Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product

Wanjia Zhang, Tingyu Guo, Yanhua Liu, Xuewei Zhang, Bo Zou, Chun Zhao, Hui Suo, Hui Wang, Xu Zhao

Chemical Research in Chinese Universities ›› 2023, Vol. 40 ›› Issue (1) : 109-118. DOI: 10.1007/s40242-023-3223-x

Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product

Author information +
History +

Abstract

A composite material comprising a carbon layer and spherical carbon/carbon cloth (C-SC/CC) was fabricated using a hydrothermal-pyrolysis method, employing carbon cloth as the substrate and glucose as the carbon source. The C-SC/CC electrode was evaluated as an electrocatalytic electrode for hydrogen production by electrolysis of Bunsen reaction products. The electrode prepared with 4 g of glucose and annealed at 800 °C showed excellent electrocatalytic activity. It requires only a potential of 185 mV (vs. SCE) to achieve a current density of 10 mA/cm2. Furthermore, the electrode demonstrated good stability with a 6% loss in current density after 1000 cycles of scanning from 0.2 V to 1.2 V. These results indicate the potential of the SC/CC electrode as an efficient and durable electrocatalyst for the electrolysis of H2SO4 and HI.

Keywords

Electrolysis of Bunsen reaction product / Carbon material / Composite material / Hydrogen production

Cite this article

Download citation ▾
Wanjia Zhang, Tingyu Guo, Yanhua Liu, Xuewei Zhang, Bo Zou, Chun Zhao, Hui Suo, Hui Wang, Xu Zhao. Electrocatalytic Performance of Carbon Layer and Spherical Carbon/Carbon Cloth Composites Towards Hydrogen Evolution from the Direct Electrolysis of Bunsen Reaction Product. Chemical Research in Chinese Universities, 2023, 40(1): 109‒118 https://doi.org/10.1007/s40242-023-3223-x

