Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product

Wanjia Zhang , Tingyu Guo , Yanhua Liu , Xuewei Zhang , Bo Zou , Chun Zhao , Hui Suo , Hui Wang , Xu Zhao

Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 109 -118.

PDF
Chemical Research in Chinese Universities ›› 2024, Vol. 40 ›› Issue (1) : 109 -118. DOI: 10.1007/s40242-023-3223-x
Article

Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product

Author information +
History +
PDF

Abstract

A composite material comprising a carbon layer and spherical carbon/carbon cloth (C-SC/CC) was fabricated using a hydrothermal-pyrolysis method, employing carbon cloth as the substrate and glucose as the carbon source. The C-SC/CC electrode was evaluated as an electrocatalytic electrode for hydrogen production by electrolysis of Bunsen reaction products. The electrode prepared with 4 g of glucose and annealed at 800 °C showed excellent electrocatalytic activity. It requires only a potential of 185 mV (vs. SCE) to achieve a current density of 10 mA/cm2. Furthermore, the electrode demonstrated good stability with a 6% loss in current density after 1000 cycles of scanning from 0.2 V to 1.2 V. These results indicate the potential of the SC/CC electrode as an efficient and durable electrocatalyst for the electrolysis of H2SO4 and HI.

Keywords

Electrolysis of Bunsen reaction product / Carbon material / Composite material / Hydrogen production

Cite this article

Download citation ▾
Wanjia Zhang, Tingyu Guo, Yanhua Liu, Xuewei Zhang, Bo Zou, Chun Zhao, Hui Suo, Hui Wang, Xu Zhao. Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product. Chemical Research in Chinese Universities, 2024, 40(1): 109-118 DOI:10.1007/s40242-023-3223-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Suman S, Rajak D K, Kumar G, Kumar B, Jibran J A. Pathak P, Srivastava R R, Ilyas S. Anthropogenic Environmental Hazards: Compensation and Mitigation, 2023, Cham: Spring

[2]

Hou H, Lu W, Liu B, Hassanein Z, Mahmood H, Khalid S. Sustainability, 2023, 15: 2048.

[3]

Hassan Q, Abdulateef A M, Hafedh S A, Al-samari A, Abdulateef J, Sameen A Z, Salman H M, Al-Jiboory A K, Wieteska S, Jaszczur M. Int. J. Hydrogen Energ., 2023, 48: 17383.

[4]

Li X, Raorane C J, Xia C, Wu Y, Tran T K N, Khademi T. Fuel, 2023, 334: 126684.

[5]

Klöckner K, Letmathe P. Appl. Energ., 2020, 279: 115779.

[6]

Longden T, Beck F J, Jotzo F, Andrews R, Prasad M. Appl. Energ., 2022, 306: 118145.

[7]

Norman J, Mysels K, Sharp R, Williamson D. Int. J. Hydrogen Energ., 1982, 7: 545.

[8]

Nnabuife S G, Ugbeh-Johnson J, Okeke N E, Ogbonnaya C. Carbon Capture Sci. Technol., 2022, 3: 100042.

[9]

Ozcan H, El-Emam R S, Horri B A. J Clean. Prod., 2022, 382: 135295.

[10]

Kasahara S, Iwatsuki J, Takegami H, Tanaka N, Noguchi H, Kamiji Y, Onuki K, Kubo S. Int. J. Hydrogen Energ., 2017, 42: 13477.

[11]

Wang H, Le Person A, Zhao X, Li J, Nuncio P, Yang L, Moniri A, Chuang K T. Fuel Process. Technol., 2013, 108: 55.

[12]

Zhang K, Li X, Chang L, Bao W, Wang H. Int. J. Hydrogen Energ., 2022, 47: 21923.

[13]

Kim H S, Kim Y H, Ahn B T, Lee J G, Park C S, Bae K K. Int. J. Hydrogen Energ., 2014, 39: 692.

[14]

Yoon H J, No H C, Lee J, Choi J Y, Pyon C U. Int. J. Hydrogen Energ., 2015, 40: 15792.

[15]

Zhang P, Chen S, Wang L, Xu J. Int. J. Hydrogen Energ., 2010, 35: 2883.

[16]

Zhu Q, Zhang Y, Zhou C, Wang Z, Zhou J, Cen K. Int. J. Hydrogen Energ., 2012, 37: 6407.

[17]

Li J, Moniri A, Wang H. Int. J. Hydrogen Energ., 2015, 40: 2912.

[18]

Zhang K, Zhao X, Chen S, Chang L, Wang J, Bao W, Wang H. Int. J. Hydrogen Energ., 2018, 43: 13702.

[19]

Murthy A P, Madhavan J, Murugan K. J. Power Sources, 2018, 398: 9.

[20]

Zhang Z, Wang H, Li Y, Xie M, Li C, Lu H, Peng Y, Shi Z. Chem. Res. Chinese Universities, 2022, 38(3): 750.

[21]

Luan X, Xue Y. Chem. Res. Chinese Universities, 2021, 37(6): 1268.

