MFG-E8 Accelerates Abdominal Aortic Aneurysm Formation by Enhancing ERK MAPK/NOX4 Axis-Associated Oxidative Stress

Jie Xiao , Hai Hu , Minghui Zou , Chenhao Li , Dawei Deng , Xing Chen , Jinping Liu

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70104

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70104 DOI: 10.1111/cpr.70104
LETTER TO THE EDITOR

MFG-E8 Accelerates Abdominal Aortic Aneurysm Formation by Enhancing ERK MAPK/NOX4 Axis-Associated Oxidative Stress

Author information +
History +
PDF

Cite this article

Download citation ▾
Jie Xiao, Hai Hu, Minghui Zou, Chenhao Li, Dawei Deng, Xing Chen, Jinping Liu. MFG-E8 Accelerates Abdominal Aortic Aneurysm Formation by Enhancing ERK MAPK/NOX4 Axis-Associated Oxidative Stress. Cell Proliferation, 2025, 58(10): e70104 DOI:10.1111/cpr.70104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Sakalihasan, J. B. Michel, A. Katsargyris, et al., “Abdominal Aortic Aneurysms,” Nature Reviews. Disease Primers 4 (2018): 34.

[2]

J. Golledge, “Abdominal Aortic Aneurysm: Update on Pathogenesis and Medical Treatments,” Nature Reviews. Cardiology 16 (2019): 225-242.

[3]

J. Gao, H. Cao, G. Hu, et al., “The Mechanism and Therapy of Aortic Aneurysms,” Signal Transduction and Targeted Therapy 8 (2023): 55.

[4]

S. Jana, M. Hu, M. Shen, and Z. Kassiri, “Extracellular Matrix, Regional Heterogeneity of the Aorta, and Aortic Aneurysm,” Experimental & Molecular Medicine 51 (2019): 1-15.

[5]

H. Sawada, D. L. Rateri, J. J. Moorleghen, M. W. Majesky, and A. Daugherty, “Smooth Muscle Cells Derived From Second Heart Field and Cardiac Neural Crest Reside in Spatially Distinct Domains in the Media of the Ascending Aorta-Brief Report,” Arteriosclerosis, Thrombosis, and Vascular Biology 37 (2017): 1722-1726.

[6]

R. A. Quintana and W. R. Taylor, “Cellular Mechanisms of Aortic Aneurysm Formation,” Circulation Research 124 (2019): 607-618.

[7]

H. Y. Chiang, P. H. Chu, S. C. Chen, et al., “MFG-E8 Promotes Osteogenic Transdifferentiation of Smooth Muscle Cells and Vascular Calcification by Regulating TGF-beta1 Signaling,” Communications Biology 5 (2022): 364.

[8]

Y. Ren, W. Liu, L. Zhang, et al., “Milk Fat Globule EGF Factor 8 Restores Mitochondrial Function via Integrin-Medicated Activation of the FAK-STAT3 Signaling Pathway in Acute Pancreatitis,” Clinical and Translational Medicine 11 (2021): e295.

[9]

J. Ren, B. Zhu, G. Gu, et al., “Schwann Cell-Derived Exosomes Containing MFG-E8 Modify Macrophage/Microglial Polarization for Attenuating Inflammation via the SOCS3/STAT3 Pathway After Spinal Cord Injury,” Cell Death & Disease 14 (2023): 70.

[10]

B. Liu, B. Zhang, J. Qi, et al., “Targeting MFGE8 Secreted by Cancer-Associated Fibroblasts Blocks Angiogenesis and Metastasis in Esophageal Squamous Cell Carcinoma,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2307914120.

[11]

L. Ni, L. Liu, W. Zhu, et al., “Inflammatory Role of Milk Fat Globule-Epidermal Growth Factor VIII in Age-Associated Arterial Remodeling,” Journal of the American Heart Association 11 (2022): e022574.

[12]

L. Zhang, R. Tian, X. Yao, et al., “Milk Fat Globule-Epidermal Growth Factor-Factor 8 Improves Hepatic Steatosis and Inflammation,” Hepatology 73 (2021): 586-605.

[13]

J. Cheng, R. Zhang, C. Li, et al., “A Targeting Nanotherapy for Abdominal Aortic Aneurysms,” Journal of the American College of Cardiology 72 (2018): 2591-2605.

[14]

J. Li, X. Li, S. Song, et al., “Mitochondria Spatially and Temporally Modulate VSMC Phenotypes via Interacting With Cytoskeleton in Cardiovascular Diseases,” Redox Biology 64 (2023): 102778.

[15]

K. L. Siu, Q. Li, Y. Zhang, et al., “NOX Isoforms in the Development of Abdominal Aortic Aneurysm,” Redox Biology 11 (2017): 118-125.

[16]

S. J. Forrester, G. W. Booz, C. D. Sigmund, et al., “Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology,” Physiological Reviews 98 (2018): 1627-1738.

[17]

Y. Zhang, P. Murugesan, K. Huang, and H. Cai, “NADPH Oxidases and Oxidase Crosstalk in Cardiovascular Diseases: Novel Therapeutic Targets,” Nature Reviews. Cardiology 17 (2020): 170-194.

[18]

C. Xu, J. Xu, C. Zou, et al., “Chronic Intermittent Hypoxia Regulates CaMKII-Dependent MAPK Signaling to Promote the Initiation of Abdominal Aortic Aneurysm,” Oxidative Medicine and Cellular Longevity 2021 (2021): 2502324.

[19]

S. Jin and P. M. Kang, “A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases,” Antioxidants (Basel) 13 (2024): 13.

[20]

S. Zheng, P. S. Tsao, and C. Pan, “Abdominal Aortic Aneurysm and Cardiometabolic Traits Share Strong Genetic Susceptibility to Lipid Metabolism and Inflammation,” Nature Communications 15 (2024): 5652.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/