References

[1]
Suman S, Rajak D K, Kumar G, Kumar B, Jibran J A. Pathak P, Srivastava R R, Ilyas S. . Anthropogenic Environmental Hazards: Compensation and Mitigation, 2023 Cham Spring
[2]
Hou H, Lu W, Liu B, Hassanein Z, Mahmood H, Khalid S. . Sustainability, 2023, 15: 2048,
CrossRef Google scholar
[3]
Hassan Q, Abdulateef A M, Hafedh S A, Al-samari A, Abdulateef J, Sameen A Z, Salman H M, Al-Jiboory A K, Wieteska S, Jaszczur M. . Int. J. Hydrogen Energ., 2023, 48: 17383,
CrossRef Google scholar
[4]
Li X, Raorane C J, Xia C, Wu Y, Tran T K N, Khademi T. . Fuel, 2023, 334: 126684,
CrossRef Google scholar
[5]
Klöckner K, Letmathe P. . Appl. Energ., 2020, 279: 115779,
CrossRef Google scholar
[6]
Longden T, Beck F J, Jotzo F, Andrews R, Prasad M. . Appl. Energ., 2022, 306: 118145,
CrossRef Google scholar
[7]
Norman J, Mysels K, Sharp R, Williamson D. . Int. J. Hydrogen Energ., 1982, 7: 545,
CrossRef Google scholar
[8]
Nnabuife S G, Ugbeh-Johnson J, Okeke N E, Ogbonnaya C. . Carbon Capture Sci. Technol., 2022, 3: 100042,
CrossRef Google scholar
[9]
Ozcan H, El-Emam R S, Horri B A. . J Clean. Prod., 2022, 382: 135295,
CrossRef Google scholar
[10]
Kasahara S, Iwatsuki J, Takegami H, Tanaka N, Noguchi H, Kamiji Y, Onuki K, Kubo S. . Int. J. Hydrogen Energ., 2017, 42: 13477,
CrossRef Google scholar
[11]
Wang H, Le Person A, Zhao X, Li J, Nuncio P, Yang L, Moniri A, Chuang K T. . Fuel Process. Technol., 2013, 108: 55,
CrossRef Google scholar
[12]
Zhang K, Li X, Chang L, Bao W, Wang H. . Int. J. Hydrogen Energ., 2022, 47: 21923,
CrossRef Google scholar
[13]
Kim H S, Kim Y H, Ahn B T, Lee J G, Park C S, Bae K K. . Int. J. Hydrogen Energ., 2014, 39: 692,
CrossRef Google scholar
[14]
Yoon H J, No H C, Lee J, Choi J Y, Pyon C U. . Int. J. Hydrogen Energ., 2015, 40: 15792,
CrossRef Google scholar
[15]
Zhang P, Chen S, Wang L, Xu J. . Int. J. Hydrogen Energ., 2010, 35: 2883,
CrossRef Google scholar
[16]
Zhu Q, Zhang Y, Zhou C, Wang Z, Zhou J, Cen K. . Int. J. Hydrogen Energ., 2012, 37: 6407,
CrossRef Google scholar
[17]
Li J, Moniri A, Wang H. . Int. J. Hydrogen Energ., 2015, 40: 2912,
CrossRef Google scholar
[18]
Zhang K, Zhao X, Chen S, Chang L, Wang J, Bao W, Wang H. . Int. J. Hydrogen Energ., 2018, 43: 13702,
CrossRef Google scholar
[19]
Murthy A P, Madhavan J, Murugan K. . J. Power Sources, 2018, 398: 9,
CrossRef Google scholar
[20]
Zhang Z, Wang H, Li Y, Xie M, Li C, Lu H, Peng Y, Shi Z. . Chem. Res. Chinese Universities, 2022, 38(3): 750,
CrossRef Google scholar
[21]
Luan X, Xue Y. . Chem. Res. Chinese Universities, 2021, 37(6): 1268,
CrossRef Google scholar
[22]
Lei C, Li W, Wang G, Zhuang L, Lu J, Xiao L. . Chem. Res. Chinese Universities, 2021, 37(2): 293,
CrossRef Google scholar
[23]
Balaji D, Madhavan J, AlSalhi M S, Aljaafreh M J, Prasad S, Show P L. . Int. J. Hydrogen Energ., 2021, 46: 30739,
CrossRef Google scholar
[24]
Balint L C, Hulka I, Kellenberger A. . Materials, 2021, 15: 73,
CrossRef Google scholar
[25]
Wang X, Ma R-J, Guo T, Zhang X, Wang H, Zhao X. . J. Mater. Sci., 2023, 58: 15035,
CrossRef Google scholar
[26]
Adam D B, Tsai M-C, Awoke Y A, Huang W-H, Yang Y-W, Pao C-W, Su W-N, Hwang B J. . ACS Sustainable Chem. Eng., 2021, 9: 8803,
CrossRef Google scholar
[27]
Peng S-M, Patil S B, Chang C-C, Chang S-T, Chen Y-C, Wu K-C, Su W-N, Hwang B J, Wang D-Y. . J. Mater. Chem. A, 2022, 10: 23982,