[22]

Lei C, Li W, Wang G, Zhuang L, Lu J, Xiao L. Chem. Res. Chinese Universities, 2021, 37(2): 293.

[23]

Balaji D, Madhavan J, AlSalhi M S, Aljaafreh M J, Prasad S, Show P L. Int. J. Hydrogen Energ., 2021, 46: 30739.

[24]

Balint L C, Hulka I, Kellenberger A. Materials, 2021, 15: 73.

[25]

Wang X, Ma R-J, Guo T, Zhang X, Wang H, Zhao X. J. Mater. Sci., 2023, 58: 15035.

[26]

Adam D B, Tsai M-C, Awoke Y A, Huang W-H, Yang Y-W, Pao C-W, Su W-N, Hwang B J. ACS Sustainable Chem. Eng., 2021, 9: 8803.

[27]

Peng S-M, Patil S B, Chang C-C, Chang S-T, Chen Y-C, Wu K-C, Su W-N, Hwang B J, Wang D-Y. J. Mater. Chem. A, 2022, 10: 23982.

[28]

Dessie T A, Huang W-H, Adam D B, Awoke Y A, Wang C-H, Chen J-L, Pao C-W, Habtu N G, Tsai M-C, Su W-N. Nano Lett., 2022, 22: 7311.

[29]

Adam D B, Tsai M-C, Awoke Y A, Huang W-H, Lin C-H, Alamirew T, Ayele A A, Yang Y-W, Pao C-W, Su W-N. Appl. Catal. B-Environ., 2022, 316: 121608.

[30]

Hu E, Yao Y, Chen Y, Cui Y, Wang Z, Qian G. Nanoscale Adv., 2021, 3: 604.

[31]

Zeng L, Li X, Fan S, Li J, Mu J, Qin M, Wang L, Gan G, Tadé M, Liu S. Nanoscale, 2019, 11: 4428.

[32]

Cai H, Xiong L, Wang B, Zhu D, Hao H, Yu X, Li C, Yang S. Chem. Eng. J., 2022, 430: 132824.

[33]

Yuwen T, Zou H, Xu S, Wu C, Peng Q, Shu D, Yang X, Wang Y, Yu C, Fan J. Materials Today Chemistry, 2023, 29: 101388.

[34]

Liu Y-N, Zhang J-N, Wang H-T, Kang X-H, Bian S-W. Mater. Chem. Front., 2019, 3: 25.

[35]

Wang K, Xu M, Gu Y, Gu Z, Fan Q H. J. Power Sources, 201, 332: 180.

[36]

Vidano R, Fischbach D, Willis L, Loehr T. Solid State Commun., 1981, 39: 341.

[37]

da Silva Souza D R, de Mesquita J P, Lago R M, Caminhas L D, Pereira F V. Ind. Crop. Prod., 201, 93: 121.

[38]

White R J, Budarin V, Luque R, Clark J H, Macquarrie D J. Chem. Soc. Rev., 2009, 38: 3401.

[39]

Saleh T A. Appl. Surf. Sci., 2011, 257: 7746.

[40]

Charoensook K, Huang C L, Tai H C, Lanjapalli V V K, Chiang L M, Hosseini S, Lin Y T, Li Y Y. J. Taiwan. Inst. Chem. E., 2021, 120: 246.

[41]

Pitchai C, Edison T N J I, Sethuraman M G. Int. J. Hydrogen Energ., 2020, 45: 28800.

[42]

Sun X, Li Y. Angew. Chem. Int. Ed., 2004, 43: 597.

[43]

Sevilla M, Fuertes A B. Chem-Eur. J., 2009, 15: 4195.

[44]

Xu H, Liu Y, Liang H, Gao C, Yang S. Sci. Total Environ., 2021, 759: 143457.

[45]

Qi Y, Zhang M, Qi L, Qi Y. Rsc Advances, 201, 6: 20814.

[46]

Sravan J S, Raunija T S K, Verma A, Mohan S V. Fuel, 2021, 285: 119273.

[47]

Zhang L, Wang Q, Xu F, Wang Z. J. Anal. Appl. Pyrolysis, 2023, 175: 106211.

[48]

Zhang W, Li C, Ji J-Y, Niu Z, Gu H, Abrahams B F, Lang J-P. Chem. Eng. J., 2023, 461: 141937.

[49]

Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. J. Mater. Chem., 2012, 22: 3383.

[50]

Ischia G, Cutillo M, Guella G, Bazzanella N, Cazzanelli M, Orlandi M, Miotello A, Fiori L. Chem. Eng. J., 2022, 449: 137827.

[51]

Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. Adv. Mater., 201, 28: 9532.

[52]

Liu Z, Zhao Z, Wang Y, Dou S, Yan D, Liu D, Xia Z, Wang S. Adv. Mater., 2017, 29: 1606207.

[53]

Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. Energy Environ. Sci., 2019, 12: 322.

[54]

Zhang X, Shen W, Li Z, Wang D, Qi J, Liang C. Carbon, 2020, 167: 548.

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/