Macrophage Efferocytosis as a Therapeutic Strategy in Intervertebral Disc Degeneration

Shijie Chen , Haijun Zhang , Zhaoheng Wang , Daxue Zhu , Yanhu Li , Yizhi Zhang , Dongxin Wang , Shuwei Chen , Huan Liu , Xuewen Kang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70068

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70068 DOI: 10.1111/cpr.70068
REVIEW

Macrophage Efferocytosis as a Therapeutic Strategy in Intervertebral Disc Degeneration

Author information +
History +
PDF

Abstract

In recent years, a growing number of studies have disclosed the substantial role of macrophages—key immune cells—in the pathological process of intervertebral disc degeneration. Researchers have categorised macrophage phenotypes into M1 and M2 polarisation, associating these polarisations with intervertebral disc degeneration. Essentially, macrophage phenotypes can be classified as either pro-inflammatory or anti-inflammatory. Induced by diverse factors, these distinct polarisation states exert contrary effects on disc injury and repair. Although numerous studies focus on the polarisation of macrophages and the cytokines they secrete in relation to intervertebral disc degeneration, these studies frequently neglect the relationship between the efferocytosis of macrophages and the progression of intervertebral disc degeneration. Efferocytosis is a specialised procedure in which phagocytes, such as macrophages, engulf and eliminate apoptotic cells. This process is crucial for maintaining tissue homeostasis and resolving inflammation. By effectively clearing these dying cells, efferocytosis helps prevent the release of potentially detrimental cellular contents, thereby facilitating healing and the resolution of inflammation. Simultaneously, macrophages digest the engulfed cell debris and release various cytokines that participate in tissue self-repair. Therefore, this article presents an overview of the molecular mechanisms connecting macrophages and their efferocytosis activity to intervertebral disc degeneration, explores new directions for the utilisation of macrophages in the treatment of intervertebral disc degeneration, and discusses the future prospects for the development of therapeutic targets.

Keywords

efferocytosis / intervertebral disc degeneration / macrophages / therapeutic strategy

Cite this article

Download citation ▾
Shijie Chen, Haijun Zhang, Zhaoheng Wang, Daxue Zhu, Yanhu Li, Yizhi Zhang, Dongxin Wang, Shuwei Chen, Huan Liu, Xuewen Kang. Macrophage Efferocytosis as a Therapeutic Strategy in Intervertebral Disc Degeneration. Cell Proliferation, 2025, 58(10): e70068 DOI:10.1111/cpr.70068

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. B. Andersson, “Epidemiological Features of Chronic Low-Back Pain,” Lancet 354 (1999): 581-585.

[2]

D. Hoy, L. March, P. Brooks, et al., “The Global Burden of Low Back Pain: Estimates From the Global Burden of Disease 2010 Study,” Annals of the Rheumatic Diseases 73 (2014): 968-974.

[3]

B. G. Peng, “Pathophysiology, Diagnosis, and Treatment of Discogenic Low Back Pain,” World Journal of Orthopedics 4 (2013): 42-52.

[4]

P. McCowin, D. Davis, T. Dina, A. Mark, and S. J. J. Wiesel, “Abnormal Magnetic-Resonance Scans of the Cervical Spine in Asymptomatic Subjects. A Prospective Investigation,” Journal of Bone and Joint Surgery 72 (1990): 1178.

[5]

T. Yurube, M. Ito, Y. Kakiuchi, R. Kuroda, and K. Kakutani, “Autophagy and mTOR Signaling During Intervertebral Disc Aging and Degeneration,” JOR Spine 3 (2020): e1082.

[6]

J. P. Urban and S. Roberts, “Degeneration of the Intervertebral Disc,” Arthritis Research & Therapy 5 (2003): 120-130.

[7]

J. Zindel and P. Kubes, “DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation,” Annual Review of Pathology 15 (2020): 493-518.

[8]

F. Ding, Z. W. Shao, and L. M. Xiong, “Cell Death in Intervertebral Disc Degeneration,” Apoptosis: An International Journal on Programmed Cell Death 18 (2013): 777-785.

[9]

H. E. Gruber and E. N. Hanley, “Analysis of Aging and Degeneration of the Human Intervertebral Disc. Comparison of Surgical Specimens With Normal Controls,” Spine 23, no. 7 (1998): 751-757, https://doi.org/10.1097/00007632-199804010-00001.

[10]

P. Jones, L. Gardner, J. Menage, G. T. Williams, and S. Roberts, “Intervertebral Disc Cells as Competent Phagocytes In Vitro: Implications for Cell Death in Disc Degeneration,” Arthritis Research & Therapy 10 (2008): R86.

