Activation of S1P2 is protective against cisplatin-induced peripheral neuropathy
Received date: 13 Jul 2023
Revised date: 30 Aug 2023
Accepted date: 05 Sep 2023
Copyright
Brenda Wan Shing Lam , Ping Xiang , Boya Peng , Ling Jun Joshua Soon , Amelia Ting Yu Yam , Claudine Ming Hui Lim , Yu Zheng , Long N. Nguyen , Deron R. Herr , Minh T. N. Le . Activation of S1P2 is protective against cisplatin-induced peripheral neuropathy[J]. Cell Proliferation, 2024 , 57(2) : e13549 . DOI: 10.1111/cpr.13549
1 |
Speck RM, DeMichele A, Farrar JT, et al. Scope of symptoms and self-management strategies for chemotherapy-induced peripheral neuropathy in breast cancer patients. Support Care Cancer. 2012;20(10):2433-2439.
|
2 |
Hughes RAC. Peripheral neuropathy. BMJ. 2002;324(7335):466-469.
|
3 |
Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 2014;155(12):2461-2470.
|
4 |
Authier N, Gillet JP, Fialip J, Eschalier A, Coudore F. An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections. Exp Neurol. 2003;182(1):12-20.
|
5 |
Fornaro M, Sharthiya H, Tiwari V. Adult mouse DRG explant and dissociated cell models to investigate neuroplasticity and responses to environmental insults including viral infection. J Vis Exp. 2018;133:56757.
|
6 |
Canta A, Pozzi E, Carozzi VA. Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics. 2015;3(2):198-223.
|
7 |
Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci. 2019;20(6):1451.
|
8 |
Eldridge S, Guo L, Hamre J. A comparative review of chemotherapy-induced peripheral neuropathy in in vivo and in vitro models. Toxicol Pathol. 2020;48(1):190-201.
|
9 |
Puri BK. Calcium signaling and gene expression. Adv Exp Med Biol. 2020;1131:537-545.
|
10 |
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. 2014;71(15):2787-2814.
|
11 |
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol. 2012;3:61.
|
12 |
Fukuda Y, Li Y, Segal RA. A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci. 2017;11:481.
|
13 |
Wang W, Xiang P, Chew WS, et al. Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. J Biol Chem. 2020;295(4):1143-1152.
|
14 |
Cankara FN, Günaydın C, Çelik ZB, et al. Agomelatine confers neuroprotection against cisplatin-induced hippocampal neurotoxicity. Metab Brain Dis. 2021;36(2):339-349.
|
15 |
Ta LE, Espeset L, Podratz J, Windebank AJ. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology. 2006;27(6):992-1002.
|
16 |
English K, Shepherd A, Uzor NE, Trinh R, Kavelaars A, Heijnen CJ. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun. 2020;8(1):36.
|
17 |
Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338.
|
18 |
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7-35.
|
19 |
Hanani M. How is peripheral injury signaled to satellite glial cells in sensory ganglia? Cell. 2022;11(3):512.
|
20 |
Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77-92.
|
21 |
Kallenborn-Gerhardt W, Schröder K, Schmidtko A. NADPH oxidases in pain processing. Antioxidants (Basel). 2022;11(6):1162.
|
22 |
More SV, Koppula S, Kim IS, Kumar H, Kim BW, Choi DK. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules. 2012;17(6):6728-6753.
|
23 |
He Z, Guo JL, McBride JD, et al. Amyloid-β plaques enhance Alzheimer's brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat Med. 2018;24(1):29-38.
|
24 |
Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: implications in Parkinson's disease pathogenesis. Biochim Biophys Acta Proteins Proteom. 2019;1867(10):890-908.
|
25 |
Uchida Y, Gomi F. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer's disease brain. Geriatr Gerontol Int. 2016;16(Suppl 1):43-50.
|
26 |
Xiong M, Zou L, Meng L, et al. A γ-adducin cleavage fragment induces neurite deficits and synaptic dysfunction in Alzheimer's disease. Prog Neurobiol. 2021;203:102074.
|
27 |
Hadimani MB, Purohit MK, Vanampally C, et al. Guaifenesin derivatives promote neurite outgrowth and protect diabetic mice from neuropathy. J Med Chem. 2013;56(12):5071-5078.
|
28 |
Kawashiri T, Shimizu S, Shigematsu N, Kobayashi D, Shimazoe T. Donepezil ameliorates oxaliplatin-induced peripheral neuropathy via a neuroprotective effect. J Pharmacol Sci. 2019;140(3):291-294.
|
29 |
Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol Neurobiol. 2019;56(3):1812-1824.
|
30 |
Fujita A, Hattori Y, Takeuchi T, Kamata Y, Hata F. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. Neuroreport. 2001;12(16):3599-3602.
|
31 |
Minase T, Ishima T, Itoh K, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth by the ROCK inhibitor Y-27632: a possible role of IP₃ receptors. Eur J Pharmacol. 2010;648(1–3):67-73.
|
32 |
Roloff F, Scheiblich H, Dewitz C, Dempewolf S, Stern M, Bicker G. Enhanced neurite outgrowth of human model (NT2) neurons by small-molecule inhibitors of Rho/ROCK signaling. PLoS One. 2015;10(2):e0118536.
|
33 |
Munnamalai V, Weaver CJ, Weisheit CE, et al. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones. J Neurochem. 2014;130(4):526-540.
|
34 |
Herr DR, Reolo MJY, Peh YX, et al. Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: implications for otoprotective therapy. Sci Rep. 2016;6:24541.
|
/
〈 | 〉 |