In vitro induction of hair follicle signatures using human dermal papilla cells encapsulated in fibrin microgels

  • Cristina Quílez 1,2 ,
  • Leticia Valencia 1 ,
  • Jorge González-Rico 3 ,
  • Leticia Suárez-Cabrera 1 ,
  • Lidia Amigo-Morán 1 ,
  • José Luis Jorcano , 1,4 ,
  • Diego Velasco , 1,2,4
Expand
  • 1. Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Spain
  • 2. Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
  • 3. Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Leganés, Spain
  • 4. Instituto De Investigacion Sanitaria Gregorio Marañon, Madrid, Spain
jjorcano@ing.uc3m.es
divelasc@ing.uc3m.es

Received date: 06 Mar 2023

Revised date: 13 Jun 2023

Accepted date: 27 Jun 2023

Published date: 20 Jan 2024

Copyright

2023 2023 The Authors. Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

Abstract

Cellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets. FM showed a morphology and extracellular matrix composition similar to the native dermal papilla, including Versican and Collagen IV and increasing cell viability up to 85%. While both systems induce epidermal invaginations expressing hair-specific keratins K14, K15, K71, and K75 in in vitro skin cultures, the number of generated structures increases from 17% to 49% when DPS and FM were used, respectively. These data show the potential of our experimental setting for in vitro hair follicle neogenesis with wild adult hFDPc using FM, being a crucial step in the pursuit of human hair follicle regeneration therapies.

Cite this article

Cristina Quílez , Leticia Valencia , Jorge González-Rico , Leticia Suárez-Cabrera , Lidia Amigo-Morán , José Luis Jorcano , Diego Velasco . In vitro induction of hair follicle signatures using human dermal papilla cells encapsulated in fibrin microgels[J]. Cell Proliferation, 2024 , 57(1) : e13528 . DOI: 10.1111/cpr.13528

1
Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Curr Biol. 2009;19(3):R132-R142.

DOI

2
Yang C-C, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci. 2010;57(1):2-11.

3
Couchman JR, Gibson WT. Expression of basement membrane components through morphological changes in the hair growth cycle. Dev Biol. 1985;108(2):290-298.

4
Messenger AG, Elliott K, Westgate GE, Gibson WT. Distribution of extracellular matrix molecules in human hair follicles. Ann N Y Acad Sci. 1991;642:253-262.

5
Higgins CA, Chen JC, Cerise JE, Jahoda CAB, Christiano AM. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc Natl Acad Sci U S A. 2013;110:19679-19688.

6
Achilli T-M, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012;12(10):1347-1360.

7
Flampouri E, Imar S, OConnell K, Singh B. Spheroid-3D and monolayer-2D intestinal electrochemical biosensor for toxicity/viability testing: applications in drug screening, food safety, and environmental pollutant analysis. ACS Sensors. 2019;4(3):660-669.

8
Durymanov M, Kroll C, Permyakova A, et al. Subcutaneous inoculation of 3D pancreatic cancer spheroids results in development of reproducible stroma-rich tumors. Transl Oncol. 2019;12(1):180-189.

9
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface. 2017;14(127):20160877.

10
Ryu N-E, Lee S-H, Park H. Spheroid culture system methods and applications for mesenchymal stem cells. Cell. 2019;8(12):1620.

11
Lee N-H, Bayaraa O, Zechu Z, Kim HS. Biomaterials-assisted spheroid engineering for regenerative therapy. BMB Rep. 2021;54(7):356-367.

12
Ahmad T, Byun H, Lee J, et al. Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials. 2020;230:119652.

13
Park J, Choe G, Oh S, Lee JY. In situ formation of proangiogenic mesenchymal stem cell spheroids in hyaluronic acid/alginate core-shell microcapsules. ACS Biomater Sci Eng. 2020;6(12):6938-6948.

14
Jiang K, Chaimov D, Patel SN, et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials. 2019;198:37-48.

15
Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12(1):6.

16
Castro AR, Logarinho E. Tissue engineering strategies for human hair follicle regeneration: how far from a hairy goal? Stem Cells Transl Med. 2020;9(3):342-350.

DOI

17
Kalabusheva E, Terskikh V, Vorotelyak E. Hair germ model in vitro via human postnatal keratinocyte-dermal papilla interactions: impact of hyaluronic acid. Stem Cells Int. 2017;2017:9271869.

18
Kageyama T, Yan L, Shimizu A, Maruo S, Fukuda J. Preparation of hair beads and hair follicle germs for regenerative medicine. Biomaterials. 2019;212:55-63.