[11]

S. Kumar and R. B. Birge, “Efferocytosis,” Current Biology: CB 26 (2016): R558-R559.

[12]

R. J. Cummings, G. Barbet, G. Bongers, et al., “Different Tissue Phagocytes Sample Apoptotic Cells to Direct Distinct Homeostasis Programs,” Nature 539 (2016): 565-569.

[13]

M. Rabinovitch, “Professional and Non-Professional Phagocytes: An Introduction,” Trends in Cell Biology 5 (1995): 85-87.

[14]

C. Gregory, “Cell Biology: Sent by the Scent of Death,” Nature 461 (2009): 181-182.

[15]

P. M. Henson, “Cell Removal: Efferocytosis,” Annual Review of Cell and Developmental Biology 33 (2017): 127-144.

[16]

V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson, “Exposure of Phosphatidylserine on the Surface of Apoptotic Lymphocytes Triggers Specific Recognition and Removal by Macrophages,” Journal of Immunology 148 (1992): 2207-2216.

[17]

S. Crunkhorn, “Promoting Efferocytosis Heals Diabetic Wounds,” Nature Reviews. Drug Discovery 21 (2022): 491.

[18]

R. W. Vandivier, P. M. Henson, and I. S. Douglas, “Burying the Dead: The Impact of Failed Apoptotic Cell Removal (Efferocytosis) on Chronic Inflammatory Lung Disease,” Chest 129 (2006): 1673.

[19]

A. L. McCubbrey and J. L. Curtis, “Efferocytosis and Lung Disease,” Chest 143 (2013): 1750-1757.

[20]

J. L. Simpson, P. G. Gibson, I. A. Yang, et al., “Impaired Macrophage Phagocytosis in Non-Eosinophilic Asthma,” Clinical and Experimental Allergy 43 (2013): 29.

[21]

Z. Yao, W. Qi, H. Zhang, et al., “Down-Regulated GAS6 Impairs Synovial Macrophage Efferocytosis and Promotes Obesity-Associated Osteoarthritis,” eLife 12 (2023): e83069, https://doi.org/10.7554/eLife.83069.

[22]

Z. Szondy, E. Garabuczi, G. Joós, G. J. Tsay, and Z. Sarang, “Impaired Clearance of Apoptotic Cells in Chronic Inflammatory Diseases: Therapeutic Implications,” Frontiers in Immunology 5 (2014): 354.

[23]

J. F. Kerr, A. H. Wyllie, and A. R. Currie, “Apoptosis: A Basic Biological Phenomenon With Wide-Ranging Implications in Tissue Kinetics,” British Journal of Cancer 26 (1972): 239.

[24]

V. Zlender, “Apoptosis—Programmed Cell Death,” Arhiv za Higijenu Rada i Toksikologiju 54 (2003): 267-274.

[25]

K. S. Ravichandran, “Find-Me and Eat-Me Signals in Apoptotic Cell Clearance: Progress and Conundrums,” Journal of Experimental Medicine 207 (2010): 1807-1817.

[26]

A. C. Doran, A. Yurdagul, and I. Tabas, “Efferocytosis in Health and Disease,” Nature Reviews. Immunology 20 (2020): 254-267.

[27]

K. Lauber, E. Bohn, S. M. Kröber, et al., “Apoptotic Cells Induce Migration of Phagocytes via Caspase-3-Mediated Release of a Lipid Attraction Signal,” Cell 113 (2003): 717-730.

[28]

D. R. Gude, S. E. Alvarez, S. W. Paugh, et al., “Apoptosis Induces Expression of Sphingosine Kinase 1 to Release Sphingosine-1-Phosphate as a ‘Come-And-Get-Me’ Signal,” FASEB Journal 22 (2008): 2629-2638.

[29]

M. R. Elliott, F. B. Chekeni, P. C. Trampont, et al., “Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal to Promote Phagocytic Clearance,” Nature 461 (2009): 282-286.

[30]

L. A. Truman, C. A. Ford, M. Pasikowska, et al., “CX3CL1/Fractalkine Is Released From Apoptotic Lymphocytes to Stimulate Macrophage Chemotaxis,” Blood 112 (2008): 5026-5036.

[31]

R. B. Mueller, A. Sheriff, U. S. Gaipl, S. Wesselborg, and K. Lauber, “Attraction of Phagocytes by Apoptotic Cells Is Mediated by Lysophosphatidylcholine,” Autoimmunity 40 (2007): 342-344.

[32]

I. I. Singer, M. Tian, L. A. Wickham, et al., “Sphingosine-1-Phosphate Agonists Increase Macrophage Homing, Lymphocyte Contacts, and Endothelial Functional Complex Formation in Murine Lymph Nodes,” Journal of Immunology 175, no. 11 (2005): 7151-7161, https://doi.org/10.4049/jimmunol.175.11.7151.

