An in vivo drug screen in zebrafish reveals that cyclooxygenase 2-derived prostaglandin D2 promotes spinal cord neurogenesis
Received date: 26 Sep 2023
Revised date: 27 Nov 2023
Accepted date: 18 Dec 2023
Copyright
The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord. These results fitted very nicely with available single-cell RNAseq data revealing that floor plate cells show differential expression of 1 of the 2 COX2 zebrafish genes (ptgs2a). Indeed, several selective COX2 inhibitors and two different morpholinos against ptgs2a reduced the number of serotonergic neurons in the ventral spinal cord and led to locomotor deficits. Single-cell RNAseq data and different pharmacological manipulations further revealed that COX2-floor plate-derived prostaglandin D2 promotes neurogenesis in the developing spinal cord by promoting mitotic activity in progenitor cells. Rescue experiments using a phosphodiesterase-4 inhibitor suggest that intracellular changes in cAMP levels underlie the effects of COX inhibitors on neurogenesis and locomotion. Our study provides compelling in vivo evidence showing that prostaglandin signalling promotes neurogenesis in the ventral spinal cord.
Laura González-Llera , Daniel Sobrido-Cameán , Ana Quelle-Regaldie , Laura Sánchez , Antón Barreiro-Iglesias . An in vivo drug screen in zebrafish reveals that cyclooxygenase 2-derived prostaglandin D2 promotes spinal cord neurogenesis[J]. Cell Proliferation, 2024 , 57(5) : e13594 . DOI: 10.1111/cpr.13594
1 |
Sagner A, Briscoe J. Establishing neuronal diversity in the spinal cord: a time and a place. Development. 2019;146(22):dev182154.
|
2 |
Martí E, Bumcrot DA, Takada R, McMahon AP. Requirement of 19K form of sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature. 1995;375(6529):322-325.
|
3 |
Roelink H, Porter JA, Chiang C, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell. 1995;81(3):445-455.
|
4 |
Chen F, Köhler M, Cucun G, et al. sox1a:eGFP transgenic line and single-cell transcriptomics reveal the origin of zebrafish intraspinal serotonergic neurons. iScience. 2023;26(8):107342.
|
5 |
Montgomery JE, Wiggin TD, Rivera-Perez LM, Lillesaar C, Masino MA. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish. Dev Neurobiol. 2016;76(6):673-687.
|
6 |
Saade M, Gutiérrez-Vallejo I, Le Dréau G, et al. Sonic hedgehog signalling switches the mode of division in the developing nervous system. Cell Rep. 2013;4(3):492-503.
|
7 |
Farnsworth DR, Saunders LM, Miller AC. A single-cell transcriptome atlas for zebrafish development. Dev Biol. 2020;459(2):100-108.
|
8 |
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611-628.
|
9 |
Barreiro-Iglesias A, Mysiak KS, Scott AL, et al. Serotonin promotes development and regeneration of spinal motor neurons in zebrafish. Cell Rep. 2015;13(5):924-932.
|
10 |
Nango H, Kosuge Y. Present state and future perspectives of prostaglandins as a differentiation factor in motor neurons. Cell Mol Neurobiol. 2022;42(7):2097-2108.
|
11 |
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev. 2006;52(2):201-243.
|
12 |
Barreiro-Iglesias A. Role of cyclooxygenases and prostaglandins in adult brain neurogenesis. Prostaglandins Other Lipid Mediat. 2021;152:106498.
|
13 |
Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). 4th ed. Univ. of Oregon Press; 2000.
|
14 |
Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol. 2015;24:58-70.
|
15 |
Grosser T, Yusuff S, Cheskis E, Pack MA, FitzGerald GA. Developmental expression of functional cyclooxygenases in zebrafish. Proc Natl Acad Sci USA. 2002;99(12):8418-8423.
|
16 |
Yeh JR, Munson KM, Elagib KE, Goldfarb AN, Sweetser DA, Peterson RT. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol. 2009;5(4):236-243.
|
17 |
Montgomery JE, Wahlstrom-Helgren S, Wiggin TD, Corwin BM, Lillesaar C, Masino MA. Intraspinal serotonergic signalling suppresses locomotor activity in larval zebrafish. Dev Neurobiol. 2018;78:807-827.
|
18 |
Kuscha V, Frazer SL, Dias TB, Hibi M, Becker T, Becker CG. Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish. J Comp Neurol. 2012;520(16):3604-3616.
|
19 |
Reimer MM, Norris A, Ohnmacht J, et al. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. Dev Cell. 2013;25(5):478-491.
|
20 |
Balderas E, Ateaga-Tlecuitl R, Rivera M, Gomora JC, Darszon A. Niflumic acid blocks native and recombinant T-type channels. J Cell Physiol. 2012 Jun;227(6):2542-2555.
|
21 |
Marra AN, Adeeb BD, Chambers BE, et al. Prostaglandin signalling regulates renal multiciliated cell specification and maturation. Proc Natl Acad Sci USA. 2019;116(17):8409-8418.
|
22 |
Poureetezadi SJ, Cheng CN, Chambers JM, Drummond BE, Wingert RA. Prostaglandin signalling regulates nephron segment patterning of renal progenitors during zebrafish kidney development. Elife. 2016;20(5):e17551.
