-F. Appl. Catal., B, 2023, 327: 122449.

[14]

Shin H H, Lu L, Yang Z, Kiely C J, McIntosh S. ACS Catal., 201, 6: 2811.

[15]

Li W, Nie X, Jiang X, Zhang A, Ding F, Liu M, Liu Z, Guo X, Song C. Appl. Catal., B, 2018, 220: 397.

[16]

Wang H, Xu K, Yao X, Ye D, Pei Y, Hu H, Qiao M, Li Z H, Zhang X, Zong B. ACS Catal., 2018, 8: 1207.

[17]

Theleritis D, Souentie S, Siokou A, Katsaounis A, Vayenas C G. ACS Catal., 2012, 2: 770.

[18]

Zhang T, Zheng P, Gu F, Xu W, Chen W, Zhu T, Han Y-F, Xu G, Zhong Z, Su F. Appl. Catal., B, 2023, 323: 122190.

[19]

Liu W, Cheng S, Malhi H S, Gao X, Zhang Z, Tu W. Catalysts, 2022, 12: 1432.

[20]

Fedorov A, Lund H, Kondratenko V A, Kondratenko E V, Linke D. Appl. Catal., B, 2023, 328: 122505.

[21]

Chai Y, Dai W, Wu G, Guan N, Li L. Acc. Chem. Res., 2021, 54: 2894.

[22]

Zhang J, Tang X, Yi H, Yu Q, Zhang Y, Wei J, Yuan Y. Appl. Catal., A, 2022, 630: 118467.

[23]

Cheng D, Meng X. Chem. Res. Chinese Universities, 2022, 38(3): 716.

[24]

Chen H, Wang B, Zhang B, Chen J, Gui J, Shi X, Yan W, Li J, Li L. Chem. Sci., 2023, 14: 7068.

[25]

Ramirez A, Gong X, Caglayan M, Nastase S F, Abou-Hamad E, Gevers L, Cavallo L, Dutta Chowdhury A, Gascon J. Nat. Commun., 2021, 12: 5914.

[26]

Ramirez A, Dutta Chowdhury A, Dokania A, Cnudde P, Caglayan M, Yarulina I, Abou-Hamad E, Gevers L, Ould-Chikh S, De Wispelaere K, van Speybroeck V, Gascon J. ACS Catal., 2019, 9: 6320.

[27]

Dong C, Mu R, Li R, Wang J, Song T, Qu Z, Fu Q, Bao X. J. Am. Chem. Soc., 2023, 145: 17056.

[28]

Wang Y, Wang G, van der Wal L I, Cheng K, Zhang Q, de Jong K P, Wang Y. Angew. Chem. Int. Ed. Engl., 2021, 60: 1773.

[29]

Zhang Q, Gao S, Yu J. Chem. Rev., 2023, 123: 6039.

[30]

Choi P H, Jun K-W, Lee S-J, Choi M-J, Lee K-W. Catal. Lett., 199, 40: 115.

[31]

Li S, Fan L, Song L, Cheng D, Chen F. Chin. J. Chem. Eng., 2021, 33: 132.

[32]

Xia Y, Zhan W, Guo Y, Guo Y, Lu G. Chin. J. Catal., 201, 37: 2069.

[33]

Liu R, Ma Z, Sears J D, Juneau M, Neidig M L, Porosoff M D. J. CO2 Util., 2020, 41: 101290.

[34]

Xu G., Zhang X., Dong Z., Liang W., Xiao T., Chen H., Ma Y., Pan Y., Fu Y., Angew. Chem. Int. Ed. Engl., 2023, e202305915

[35]

Snyder B E R, Bols M L, Rhoda H M, Plessers D, Schoonheydt R A, Sels B F, Solomon E I. Science, 2021, 373: 327.

[36]

Rojas-Buzo S, Concepción P, Corma A, Moliner M, Boronat M. ACS Catal., 2021, 11: 8049.

[37]

Melián-Cabrera I, van Eck E R H, Espinosa S, Siles-Quesada S, Falco L, Kentgens A P M, Kapteijn F, Moulijn J A. Appl. Catal., B, 2017, 203: 218.

[38]

Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J. Angew. Chem. Int. Ed., 2019, 58: 18570.

[39]

Fernandez E, Liu L, Boronat M, Arenal R, Concepcion P, Corma A. ACS Catal., 2019, 9: 11530.

[40]

Moliner M, Gabay J, Kliewer C, Serna P, Corma A. ACS Catal., 2018, 8: 9520.