[33]

C. B. Medina and K. S. Ravichandran, “Do Not Let Death Do us Part: ‘Find-Me’ Signals in Communication Between Dying Cells and the Phagocytes,” Cell Death and Differentiation 23 (2016): 979-989.

[34]

N. Murakami, T. Yokomizo, T. Okuno, and T. Shimizu, “G2A Is a Proton-Sensing G-Protein-Coupled Receptor Antagonized by Lysophosphatidylcholine,” Journal of Biological Chemistry 279 (2004): 42484-42491.

[35]

C. S. Garris, L. Wu, S. Acharya, et al., “Defective Sphingosine 1-Phosphate Receptor 1 (S1P1) Phosphorylation Exacerbates TH17-Mediated Autoimmune Neuroinflammation,” Nature Immunology 14 (2013): 1166-1172.

[36]

W. H. Moolenaar and T. Hla, “SnapShot: Bioactive Lysophospholipids,” Cell 148 (2012): 378-378.e2.

[37]

F. B. Chekeni, M. R. Elliott, J. K. Sandilos, et al., “Pannexin 1 Channels Mediate ‘Find-Me’ Signal Release and Membrane Permeability During Apoptosis,” Nature 467 (2010): 863-867.

[38]

C. Marques-da-Silva, G. Burnstock, D. M. Ojcius, and R. Coutinho-Silva, “Purinergic Receptor Agonists Modulate Phagocytosis and Clearance of Apoptotic Cells in Macrophages,” Immunobiology 216 (2011): 1-11.

[39]

S. Koizumi, Y. Shigemoto-Mogami, K. Nasu-Tada, et al., “UDP Acting at P2Y6 Receptors Is a Mediator of Microglial Phagocytosis,” Nature 446 (2007): 1091-1095.

[40]

M. Lovászi, C. Branco Haas, L. Antonioli, P. Pacher, and G. Haskó, “The Role of P2Y Receptors in Regulating Immunity and Metabolism,” Biochemical Pharmacology 187 (2021): 114419.

[41]

A. D. Luster, “Chemokines—Chemotactic Cytokines That Mediate Inflammation,” New England Journal of Medicine 338, no. 7 (1998): 436-445, https://doi.org/10.1056/NEJM199802123380706.

[42]

IUIS/WHO Subcommittee on Chemokine Nomenclature, “Chemokine/Chemokine Receptor Nomenclature,” Cytokine 21 (2003): 48.

[43]

S. M. Pontejo and P. M. Murphy, “Chemokines and Phosphatidylserine: New Binding Partners for Apoptotic Cell Clearance,” Frontiers in Cell and Developmental Biology 10 (2022): 943590.

[44]

K. Bacon, M. Baggiolini, H. Broxmeyer, et al., “Chemokine/Chemokine Receptor Nomenclature,” Journal of Interferon & Cytokine Research 22 (2002): 1067.

[45]

C. Combadiere, K. Salzwedel, E. D. Smith, H. L. Tiffany, E. A. Berger, and P. M. Murphy, “Identification of CX3CR1. A Chemotactic Receptor for the Human CX3C Chemokine Fractalkine and a Fusion Coreceptor for HIV-1,” Journal of Biological Chemistry 273 (1998): 23799-23804.

[46]

M. Miksa, D. Amin, R. Wu, T. S. Ravikumar, and P. Wang, “Fractalkine-Induced MFG-E8 Leads to Enhanced Apoptotic Cell Clearance by Macrophages,” Molecular Medicine 13 (2007): 553.

[47]

R. Janssens, S. Struyf, and P. Proost, “The Unique Structural and Functional Features of CXCL12,” Cellular & Molecular Immunology 15 (2018): 299-311.

[48]

V. Amsellem, S. Abid, L. Poupel, et al., “Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine Systems in Hypoxic Pulmonary Hypertension,” American Journal of Respiratory Cell and Molecular Biology 56 (2017): 597-608.

[49]

L. Borsig, M. J. Wolf, M. Roblek, A. Lorentzen, and M. Heikenwalder, “Inflammatory Chemokines and Metastasis-Tracing the Accessory,” Oncogene 33 (2014): 3217.

[50]

E. Boada-Romero, J. Martinez, B. L. Heckmann, and D. R. Green, “The Clearance of Dead Cells by Efferocytosis,” Nature Reviews. Molecular Cell Biology 21 (2020): 398.