|
23 |
Goncalves MB, Williams EJ, Yip P, Yáñez-Muñoz RJ, Williams G, Doherty P. The COX-2 inhibitors, meloxicam and nimesulide, suppress neurogenesis in the adult mouse brain. Br J Pharmacol. 2010 Mar;159(5):1118-1125.
|
24 |
Nam SM, Kim JW, Yoo DY, et al. Effects of treadmill exercise on neural stem cells, cell proliferation, and neuroblast differentiation in the subgranular zone of the dentate gyrus in cyclooxygenase-2 knockout mice. Neurochem Res. 2013;38(12):2559-2569.
|
25 |
Nam SM, Kim JW, Yoo DY, et al. Comparison of pharmacological and genetic inhibition of cyclooxygenase-2: effects on adult neurogenesis in the hippocampal dentate gyrus. J Vet Sci. 2015;16(3):245-251.
|
26 |
Czopka T, Ffrench-Constant C, Lyons DA. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev Cell. 2013;25(6):599-609.
|
27 |
Park HC, Boyce J, Shin J, Appel B. Oligodendrocyte specification in zebrafish requires notch-regulated cyclin-dependent kinase inhibitor function. J Neurosci. 2005;25(29):6836-6844.
|
28 |
Ravanelli AM, Appel B. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev. 2015 Dec 1;29(23):2504-2515.
|
29 |
Pan L, Trimarco A, Zhang AJ, et al. Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination. Elife. 2023;13(12):e77441.
|
30 |
Tsuge K, Iwasaki R, Morimoto K, et al. Molecular and pharmacological characterization of zebrafish ‘relaxant’ prostanoid receptors. Biochem Biophys Res Commun. 2013;436(4):685-690.
|
31 |
Lundegaard PR, Anastasaki C, Grant NJ, et al. MEK inhibitors reverse cAMP-mediated anxiety in zebrafish. Chem Biol. 2015;22(10):1335-1346.
|
32 |
Uchida K, Kumihashi K, Kurosawa S, Kobayashi T, Itoi K, Machida T. Stimulatory effects of prostaglandin E2 on neurogenesis in the dentate gyrus of the adult rat. Zoolog Sci. 2002 Nov;19(11):1211-1216.
|
33 |
Nakagawa S, Kim JE, Lee R, et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci. 2002;22(9):3673-3682.
|
34 |
Saad F, Hipfner DR. Extensive crosstalk of G protein-coupled receptors with the hedgehog signalling pathway. Development. 2021;148(7):dev189258.
|
35 |
Wong CT, Ahmad E, Li H, Crawford DA. Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders. Cell Commun Signal. 2014;23(12):19.
|
36 |
Rai-Bhogal R, Ahmad E, Li H, Crawford DA. Microarray analysis of gene expression in the cyclooxygenase knockout mice—a connection to autism spectrum disorder. Eur J Neurosci. 2018;47(6):750-766.
|
37 |
Rai-Bhogal R, Wong C, Kissoondoyal A, Davidson J, Li H, Crawford DA. Maternal exposure to prostaglandin E2 modifies expression of Wnt genes in mouse brain—an autism connection. Biochem Biophys Rep. 2018;10(14):43-53.
|
38 |
Wong CT, Ussyshkin N, Ahmad E, Rai-Bhogal R, Li H, Crawford DA. Prostaglandin E2 promotes neural proliferation and differentiation and regulates Wnt target gene expresión. J Neurosci Res. 2016;94(8):759-775.
|
39 |
Nango H, Kosuge Y, Miyagishi H, Sugawa K, Ito Y, Ishige K. Prostaglandin E2 facilitates neurite outgrowth in a motor neuron-like cell line, NSC-34. J Pharmacol Sci. 2017;135(2):64-71.
|
40 |
Nango H, Kosuge Y, Sato M, et al. Highly efficient conversion of motor neuron-like NSC-34 cells into functional motor neurons by prostaglandin E2. Cell. 2020;9(7):1741.
|
41 |
Nango H, Kosuge Y, Yoshimura N, et al. The molecular mechanisms underlying prostaglandin D2-induced neuritogenesis in motor neuron-like NSC-34 cells. Cell. 2020;9(4):934.
|
42 |
Kopp MA, Liebscher T, Niedeggen A, et al. Small-molecule-induced rho-inhibition: NSAIDs after spinal cord injury. Cell Tissue Res. 2012;349(1):119-132.
|
43 |
Kopp MA, Liebscher T, Watzlawick R, et al. SCISSOR-spinal cord injury study on small molecule-derived rho inhibition: a clinical study protocol. BMJ Open. 2016;6(7):e010651.
|
44 |
Watzlawick R, Sena ES, Dirnagl U, et al. Effect and reporting bias of RhoA/ROCK-blockade intervention on locomotor recovery after spinal cord injury: a systematic review and meta-analysis. JAMA Neurol. 2014;71(1):91-99.
|
45 |
Ribeiro BF, da Cruz BC, de Sousa BM, et al. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential. Brain. 2023;146(7):2672-2693.
|
/
〈 | 〉 |