19
Tobin DJ, Gunin A, Magerl M, Handijski B, Paus R. Plasticity and cytokinetic dynamics of the hair follicle mesenchyme: implications for hair growth control. J Invest Dermatol. 2003;120(6):895-904.

20
Warren R, Chestnut MH, Wong TK, Otte TE, Lammers KM, Meili ML. Improved method for the isolation and cultivation of human scalp dermal papilla cells. J Invest Dermatol. 1992;98(5):693-699.

21
Westgate GE, Craggs RI, Gibson WT. Immune privilege in hair growth. J Invest Dermatol. 1991;97(3):417-420.

22
Hellstern P. Solvent/detergent-treated plasma: composition, efficacy, and safety. Curr Opin Hematol. 2004;11(5):346-350.

23
Stevens J, Khetarpal S. Platelet-rich plasma for androgenetic alopecia: a review of the literature and proposed treatment protocol. Int J Womens Dermatol. 2019;5(1):46-51.

24
Xiao S-E, Miao Y, Wang J, et al. As a carrier-transporter for hair follicle reconstitution, platelet-rich plasma promotes proliferation and induction of mouse dermal papilla cells. Sci Rep. 2017;7(1):1125.

25
Lu K, Han Q, Ma Z, et al. Injectable platelet rich fibrin facilitates hair follicle regeneration by promoting human dermal papilla cell proliferation, migration, and trichogenic inductivity. Exp Cell Res. 2021;409(1):112888.

26
Llames SG, Del Rio M, Larcher F, et al. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation. 2004;77(3):350-355.

27
Negri S, Federici G, Farinato S, Fila C. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. J Clin Rehabil Tissue Eng Res. 2009;13(47):9211-9216.

28
Cubo N, Garcia M, Del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication. 2017;9:015006.

DOI

29
Montero A, Atienza C, Elvira C, Jorcano JL, Velasco D. Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes. Mater Sci Eng C Mater Biol Appl. 2021;128:112352.

30
Montero A, Quílez C, Valencia L, Girón P, Jorcano JL, Velasco D. Effect of fibrin concentration on the In vitro production of dermo-epidermal equivalents. Int J Mol Sci. 2021;22(13):6746.

31
Topouzi H, Logan NJ, Williams G, Higgins CA. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp Dermatol. 2017;26(6):491-496.

32
Quílez C, Cerdeira E, González-Rico J, et al. Evaluation of different methodologies for primary human dermal fibroblast spheroid formation: automation through 3D bioprinting technology. Biomed Mater. 2022;17:055002.

DOI

33
Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016;7(13):16948-16961.

34
Elliott K, Stephenson TJ, Messenger AG. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol. 1999;113(6):873-877.

35
Montero A, Acosta S, Hernández R, Elvira C, Jorcano JL, Velasco D. Contraction of fibrin-derived matrices and its implications for in vitro human skin bioengineering. J Biomed Mater Res A. 2021;109(4):500-514.

36
Abaci HE, Coffman A, Doucet Y, et al. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun. 2018;9(1):5301.

DOI

37
Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491-497.

38
Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol. 2006;126(7):1459-1468.

DOI

39
Morgan RG, Ridsdale J, Payne M, et al. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica. 2019;104(7):1365-1377.

40
Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface. 2009;6(30):1-10.

41
Jahoda CA, Mauger A, Bard S, Sengel P. Changes in fibronectin, laminin and type IV collagen distribution relate to basement membrane restructuring during the rat vibrissa follicle hair growth cycle. J Anat. 1992;181(pt 1):47-60.

42
Katsuoka K, Mauch C, Schell H, Hornstein OP, Krieg T. Collagen-type synthesis in human-hair papilla cells in culture. Arch Dermatol Res. 1988;280(3):140-144.

DOI

43
Langbein L, Schweizer J. Keratins of the human hair follicle. Int Rev Cytol. 2005;243:1-78.

44
Kiso M, Tanaka S, Saba R, et al. The disruption of Sox21-mediated hair shaft cuticle differentiation causes cyclic alopecia in mice. Proc Natl Acad Sci U S A. 2009;106(23):9292-9297.

45
Mesler AL, Veniaminova NA, Lull MV, Wong SY. Hair follicle terminal differentiation is orchestrated by distinct early and late matrix progenitors. Cell Rep. 2017;19(4):809-821.

Options
Outlines

/