[51]

K. Horino, H. Nishiura, T. Ohsako, et al., “A Monocyte Chemotactic Factor, S19 Ribosomal Protein Dimer, in Phagocytic Clearance of Apoptotic Cells,” Laboratory Investigation; a Journal of Technical Methods and Pathology 78 (1998): 603-617.

[52]

T. Yamamoto, “Roles of the Ribosomal Protein S19 Dimer and the C5a Receptor in Pathophysiological Functions of Phagocytic Leukocytes,” Pathology International 57 (2007): 1-11.

[53]

U. E. Knies, H. A. Behrensdorf, C. A. Mitchell, et al., “Regulation of Endothelial Monocyte-Activating Polypeptide II Release by Apoptosis,” Proceedings of the National Academy of Sciences of the United States of America 95 (1998): 12322.

[54]

A. C. Berger, H. R. Alexander, G. Tang, et al., “Endothelial Monocyte Activating Polypeptide II Induces Endothelial Cell Apoptosis and May Inhibit Tumor Angiogenesis,” Microvascular Research 60 (2000): 70-80.

[55]

A. Krispin, Y. Bledi, M. Atallah, et al., “Apoptotic Cell Thrombospondin-1 and Heparin-Binding Domain Lead to Dendritic-Cell Phagocytic and Tolerizing States,” Blood 108 (2006): 3580-3589.

[56]

P. J. Mansfield and S. J. Suchard, “Thrombospondin Promotes Chemotaxis and Haptotaxis of Human Peripheral Blood Monocytes,” Journal of Immunology 153 (1994): 4219.

[57]

P. Friedl, P. Vischer, and M. A. Freyberg, “The Role of Thrombospondin-1 in Apoptosis,” Cellular and Molecular Life Sciences 59 (2002): 1347-1357.

[58]

C. Segundo, F. Medina, C. Rodríguez, R. Martínez-Palencia, F. Leyva-Cobián, and J. A. Brieva, “Surface Molecule Loss and Bleb Formation by Human Germinal Center B Cells Undergoing Apoptosis: Role of Apoptotic Blebs in Monocyte Chemotaxis,” Blood 94 (1999): 1012.

[59]

S. P. Cullen, C. M. Henry, C. J. Kearney, et al., “Fas/CD95-Induced Chemokines Can Serve as ‘Find-Me’ Signals for Apoptotic Cells,” Molecular Cell 49 (2013): 1034-1048.

[60]

H. Hiyoshi, B. C. English, V. E. Diaz-Ochoa, et al., “Virulence Factors Perforate the Pathogen-Containing Vacuole to Signal Efferocytosis,” Cell Host & Microbe 30 (2022): 163-170.e6.

[61]

C. Peter, M. Waibel, C. G. Radu, et al., “Migration to Apoptotic ‘Find-Me’ Signals Is Mediated via the Phagocyte Receptor G2A,” Journal of Biological Chemistry 283 (2008): 5296-5305.

[62]

A. Weigert, A. M. Johann, A. von Knethen, H. Schmidt, G. Geisslinger, and B. Brüne, “Apoptotic Cells Promote Macrophage Survival by Releasing the Antiapoptotic Mediator Sphingosine-1-Phosphate,” Blood 108 (2006): 1635-1642.

[63]

D. Myrtek and M. Idzko, “Chemotactic Activity of Extracellular Nucleotides on Human Immune Cells,” Purinergic Signalling 3 (2007): 5-11.

[64]

F. Di Virgilio, P. Chiozzi, D. Ferrari, et al., “Nucleotide Receptors: An Emerging Family of Regulatory Molecules in Blood Cells,” Blood 97 (2001): 587-600.

[65]

G. T. Kim, K. W. Hahn, K. Y. Sohn, S. Y. Yoon, and J. W. Kim, “PLAG Enhances Macrophage Mobility for Efferocytosis of Apoptotic Neutrophils via Membrane Redistribution of P2Y2,” FEBS Journal 286, no. 24 (2019): 5016-5029, https://doi.org/10.1111/febs.15135.

[66]

J. Korbecki, K. Barczak, I. Gutowska, D. Chlubek, and I. Baranowska-Bosiacka, “CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space,” International Journal of Molecular Sciences 23, no. 2 (2022): 792, https://doi.org/10.3390/ijms23020792.

[67]

T. Nishimura, K. Horino, H. Nishiura, et al., “Apoptotic Cells of an Epithelial Cell Line, AsPC-1, Release Monocyte Chemotactic S19 Ribosomal Protein Dimer,” Journal of Biochemistry 129 (2001): 445-454.

[68]

K. Segawa and S. Nagata, “An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure,” Trends in Cell Biology 25 (2015): 639-650.