[41]

Amoo C. C., Orege J. I., Ge Q., Sun J., Appl. Catal., B, 2024, 340

[42]

Wang J, Xu J, Li B, Zhang G, Wu N, Mao L. Mater. Lett., 2014, 124: 54.

[43]

Lázár K. Pure Appl. Chem., 2017, 89: 471.

[44]

Kessouri A, Boukoussa B, Bengueddach A, Hamacha R. Res. Chem. Intermed., 2017, 44: 2475.

[45]

Yi H, Feng Y, Yu Q, Tang X, Zhang Y, Zhuang R. Sep. Purif. Technol., 2020, 251: 117363.

[46]

Yue M., Jiang X., Zhang H., Zhang S., Xue T., Li Y., Micropor. Mesopor. Mater., 2020, 294

[47]

Wu G, Hei F, Guan N, Li L. Catal. Sci. Technol., 2013, 3: 1333.

[48]

Sazama P, Moravkova J, Sklenak S, Vondrova A, Tabor E, Sadovska G, Pilar R. ACS Catal., 2020, 10: 3984.

[49]

Rache M L, Garcia A R, Zea H R, Silva A M T, Madeira L M, Ramírez J H. Appl. Catal., B, 2014, 146: 192.

[50]

Zhao G, Chodyko K, Benhelal E, Adesina A, Kennedy E, Stockenhuber M. J. Catal., 2021, 400: 10.

[51]

Hashemi H S, Nezamzadeh-Ejhieh A, Karimi-Shamsabadi M. Mater. Sci. Eng. C Mater. Biol. Appl., 201, 58: 286.

[52]

Li L, Shen Q, Li J, Hao Z, Xu Z P, Lu G Q M. Appl. Catal., A, 2008, 344: 131.

[53]

Nezamzadeh-Ejhieh A, Shahriari E. J. Ind. Eng. Chem., 2014, 20: 2719.

[54]

Jíša K, Nováková J, Schwarze M, Vondrová A, Sklenák S, Sobalik Z. Journal of Catalysis, 2009, 262: 27.

[55]

Naraki Y, Ariga K, Oka H, Kurashige H, Sano T. J Nanosci. Nanotechnol., 2018, 18: 11.

[56]

Zhao G, Benhelal E, Adesina A, Kennedy E, Stockenhuber M. J. Phys. Chem. C, 2019, 123: 27436.

[57]

Zhang W, Wang B, Yang J, Rui P, Fan N, Liao W, Shu X. Catal. Commun., 2018, 110: 97.

[58]

Jamalluddin N A, Abdullah A Z. Ultrason. Sonochem., 2014, 21: 743.

[59]

Diallo M M, Laforge S, Pouilloux Y, Mijoin J. Catal. Commun., 2019, 126: 21.

[60]

Bandala E R, Sadek R, Gurgul J, Łątka K, Zimowska M, Valentin L, Rodriguez-Narvaez O M, Dzwigaj S. Chem. Eng. J., 2021, 409: 127379.

[61]

Ramakrishna C, Krishna R, Gopi T, Swetha G, Saini B, Chandra Shekar S, Srivastava A. Chin. J. Catal., 201, 37: 240.

[62]

Wu Q, Xu C, Zhu L, Meng X, Xiao F-S. Catal. Today, 2022, 390/391: 2.

[63]

Lin W C, Wu S, Li G, Ho P L, Ye Y, Zhao P, Day S, Tang C, Chen W, Zheng A, Lo B T W, Edman Tsang S C. Chem. Sci., 2020, 12: 210.

[64]

Simancas R, Chokkalingam A, Elangovan S P, Liu Z, Sano T, Iyoki K, Wakihara T, Okubo T. Chem. Sci., 2021, 12: 7677.

[65]

Zhang T, Qiu Y, Liu G, Chen J, Peng Y, Liu B, Li J. J. Catal., 2020, 392: 322.

[66]

Ali M, Dilek F B, Ipek B. Sustain. Chem. Pharm., 2023, 31: 100928.

[67]

Liu L, Wang N, Zhu C, Liu X, Zhu Y, Guo P, Alfilfil L, Dong X, Zhang D, Han Y. Angew. Chem. Int. Ed., 2020, 59: 819.

[68]

Ting K W, Kamakura H, Poly S S, Takao M, Siddiki S M A H, Maeno Z, Matsushita K, Shimizu K-I, Toyao T. ACS Catal., 2021, 11: 5829.

[69]

Fang Y, Su X, Bai X, Wu W, Wang G, Xiao L, Yu A. J. Energy Chem., 2017, 26: 768.

[70]

Long R Q, Yang R T. Catal. Lett., 2001, 74: 201.