CrossRef Google scholar
[28]
Dessie T A, Huang W-H, Adam D B, Awoke Y A, Wang C-H, Chen J-L, Pao C-W, Habtu N G, Tsai M-C, Su W-N. . Nano Lett., 2022, 22: 7311,
CrossRef Google scholar
[29]
Adam D B, Tsai M-C, Awoke Y A, Huang W-H, Lin C-H, Alamirew T, Ayele A A, Yang Y-W, Pao C-W, Su W-N. . Appl. Catal. B-Environ., 2022, 316: 121608,
CrossRef Google scholar
[30]
Hu E, Yao Y, Chen Y, Cui Y, Wang Z, Qian G. . Nanoscale Adv., 2021, 3: 604,
CrossRef Google scholar
[31]
Zeng L, Li X, Fan S, Li J, Mu J, Qin M, Wang L, Gan G, Tadé M, Liu S. . Nanoscale, 2019, 11: 4428,
CrossRef Google scholar
[32]
Cai H, Xiong L, Wang B, Zhu D, Hao H, Yu X, Li C, Yang S. . Chem. Eng. J., 2022, 430: 132824,
CrossRef Google scholar
[33]
Yuwen T, Zou H, Xu S, Wu C, Peng Q, Shu D, Yang X, Wang Y, Yu C, Fan J. . Materials Today Chemistry, 2023, 29: 101388,
CrossRef Google scholar
[34]
Liu Y-N, Zhang J-N, Wang H-T, Kang X-H, Bian S-W. . Mater. Chem. Front., 2019, 3: 25,
CrossRef Google scholar
[35]
Wang K, Xu M, Gu Y, Gu Z, Fan Q H. . J. Power Sources, 2016, 332: 180,
CrossRef Google scholar
[36]
Vidano R, Fischbach D, Willis L, Loehr T. . Solid State Commun., 1981, 39: 341,
CrossRef Google scholar
[37]
da Silva Souza D R, de Mesquita J P, Lago R M, Caminhas L D, Pereira F V. . Ind. Crop. Prod., 2016, 93: 121,
CrossRef Google scholar
[38]
White R J, Budarin V, Luque R, Clark J H, Macquarrie D J. . Chem. Soc. Rev., 2009, 38: 3401,
CrossRef Google scholar
[39]
Saleh T A. . Appl. Surf. Sci., 2011, 257: 7746,
CrossRef Google scholar
[40]
Charoensook K, Huang C L, Tai H C, Lanjapalli V V K, Chiang L M, Hosseini S, Lin Y T, Li Y Y. . J. Taiwan. Inst. Chem. E., 2021, 120: 246,
CrossRef Google scholar
[41]
Pitchai C, Edison T N J I, Sethuraman M G. . Int. J. Hydrogen Energ., 2020, 45: 28800,
CrossRef Google scholar
[42]
Sun X, Li Y. . Angew. Chem. Int. Ed., 2004, 43: 597,
CrossRef Google scholar
[43]
Sevilla M, Fuertes A B. . Chem-Eur. J., 2009, 15: 4195,
CrossRef Google scholar
[44]
Xu H, Liu Y, Liang H, Gao C, Yang S. . Sci. Total Environ., 2021, 759: 143457,
CrossRef Google scholar
[45]
Qi Y, Zhang M, Qi L, Qi Y. . Rsc Advances, 2016, 6: 20814,
CrossRef Google scholar
[46]
Sravan J S, Raunija T S K, Verma A, Mohan S V. . Fuel, 2021, 285: 119273,
CrossRef Google scholar
[47]
Zhang L, Wang Q, Xu F, Wang Z. . J. Anal. Appl. Pyrolysis, 2023, 175: 106211,
CrossRef Google scholar
[48]
Zhang W, Li C, Ji J-Y, Niu Z, Gu H, Abrahams B F, Lang J-P. . Chem. Eng. J., 2023, 461: 141937,
CrossRef Google scholar
[49]
Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. . J. Mater. Chem., 2012, 22: 3383,
CrossRef Google scholar
[50]
Ischia G, Cutillo M, Guella G, Bazzanella N, Cazzanelli M, Orlandi M, Miotello A, Fiori L. . Chem. Eng. J., 2022, 449: 137827,
CrossRef Google scholar
[51]
Jia Y, Zhang L, Du A, Gao G, Chen J, Yan X, Brown C L, Yao X. . Adv. Mater., 2016, 28: 9532,
CrossRef Google scholar
[52]
Liu Z, Zhao Z, Wang Y, Dou S, Yan D, Liu D, Xia Z, Wang S. . Adv. Mater., 2017, 29: 1606207,
CrossRef Google scholar
[53]
Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. . Energy Environ. Sci., 2019, 12: 322,
CrossRef Google scholar
[54]
Zhang X, Shen W, Li Z, Wang D, Qi J, Liang C. . Carbon, 2020, 167: 548,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/