[69]

S. Nagata, J. Suzuki, K. Segawa, and T. Fujii, “Exposure of Phosphatidylserine on the Cell Surface,” Cell Death and Differentiation 23 (2016): 952-961.

[70]

R. B. Birge, S. Boeltz, S. Kumar, et al., “Phosphatidylserine Is a Global Immunosuppressive Signal in Efferocytosis, Infectious Disease, and Cancer,” Cell Death and Differentiation 23 (2016): 962-978.

[71]

D. Park, A. C. Tosello-Trampont, M. R. Elliott, et al., “BAI1 Is an Engulfment Receptor for Apoptotic Cells Upstream of the ELMO/Dock180/Rac Module,” Nature 450 (2007): 430-434.

[72]

N. Kobayashi, P. Karisola, V. Peña-Cruz, et al., “TIM-1 and TIM-4 Glycoproteins Bind Phosphatidylserine and Mediate Uptake of Apoptotic Cells,” Immunity 27 (2007): 927-940.

[73]

S. Y. Park, M. Y. Jung, H. J. Kim, et al., “Rapid Cell Corpse Clearance by Stabilin-2, a Membrane Phosphatidylserine Receptor,” Cell Death and Differentiation 15 (2008): 192-201.

[74]

A. Friggeri, S. Banerjee, S. Biswas, et al., “Participation of the Receptor for Advanced Glycation End Products in Efferocytosis,” Journal of Immunology 186 (2011): 6191-6198.

[75]

D. Vorselen, “Dynamics of Phagocytosis Mediated by Phosphatidylserine,” Biochemical Society Transactions 50 (2022): 1281-1291.

[76]

H. M. Meesmann, E. M. Fehr, S. Kierschke, et al., “Decrease of Sialic Acid Residues as an Eat-Me Signal on the Surface of Apoptotic Lymphocytes,” Journal of Cell Science 123 (2010): 3347-3356.

[77]

S. J. Gardai, K. A. McPhillips, S. C. Frasch, et al., “Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells Through Trans-Activation of LRP on the Phagocyte,” Cell 123 (2005): 321-334.

[78]

H. A. Anderson, C. A. Maylock, J. A. Williams, C. P. Paweletz, H. Shu, and E. Shacter, “Serum-Derived Protein S Binds to Phosphatidylserine and Stimulates the Phagocytosis of Apoptotic Cells,” Nature Immunology 4 (2003): 87-91.

[79]

W. Li, “Eat-Me Signals: Keys to Molecular Phagocyte Biology and ‘Appetite’ Control,” Journal of Cellular Physiology 227 (2012): 1291-1297.

[80]

R. Hanayama, M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu, and S. Nagata, “Identification of a Factor That Links Apoptotic Cells to Phagocytes,” Nature 417 (2002): 182-187.

[81]

S. Arur, U. E. Uche, K. Rezaul, et al., “Annexin I Is an Endogenous Ligand That Mediates Apoptotic Cell Engulfment,” Developmental Cell 4 (2003): 587-598.

[82]

K. Balasubramanian, J. Chandra, and A. J. Schroit, “Immune Clearance of Phosphatidylserine-Expressing Cells by Phagocytes. The Role of beta2-Glycoprotein I in Macrophage Recognition,” Journal of Biological Chemistry 272 (1997): 31113-31117.

[83]

P. A. Oldenborg, A. Zheleznyak, Y. F. Fang, C. F. Lagenaur, H. D. Gresham, and F. P. Lindberg, “Role of CD47 as a Marker of Self on Red Blood Cells,” Science (New York, N.Y.) 288 (2000): 2051.

[84]

S. Brown, I. Heinisch, E. Ross, K. Shaw, C. D. Buckley, and J. Savill, “Apoptosis Disables CD31-Mediated Cell Detachment From Phagocytes Promoting Binding and Engulfment,” Nature 418 (2002): 200-203.

[85]

V. R. Simhadri, J. F. Andersen, E. Calvo, S. C. Choi, J. E. Coligan, and F. Borrego, “Human CD300a Binds to Phosphatidylethanolamine and Phosphatidylserine, and Modulates the Phagocytosis of Dead Cells,” Blood 119 (2012): 2799-2809.

[86]

O. H. Voss, L. Tian, Y. Murakami, J. E. Coligan, and K. Krzewski, “Emerging Role of CD300 Receptors in Regulating Myeloid Cell Efferocytosis,” Molecular & Cellular Oncology 2 (2015): e964625.

[87]

S. M. Kelley and K. S. Ravichandran, “Putting the Brakes on Phagocytosis: ‘Don't-Eat-Me’ Signaling in Physiology and Disease,” EMBO Reports 22 (2021): e52564.

