The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex

  • Huan-Huan Deng ,
  • Shi-Yuan Tong ,
  • Dan Shen ,
  • Shu-Qing Zhang ,
  • Yinghui Fu
Expand
  • Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
fuyh@fudan.edu.cn

Received date: 18 Sep 2023

Revised date: 21 Nov 2023

Accepted date: 29 Nov 2023

Copyright

2023 2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

Abstract

The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.

Cite this article

Huan-Huan Deng , Shi-Yuan Tong , Dan Shen , Shu-Qing Zhang , Yinghui Fu . The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex[J]. Cell Proliferation, 2024 , 57(5) : e13587 . DOI: 10.1111/cpr.13587

1
Gal E, London M, Globerson A, et al. Rich cell-type-specific network topology in neocortical microcircuitry. Nat Neurosci. 2017;20(7):1004-1013.

2
Anthony TE, Klein C, Fishell G, Heintz N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron. 2004;41(6):881-890.

3
Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001;409(6821):714-720.

4
Tamamaki N, Nakamura K, Okamoto K, Kaneko T. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res. 2001;41(1):51-60.

5
Englund C, Fink A, Lau C, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25(1):247-251.

6
Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA. 2004;101(9):3196-3201.

7
Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004;7(2):136-144.

8
Shitamukai A, Konno D, Matsuzaki F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci. 2011;31(10):3683-3695.

9
Wang X, Tsai JW, LaMonica B, Kriegstein AR. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci. 2011;14(5):555-561.

10
Vaid S, Camp JG, Hersemann L, et al. A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex. Development. 2018;145(20):dev169276.

11
Cheung AFP, Kondo S, Abdel-Mannan O, et al. The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals. Cereb Cortex. 2010;20(5):1071-1081.

12
Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci. 2006;7(11):883-890.

13
Martínez-Cerdeño V, Noctor SC, Kriegstein AR. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex. 2006;16(suppl 1):i152-i161.

14
Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002;12(1):37-53.

15
Kowalczyk T, Pontious A, Englund C, et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex. 2009;19(10):2439-2450.

16
Bedogni F, Hevner RF. Cell-type-specific gene expression in developing mouse neocortex: intermediate progenitors implicated in axon development. Front Mol Neurosci. 2021;14:686034.

17
Costa MR, Müller U. Specification of excitatory neurons in the developing cerebral cortex: progenitor diversity and environmental influences. Front Cell Neurosci. 2014;8:449.

18
Vasistha NA, García-Moreno F, Arora S, et al. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex. 2015;25(10):3290-3302.

19
Tarabykin V, Stoykova A, Usman N, Gruss P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development. 2001;128(11):1983-1993.

20
Zimmer C, Tiveron MC, Bodmer R, Cremer H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex. 2004;14(12):1408-1420.

21
Mihalas AB, Elsen GE, Bedogni F, et al. Intermediate progenitor cohorts differentially generate cortical layers and require Tbr2 for timely acquisition of neuronal subtype identity. Cell Rep. 2016;16(1):92-105.

22
Mihalas AB, Hevner RF. Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development. 2018;145(17):dev164335.

23
Rakic P. The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res Rev. 2007;55(2):204-219.

24
Wu SX, Goebbels S, Nakamura K, et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci U S A. 2005;102(47):17172-17177.

25
Betizeau M, Cortay V, Patti D, et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron. 2013;80(2):442-457.

26
Florio M, Huttner WB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development. 2014;141(11):2182-2194.

27
Hansen DV, Lui JH, Parker PRL, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554-561.

28
Franco SJ, Gil-Sanz C, Martinez-Garay I, et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science. 2012;337(6095):746-749.

29
Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development. 2004;131(13):3133-3145.

30
Noctor SC, Martínez-Cerdeño V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol. 2008;508(1):28-44.

31
Matho KS, Huilgol D, Galbavy W, et al. Genetic dissection of the glutamatergic neuron system in cerebral cortex. Nature. 2021;598(7879):182-187.

32
Gao P, Postiglione MP, Krieger TG, et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 2014;159(4):775-788.

33
Llorca A, Ciceri G, Beattie R, et al. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife. 2019;8:e51381.

34
Bandler RC, Vitali I, Delgado RN, et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature. 2022;601(7893):404-409.

35
Delgado RN, Allen DE, Keefe MG, et al. Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature. 2022;601(7893):397-403.

36
Di Bella DJ, Habibi E, Stickels RR, et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature. 2021;595(7868):554-559.

37
Mukhtar T, Breda J, Adam MA, et al. Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis. EMBO J. 2022;41(24):e111132.

38
Ratz M, von Berlin L, Larsson L, et al. Clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics. Nat Neurosci. 2022;25(3):285-294.

39
Ruan X, Kang B, Qi C, Lin W, Wang J, Zhang X. Progenitor cell diversity in the developing mouse neocortex. Proc Natl Acad Sci USA. 2021;118(10):e2018866118.

40
Hirota Y, Nakajima K. Control of neuronal migration and aggregation by Reelin signaling in the developing cerebral cortex. Front Cell Dev Biol. 2017;5:5.

41
Honda T, Nakajima K. Proper level of cytosolic disabled-1, which is regulated by dual nuclear translocation pathways, is important for cortical neuronal migration. Cereb Cortex. 2016;26(7):3219-3236.

42
Luque JM, Morante-Oria J, Fairén A. Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reelin action during cortical development. Dev Brain Res. 2003;140(2):195-203.

43
Telley L, Govindan S, Prados J, et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science. 2016;351(6280):1443-1446.