[71]

Wang N, Sun Q, Zhang T, Mayoral A, Li L, Zhou X, Xu J, Zhang P, Yu J. J. Am. Chem. Soc., 2021, 143: 6905.

[72]

Chow Y K, Dummer N F, Carter J H, Williams C, Shaw G, Willock D J, Taylor S H, Yacob S, Meyer R J, Bhasin M M, Hutchings G J. Catal. Sci. Technol., 2018, 8: 154.

[73]

Orege J I, Kifle G A, Yu Y, Wei J, Ge Q, Sun J. Matter, 2023, 6: 1404.

[74]

Zhang W, Wang B, Rui P, Fan N, Liao W. Catal. Lett., 2021, 151: 2716.

[75]

Yue M, Jiang X, Zhang H, Zhang S, Xue T, Li Y. Micropor. Mesopor. Mater., 2020, 294: 109891.

[76]

Iwasaki M, Yamazaki K, Banno K, Shinjoh H. J. Catal., 2008, 260: 205.

[77]

Miyake K, Hirota Y, Ono K, Uchida Y, Miyamoto M, Nishiyama N. New J. Chem., 2017, 41: 2235.

[78]

Niu K., Li G., Liu J., Wei Y., J. Solid State Chem., 2020, 287

[79]

Bhagiyalakshmi M, Anuradha R, Palanichamy M, Jang H T. J. Non-Cyst. Solids, 2010, 356: 1204.

[80]

Zhou H, Zhu W, Shi L, Liu H, Liu S, Xu S, Ni Y, Liu Y, Li L, Liu Z. Catal. Sci. Technol., 2015, 5: 1961.

[81]

Han Z, Zhang F, Zhao X. Micropor. Mesopor. Mater., 2019, 290: 109679.

[82]

Azim M M, Stark A. Micropor. Mesopor. Mater., 2018, 272: 251.

[83]

Zhao X, Duan W, Wang Q, Ji D, Zhao Y, Li G. Micropor. Mesopor. Mater., 2019, 275: 253.

[84]

Zeng J, Chen S, Fan Z, Wang C, Chang H, Li J. Ind. Eng. Chem. Res., 2020, 59: 19500.

[85]

Ma W, Wang K, Pan S, Wang H. Langmuir, 2020, 36: 6924.

[86]

Devos J, Bols M L, Plessers D, Goethem C V, Seo J W, Hwang S-J, Sels B F, Dusselier M. Chem. Mater., 2019, 32: 273.

[87]

Fang Z, Murayama H, Zhao Q, Liu B, Jiang F, Xu Y, Tokunaga M, Liu X. Catal. Sci. Technol., 2019, 9: 6946.

[88]

Long R Q, Yang R T. J. Catal., 2002, 207: 274.

[89]

Zhao G, Yan P, Procter K, Adesina A, Jin Y, Kennedy E, Stockenhuber M. J. Catal., 2023, 417: 140.

[90]

Zhao G, Adesina A, Kennedy E, Stockenhuber M. ACS Catal., 2019, 10: 1406.

[91]

Kurbanova A, Zákutná D, Gołąbek K, Mazur M, Přech J. Catal. Today, 2022, 390/391: 306.

[92]

Mlekodaj K, Lemishka M, Kornas A, Wierzbicki D K, Olszowka J E, Jirglová H, Dedecek J, Tabor E. ACS Catalysis, 2023, 13: 3345.

[93]

Sádovská G, Tabor E, Sazama P, Lhotka M, Bernauer M, Sobalik Z. Catal. Commun., 2017, 89: 133.

[94]

Bols M L, Hallaert S D, Snyder B E R, Devos J, Plessers D, Rhoda H M, Dusselier M, Schoonheydt R A, Pierloot K, Solomon E I, Sels B F. J. Am. Chem. Soc., 2018, 140: 12021.

[95]

Wang S, Wu T, Lin J, Tian J, Ji Y, Pei Y, Yan S, Qiao M, Xu H, Zong B. ACS Sustainable Chem. Eng., 2019, 7: 17825.

[96]

Xiang X, Guo T, Yin Y, Gao Z, Wang Y, Wang R, An M, Guo Q, Hu X. Ind. Eng. Chem. Res., 2023, 62: 5420.

[97]

Cheng Q, Li G, Yao X, Zheng L, Wang J, Emwas A H, Castano P, Ruiz-Martinez J, Han Y. J. Am. Chem. Soc., 2023, 145: 5888.

[98]

Bols M L, Devos J, Rhoda H M, Plessers D, Solomon E I, Schoonheydt R A, Sels B F, Dusselier M. J. Am. Chem. Soc., 2021, 143: 16243.