[88]

T. Le, I. Ferling, L. Qiu, et al., “Redistribution of the Glycocalyx Exposes Phagocytic Determinants on Apoptotic Cells,” Developmental Cell 59 (2024): 853-868.e7.

[89]

C. Rosales and E. Uribe-Querol, “Phagocytosis: A Fundamental Process in Immunity,” BioMed Research International 2017 (2017): 9042851.

[90]

D. M. Richards and R. G. Endres, “The Mechanism of Phagocytosis: Two Stages of Engulfment,” Biophysical Journal 107 (2014): 1542-1553.

[91]

M. Krendel and N. C. Gauthier, “Building the Phagocytic Cup on an Actin Scaffold,” Current Opinion in Cell Biology 77 (2022): 102112.

[92]

A. M. Fond and K. S. Ravichandran, “Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis,” Advances in Experimental Medicine and Biology 930 (2016): 25.

[93]

H. J. Lee, Y. Woo, T. W. Hahn, Y. M. Jung, and Y. J. Jung, “Formation and Maturation of the Phagosome: A Key Mechanism in Innate Immunity Against Intracellular Bacterial Infection,” Microorganisms 8 (2020): 1298.

[94]

A. M. Pauwels, M. Trost, R. Beyaert, and E. Hoffmann, “Patterns, Receptors, and Signals: Regulation of Phagosome Maturation,” Trends in Immunology 38 (2017): 407-422.

[95]

R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, J. R. Kalden, and I. J. N. Girkontaite, “Immunosuppressive Effects of Apoptotic Cells,” Nature 390 (1997): 350-351.

[96]

M. Lucas, L. M. Stuart, A. Zhang, et al., “Requirements for Apoptotic Cell Contact in Regulation of Macrophage Responses,” Journal of Immunology 177 (2006): 4047.

[97]

N. Ipseiz, S. Uderhardt, C. Scholtysek, et al., “The Nuclear Receptor Nr4a1 Mediates Anti-Inflammatory Effects of Apoptotic Cells,” Journal of Immunology 192 (2014): 4852-4858.

[98]

S. Kim, K. B. Elkon, and X. Ma, “Transcriptional Suppression of Interleukin-12 Gene Expression Following Phagocytosis of Apoptotic Cells,” Immunity 21 (2004): 643-653.

[99]

L. Campana, P. J. Starkey Lewis, A. Pellicoro, et al., “The STAT3-IL-10-IL-6 Pathway Is a Novel Regulator of Macrophage Efferocytosis and Phenotypic Conversion in Sterile Liver Injury,” Journal of Immunology 200 (2018): 1169.

[100]

M. Saraiva, P. Vieira, and A. O'Garra, “Biology and Therapeutic Potential of Interleukin-10,” Journal of Experimental Medicine 217, no. 1 (2020): e20190418, https://doi.org/10.1084/jem.20190418.

[101]

A. King, S. Balaji, L. D. Le, T. M. Crombleholme, and S. G. Keswani, “Regenerative Wound Healing: The Role of Interleukin-10,” Advances in Wound Care 3 (2014): 315-323.

[102]

S. Balaji, X. Wang, A. King, et al., “Interleukin-10-Mediated Regenerative Postnatal Tissue Repair Is Dependent on Regulation of Hyaluronan Metabolism via Fibroblast-Specific STAT3 Signaling,” FASEB Journal 31, no. 3 (2017): 868-881, https://doi.org/10.1096/fj.201600856R.

[103]

Z. Ling, C. Yang, J. Tan, C. Dou, and Y. Chen, “Beyond Immunosuppressive Effects: Dual Roles of Myeloid-Derived Suppressor Cells in Bone-Related Diseases,” Cellular and Molecular Life Sciences 78 (2021): 7161-7183.

[104]

V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages That Have Ingested Apoptotic Cells In Vitro Inhibit Proinflammatory Cytokine Production Through Autocrine/Paracrine Mechanisms Involving TGF-Beta, PGE2, and PAF,” Journal of Clinical Investigation 101 (1998): 890-898.

[105]

M. L. Huynh, V. A. Fadok, and P. M. Henson, “Phosphatidylserine-Dependent Ingestion of Apoptotic Cells Promotes TGF-beta1 Secretion and the Resolution of Inflammation,” Journal of Clinical Investigation 109 (2002): 41.

[106]

Z. Liao, H. Lan, X. Jian, et al., “Myofiber Directs Macrophages IL-10-Vav1-Rac1 Efferocytosis Pathway in Inflamed Muscle Following CTX Myoinjury by Activating the Intrinsic TGF-β Signaling,” Cell Communication and Signaling 21 (2023): 168.