44
Kawaguchi A, Ikawa T, Kasukawa T, et al. Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development. 2008;135(18):3113-3124.

45
Vasudevan A, Long JE, Crandall JE, Rubenstein JLR, Bhide PG. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci. 2008;11(4):429-439.

46
Tata M, Ruhrberg C, Fantin A. Vascularisation of the central nervous system. Mech Dev. 2015;138:26-36.

47
Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol. 1989;18(3):311-318.

48
Cepko CL, Ryder E, Austin C, Golden J, Fields-Berry S, Lin J. Lineage analysis with retroviral vectors. In: Thorner J, Emr SD, Abelson JN, eds. Methods in Enzymology. Vol 327. Applications of Chimeric Genes and Hybrid Proteins—Part B: Cell Biology and Physiology. Academic Press; 2000:118-143.

49
Hoffmann D, Schott JW, Geis FK, et al. Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells. Gene Ther. 2017;24(5):298-307.

50
Takahashi T, Nowakowski RS, Caviness VS. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci. 1995;15(9):6046-6057.

51
Oberst P, Fièvre S, Baumann N, Concetti C, Bartolini G, Jabaudon D. Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature. 2019;573(7774):370-374.

52
Telley L, Agirman G, Prados J, et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science. 2019;364(6440):eaav2522.

53
Magrinelli E, Baumann N, Wagener RJ, et al. Heterogeneous fates of simultaneously-born neurons in the cortical ventricular zone. Sci Rep. 2022;12(1):6022.

54
Gil-Sanz C, Espinosa A, Fregoso SP, et al. Lineage tracing using Cux2-Cre and Cux2-CreERT2 mice. Neuron. 2015;86(4):1091-1099.

55
Eckler MJ, Nguyen TD, McKenna WL, et al. Cux2-positive radial glial cells generate diverse subtypes of neocortical projection neurons and macroglia. Neuron. 2015;86(4):1100-1108.

56
Poulin JF, Luppi MP, Hofer C, et al. PRISM: a progenitor-restricted intersectional fate mapping approach redefines forebrain lineages. Dev Cell. 2020;53(6):740-753.e3.

57
Sauer FC. Mitosis in the neural tube. J Comp Neurol. 1935;62(2):377-405.

58
Taverna E, Huttner WB. Neural progenitor nuclei IN motion. Neuron. 2010;67(6):906-914.

59
Polleux F, Dehay C, Kennedy H. Neurogenesis and commitment of corticospinal neurons in reeler. J Neurosci. 1998;18(23):9910-9923.

60
Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Müller U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron. 2011;69(3):482-497.

61
Chai X, Fan L, Shao H, et al. Reelin induces branching of neurons and radial glial cells during corticogenesis. Cereb Cortex. 2015;25(10):3640-3653.

62
Magdaleno S, Keshvara L, Curran T. Rescue of ataxia and preplate splitting by ectopic expression of Reelin in reeler mice. Neuron. 2002;33(4):573-586.

63
Lakomá J, Garcia-Alonso L, Luque JM. Reelin sets the pace of neocortical neurogenesis. Development. 2011;138(23):5223-5234.

64
Wuttke T, Markopoulos F, Padmanabhan H, Wheeler A, Murthy V, Macklis J. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat Neurosci. 2018;21:1-529.

65
Lodato S, Arlotta P. Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol. 2015;31(1):699-720.

66
Harb K, Magrinelli E, Nicolas C, et al. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications. Elife. 2016;5:e09531.

67
Molyneaux BJ, Arlotta P, Menezes JRL, Macklis JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci. 2007;8(6):427-437.

68
Wang A, Wang J, Tian K, et al. An epigenetic circuit controls neurogenic programs during neocortex development. Development. 2021;148(22):dev199772.

69
Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci. 2006;26(3):1045-1056.

70
Huilgol D. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron. 2023;111(16):2557-2569.e4.

71
Arnò B, Grassivaro F, Rossi C, et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun. 2014;5:5611.

72
Cunningham CL, Martínez-Cerdeño V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci. 2013;33(10):4216-4233.

73
Hevner RF. Intermediate progenitors and Tbr2 in cortical development. J Anat. 2019;235(3):616-625.

74
Blaschke AJ, Staley K, Chun J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development. 1996;122(4):1165-1174.

75
Bursch W, Kleine L, Tenniswood M. The biochemistry of cell death by apoptosis. Biochem Cell Biol. 1990;68(9):1071-1074.

76
Thomaidou D, Mione MC, Cavanagh JF, Parnavelas JG. Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci. 1997;17(3):1075-1085.

77
Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146(1):18-36.

78
Sessa A, Ciabatti E, Drechsel D, et al. The Tbr2 molecular network controls cortical neuronal differentiation through complementary genetic and epigenetic pathways. Cereb Cortex. 2017;27(6):3378-3396.

79
Tiveron MC, Rossel M, Moepps B, et al. Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. J Neurosci. 2006;26(51):13273-13278.

80
Arnold SJ, Huang GJ, Cheung AFP, et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev. 2008;22(18):2479-2484.

81
Baala L, Briault S, Etchevers HC, et al. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet. 2007;39(4):454-456.

82
Nelson BR, Hodge RD, Bedogni F, Hevner RF. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-notch signaling. J Neurosci. 2013;33(21):9122-9139.

83
Yoon KJ, Koo BK, Im SK, et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron. 2008;58(4):519-531.

84
Supèr H, Del Río JA, Martínez A, Pérez-Sust P, Soriano E. Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb Cortex. 2000;10(6):602-613.

Options
Outlines

/