Microglia and glioblastoma heterocellular interplay sustains tumour growth and proliferation as an off-target effect of radiotherapy
Received date: 03 Aug 2023
Revised date: 07 Nov 2023
Accepted date: 25 Jan 2024
Copyright
Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.
Cristiana Alberghina , Filippo Torrisi , Simona D'Aprile , Lucia Longhitano , Sebastiano Giallongo , Grazia Scandura , Giuliana Mannino , Stefania Mele , Maria Gabriella Sabini , Francesco P. Cammarata , Giorgio Russo , Ali S. Abdelhameed , Agata Zappalà , Debora Lo Furno , Rosario Giuffrida , Giovanni Li Volti , Daniele Tibullo , Nunzio Vicario , Rosalba Parenti . Microglia and glioblastoma heterocellular interplay sustains tumour growth and proliferation as an off-target effect of radiotherapy[J]. Cell Proliferation, 2024 , 57(6) : e13606 . DOI: 10.1111/cpr.13606
1 |
Torrisi F, Alberghina C, Lo Furno D, et al. Connexin 43 and sonic hedgehog pathway interplay in glioblastoma cell proliferation and migration. Biology (Basel). 2021;10(8):767.
|
2 |
Torrisi F, Alberghina C, D'Aprile S, et al. The hallmarks of glioblastoma: heterogeneity, intercellular crosstalk and molecular signature of invasiveness and progression. Biomedicine. 2022;10(4):806.
|
3 |
Mariotti L, Facoetti A, Bertolotti A, Ranza E, Alloni D, Ottolenghi A. Radiation-induced perturbation of cell-to-cell signalling and communication. Radiat Prot Dosimetry. 2011;143(2–4):294-300.
|
4 |
Gupta K, Vuckovic I, Zhang S, et al. Radiation induced metabolic alterations associate with tumor aggressiveness and poor outcome in glioblastoma. Front Oncol. 2020;10:535.
|
5 |
DeCordova S, Shastri A, Tsolaki AG, et al. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front Immunol. 2020;11:1402.
|
6 |
Dapash M, Hou D, Castro B, Lee-Chang C, Lesniak MS. The interplay between glioblastoma and its microenvironment. Cell. 2021;10(9):2257.
|
7 |
Lee E, Yong RL, Paddison P, Zhu J. Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 2018;53:201-211.
|
8 |
Berg TJ, Pietras A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Semin Cancer Biol. 2022;86(Pt 3):846-856.
|
9 |
Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol Commun. 2021;9(1):54.
|
10 |
Locarno CV, Simonelli M, Carenza C, et al. Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Immunobiology. 2020;225(1):151853.
|
11 |
Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab. 2013;24(9):469-480.
|
12 |
Ferla R, Haspinger E, Surmacz E. Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol Lett. 2012;4(5):1077-1081.
|
13 |
Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract. 2018;143:409-419.
|
14 |
Kang J, Lee D, Lee KJ, et al. Tumor-suppressive effect of metformin via the regulation of M2 macrophages and myeloid-derived suppressor cells in the tumor microenvironment of colorectal cancer. Cancers (Basel). 2022;14(12):2881.
|
15 |
Albayrak G, Konac E, Dere UA, Emmez H. Targeting cancer cell metabolism with metformin, dichloroacetate and memantine in glioblastoma (GBM). Turk Neurosurg. 2021;31(2):233-237.
|
16 |
Guarnaccia L, Navone SE, Masseroli MM, et al. Effects of metformin as add-on therapy against glioblastoma: an old medicine for novel oncology therapeutics. Cancers (Basel). 2022;14(6):1412.
|
17 |
Barbagallo I, Giallongo C, Volti GL, et al. Heme oxygenase inhibition sensitizes neuroblastoma cells to carfilzomib. Mol Neurobiol. 2019;56(2):1451-1460.