[107]

C. N. Serhan and J. Savill, “Resolution of Inflammation: The Beginning Programs the End,” Nature Immunology 6 (2005): 1191-1197.

[108]

C. Yin and B. Heit, “Cellular Responses to the Efferocytosis of Apoptotic Cells,” Frontiers in Immunology 12 (2021): 631714.

[109]

S. Morioka, J. S. A. Perry, M. H. Raymond, et al., “Efferocytosis Induces a Novel SLC Program to Promote Glucose Uptake and Lactate Release,” Nature 563 (2018): 714-718.

[110]

S. Zhang, S. Weinberg, M. DeBerge, et al., “Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair,” Cell Metabolism 29 (2019): 443-456.e5.

[111]

J. Lin, A. Xu, J. Jin, et al., “MerTK-Mediated Efferocytosis Promotes Immune Tolerance and Tumor Progression in Osteosarcoma Through Enhancing M2 Polarization and PD-L1 Expression,” Oncoimmunology 11 (2022): 2024941.

[112]

Y. T. Wei, X. R. Wang, C. Yan, et al., “Thymosin α-1 Reverses M2 Polarization of Tumor-Associated Macrophages During Efferocytosis,” Cancer Research 82 (2022): 1991-2002.

[113]

B. D. Gerlach, P. B. Ampomah, A. Yurdagul, et al., “Efferocytosis Induces Macrophage Proliferation to Help Resolve Tissue Injury,” Cell Metabolism 33 (2021): 2445-2463.e8.

[114]

M. Schilperoort, D. Ngai, M. Katerelos, D. A. Power, and I. Tabas, “PFKFB2-Mediated Glycolysis Promotes Lactate-Driven Continual Efferocytosis by Macrophages,” Nature Metabolism 5 (2023): 431-444.

[115]

D. Ngai, M. Schilperoort, and I. Tabas, “Efferocytosis-Induced Lactate Enables the Proliferation of pro-Resolving Macrophages to Mediate Tissue Repair,” Nature Metabolism 5 (2023): 2206-2219.

[116]

R. D. Bowles and L. A. Setton, “Biomaterials for Intervertebral Disc Regeneration and Repair,” Biomaterials 129 (2017): 54-67.

[117]

N. Al Qtaish, I. Gallego, I. Villate-Beitia, et al., “Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues,” Pharmaceutics 12, no. 3 (2020): 198, https://doi.org/10.3390/pharmaceutics12030198.

[118]

A. G. Nerlich, C. Weiler, J. Zipperer, M. Narozny, and N. Boos, “Immunolocalization of Phagocytic Cells in Normal and Degenerated Intervertebral Discs,” Spine 27 (2002): 2484-2490.

[119]

J. Wan and X. S. Zhang, “Pre-Operative Blood Test for Antibody to Nucleus Pulposus May Distinguish Types of Lumbar Disc Herniation,” Medical Hypotheses 75 (2010): 464-465.

[120]

S. Han, Y. Zhang, X. Zhang, et al., “Single-Cell RNA Sequencing of the Nucleus Pulposus Reveals Chondrocyte Differentiation and Regulation in Intervertebral Disc Degeneration,” Frontiers in Cell and Developmental Biology 10 (2022): 824771.

[121]

P. Feng, Y. Che, C. Gao, L. Zhu, J. Gao, and N. V. Vo, “Immune Exposure: How Macrophages Interact With the Nucleus Pulposus,” Frontiers in Immunology 14 (2023): 1155746.

[122]

K. Murai, D. Sakai, Y. Nakamura, et al., “Primary Immune System Responders to Nucleus Pulposus Cells: Evidence for Immune Response in Disc Herniation,” European Cells and Materials 19 (2010): 13.

[123]

L. I. Kauppila, “Ingrowth of Blood Vessels in Disc Degeneration. Angiographic and Histological Studies of Cadaveric Spines,” Journal of Bone and Joint Surgery. American Volume 77 (1995): 26.

[124]

J. Koroth, E. O. Buko, R. Abbott, et al., “Macrophages and Intervertebral Disc Degeneration,” International Journal of Molecular Sciences 24, no. 2 (2023): 1367, https://doi.org/10.3390/ijms24021367.

[125]

Z. Dong, C. Yang, J. Tan, C. Dou, and Y. Chen, “Modulation of SIRT6 Activity Acts as an Emerging Therapeutic Implication for Pathological Disorders in the Skeletal System,” Genes & Diseases 10 (2023): 864-876.

[126]

M. F. Shamji, L. A. Setton, W. Jarvis, et al., “Proinflammatory Cytokine Expression Profile in Degenerated and Herniated Human Intervertebral Disc Tissues,” Arthritis and Rheumatism 62 (2010): 1974-1982.