[99]

Turrina A, Iulian Dugulan A, Collier J E, Walton R I, Casci J L, Wright P A. Catal. Sci. Technol., 2017, 7: 4366.

[100]

Hammond C, Dimitratos N, Lopez-Sanchez J A, Jenkins R L, Whiting G, Kondrat S A, Rahim M H A, Forde M M, Thetford A, Hagen H, Stangland E E, Moulijn J M, Taylor S H, Willock D J, Hutchings G J. ACS Catal., 2013, 3: 1835.

[101]

Li Y, Zeng L, Pang G, Wei X, Wang M, Cheng K, Kang J, Serra J M, Zhang Q, Wang Y. Appl. Catal., B, 2023, 324: 122299.

[102]

Wen C, Jin K, Lu L, Jiang Q, Wu J, Zhuang X, Zhang X, Chen L, Wang C, Ma L. Fuel, 2023, 331: 125855.

[103]

Zhou Y, Zhang J, Wang L, Cui X, Liu X, Wong S S, An H, Yan N, Xie J, Yu C, Zhang P, Du Y, Xi S, Zheng L, Cao X, Wu Y, Wang Y, Wang C, Wen H, Chen L, Xing H, Wang J. Science, 2021, 373: 315.

[104]

Wang X, Yang G, Zhang J, Chen S, Wu Y, Zhang Q, Wang J, Han Y, Tan Y. Chem. Commun., 201, 52: 7352.

[105]

Motuzas J, Drobek M, Martens D L, Vallicari C, Julbe A, Diniz da Costa J C. Environ. Sci. Pollut. Res. Int., 2018, 25(4): 3628.

[106]

Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. Nat. Commun., 2017, 8: 15174.

[107]

Sazama P, Wichterlová B, Tábor E, Št’astný P, Sathu N K, Sobalík Z, Dědeček J, Sklenák Š, Klein P, Vondrová A. J. Catal., 2014, 312: 123.

[108]

Wang Q, Hu K, Gao R, Zhang L, Wang L, Zhang C. Atmosphere, 2022, 13: 1238.

[109]

Cnudde P, Redekop E A, Dai W, Porcaro N G, Waroquier M, Bordiga S, Hunger M, Li L, Olsbye U, Van Speybroeck V. Angew. Chem. Int. Ed. Engl., 2021, 60: 10016.

[110]

Liu J, Xue H, Huang X, Wu P-H, Huang S-J, Liu S-B, Shen W. Chin. J. Catal., 2010, 31: 729.

[111]

Martinez A, Peris E. Appl. Catal., A, 201, 515: 32.

[112]

Goel S, Wu Z, Zones S I, Iglesia E. J. Am. Chem. Soc., 2012, 134: 17688.

[113]

Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N. Nat. Cata., 2018, 1: 787.

[114]

Tu W, Ren P, Li Y, Yang Y, Tian Y, Zhang Z, Zhu M, Chin Y C, Gong J, Han Y F. J. Am. Chem. Soc., 2023, 145: 8751.

[115]

Liu Y, Wang L, Xiao F-S. Chem. Res. Chinese Universities, 2022, 38(3): 671.

[116]

Qu G, Guo K, Dong J, Huang H, Yuan P, Wang Y, Yuan H, Zheng L, Zhang J-N. Energy Storage Mater., 2023, 55: 490.

[117]

Yang G, Zhu J, Yuan P, Hu Y, Qu G, Lu B A, Xue X, Yin H, Cheng W, Cheng J, Xu W, Li J, Hu J, Mu S, Zhang J N. Nat. Commun., 2021, 12: 1734.

[118]

Xue D, Yuan P, Jiang S, Wei Y, Zhou Y, Dong C-L, Yan W, Mu S, Zhang J-N. Nano Energy, 2023, 105: 108020.

[119]

Liu S, Yang Y, Zhong M, Li S, Shi S, Xiao W, Wang S, Chen C. Dalton Trans., 2023, 52: 15928.

[120]

Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. Nat. Chem., 2017, 9: 1019.

[121]

Cui X, Gao P, Li S, Yang C, Liu Z, Wang H, Zhong L, Sun Y. ACS Catal., 2019, 9: 3866.

[122]

Song G, Li M, Yan P, Nawaz M A, Liu D. ACS Catal., 2020, 10: 11268.

[123]

Wei J, Yao R, Ge Q, Wen Z, Ji X, Fang C, Zhang J, Xu H, Sun J. ACS Catal., 2018, 8: 9958.

[124]

Plana-Pallejà J, Abelló S, Berrueco C, Montan é D. Appl. Catal., A, 201, 515: 126.

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/