|
18 |
Scandura G, Giallongo C, Puglisi F, et al. TLR4 signaling and heme Oxygenase-1/carbon monoxide pathway crosstalk induces resiliency of myeloma plasma cells to bortezomib treatment. Antioxidants (Basel). 2022;11(4):767.
|
19 |
Lo Furno D, Mannino G, Pellitteri R, et al. Conditioned media from glial cells promote a neural-like connexin expression in human adipose-derived mesenchymal stem cells. Front Physiol. 2018;9:1742.
|
20 |
Mannino G, Cristaldi M, Giurdanella G, et al. ARPE-19 conditioned medium promotes neural differentiation of adipose-derived mesenchymal stem cells. World J Stem Cells. 2021;13(11):1783-1796.
|
21 |
Torrisi F, Minafra L, Cammarata FP, et al. SRC tyrosine kinase inhibitor and X-rays combined effect on glioblastoma cell lines. Int J Mol Sci. 2020;21(11):3917.
|
22 |
Camiolo G, Barbato A, Giallongo C, et al. Iron regulates myeloma cell/macrophage interaction and drives resistance to bortezomib. Redox Biol. 2020;36:101611.
|
23 |
Pires-Afonso Y, Niclou SP, Michelucci A. Revealing and harnessing tumour-associated microglia/macrophage heterogeneity in glioblastoma. Int J Mol Sci. 2020;21(3):689.
|
24 |
Walton EL. Radiotherapy and the tumor microenvironment: the "macro" picture. Biom J. 2017;40(4):185-188.
|
25 |
Virtuoso A, Giovannoni R, de Luca C, et al. The glioblastoma microenvironment: morphology, metabolism, and molecular signature of glial dynamics to discover metabolic rewiring sequence. Int J Mol Sci. 2021;22(7):3301.
|
26 |
Garofano L, Migliozzi S, Oh YT, et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer. 2021;2(2):141-156.
|
27 |
Seyfried TN. Cancer as a mitochondrial metabolic disease. Front Cell Dev Biol. 2015;3:43.
|
28 |
Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42-56.e6.
|
29 |
Zhang B, Davidson MM, Zhou H, Wang C, Walker WF, Hei TK. Cytoplasmic irradiation results in mitochondrial dysfunction and DRP1-dependent mitochondrial fission. Cancer Res. 2013;73(22):6700-6710.
|
30 |
Cammarata FP, Torrisi F, Vicario N, et al. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol. 2023;6(1):388.
|
31 |
Jesenko T, Bosnjak M, Markelc B, et al. Radiation induced upregulation of DNA sensing pathways is cell-type dependent and can mediate the off-target effects. Cancers (Basel). 2020;12(11):3365.
|
32 |
Barbato A, Scandura G, Puglisi F, et al. Mitochondrial bioenergetics at the onset of drug resistance in hematological malignancies: an overview. Front Oncol. 2020;10:604143.
|
33 |
Vicario N, Turnaturi R, Spitale FM, et al. Intercellular communication and ion channels in neuropathic pain chronicization. Inflamm Res. 2020;69(9):841-850.
|
34 |
Wu SY, Watabe K. The roles of microglia/macrophages in tumor progression of brain cancer and metastatic disease. Front Biosci (Landmark Ed). 2017;22(10):1805-1829.
|
35 |
Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184(9):2454-2470.e26.
|
36 |
Friedrich M, Sankowski R, Bunse L, et al. Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nat Cancer. 2021;2(7):723-740.
|
37 |
Gritti M, Würth R, Angelini M, et al. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget. 2014;5(22):11252-11268.
|
38 |
Wang YW, He SJ, Feng X, et al. Metformin: a review of its potential indications. Drug des Devel Ther. 2017;11:2421-2429.
|
39 |
Wurth R, Pattarozzi A, Gatti M, et al. Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle. 2013;12(1):145-156.
|
40 |
Sato A, Sunayama J, Okada M, et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med. 2012;1(11):811-824.
|
/
〈 |
|
〉 |