[127]

K. R. Nakazawa, B. A. Walter, D. M. Laudier, et al., “Accumulation and Localization of Macrophage Phenotypes With Human Intervertebral Disc Degeneration,” Spine Journal 18 (2018): 343-356.

[128]

J. Virri, M. Grönblad, S. Seitsalo, A. Habtemariam, E. Kääpä, and E. Karaharju, “Comparison of the Prevalence of Inflammatory Cells in Subtypes of Disc Herniations and Associations With Straight Leg Raising,” Spine 26 (2001): 2311-2315.

[129]

S. Lee, M. Millecamps, D. Z. Foster, and L. S. Stone, “Long-Term Histological Analysis of Innervation and Macrophage Infiltration in a Mouse Model of Intervertebral Disc Injury-Induced Low Back Pain,” Journal of Orthopaedic Research 38 (2020): 1238-1247.

[130]

X. C. Li, S. J. Luo, W. Fan, et al., “Macrophage Polarization Regulates Intervertebral Disc Degeneration by Modulating Cell Proliferation, Inflammation Mediator Secretion, and Extracellular Matrix Metabolism,” Frontiers in Immunology 13 (2022): 922173.

[131]

M. Nakawaki, K. Uchida, M. Miyagi, et al., “Sequential CCL2 Expression Profile After Disc Injury in Mice,” Journal of Orthopaedic Research 38 (2020): 895-901.

[132]

M. Nakawaki, K. Uchida, M. Miyagi, et al., “Changes in Nerve Growth Factor Expression and Macrophage Phenotype Following Intervertebral Disc Injury in Mice,” Journal of Orthopaedic Research 37 (2019): 1798-1804.

[133]

Y. Yokozeki, A. Kawakubo, M. Miyagi, et al., “Reduced TGF-β Expression and CD206-Positive Resident Macrophages in the Intervertebral Discs of Aged Mice,” BioMed Research International 2021 (2021): 7988320.

[134]

C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, “M-1/M-2 Macrophages and the Th1/Th2 Paradigm,” Journal of Immunology 164 (2000): 6166-6173.

[135]

D. M. Mosser and J. P. Edwards, “Exploring the Full Spectrum of Macrophage Activation,” Nature Reviews. Immunology 8 (2008): 958-969.

[136]

P. J. Murray, J. E. Allen, S. K. Biswas, et al., “Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines,” Immunity 41 (2014): 14-20.

[137]

G. B. Mackaness, “Cellular Resistance to Infection,” Journal of Experimental Medicine 116 (1962): 381-406.

[138]

H. Lee, M. B. Fessler, P. Qu, J. Heymann, and J. B. Kopp, “Macrophage Polarization in Innate Immune Responses Contributing to Pathogenesis of Chronic Kidney Disease,” BMC Nephrology 21 (2020): 270.

[139]

T. Xia, S. Fu, R. Yang, et al., “Advances in the Study of Macrophage Polarization in Inflammatory Immune Skin Diseases,” Journal of Inflammation 20 (2023): 33.

[140]

A. A. Tarique, J. Logan, E. Thomas, P. G. Holt, P. D. Sly, and E. Fantino, “Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages,” American Journal of Respiratory Cell and Molecular Biology 53 (2015): 676-688.

[141]

X. Dou, Q. Luo, L. Xie, et al., “Medical Prospect of Melatonin in the Intervertebral Disc Degeneration Through Inhibiting M1-Type Macrophage Polarization via SIRT1/Notch Signaling Pathway,” Biomedicine 11 (2023): 1615.

[142]

C. Fan, W. Wang, Z. Yu, et al., “M1 Macrophage-Derived Exosomes Promote Intervertebral Disc Degeneration by Enhancing Nucleus Pulposus Cell Senescence Through LCN2/NF-κB Signaling Axis,” Journal of Nanobiotechnology 22 (2024): 301.

[143]

X. Zhao, Z. Sun, B. Xu, et al., “Degenerated Nucleus Pulposus Cells Derived Exosome Carrying miR-27a-3p Aggravates Intervertebral Disc Degeneration by Inducing M1 Polarization of Macrophages,” Journal of Nanobiotechnology 21 (2023): 317.

[144]

H. Cheng, Q. Guo, H. Zhao, et al., “An Injectable Hydrogel Scaffold Loaded With Dual-Drug/Sustained-Release PLGA Microspheres for the Regulation of Macrophage Polarization in the Treatment of Intervertebral Disc Degeneration,” International Journal of Molecular Sciences 24, no. 1 (2022): 390, https://doi.org/10.3390/ijms24010390.

[145]

S. C. Funes, M. Rios, J. Escobar-Vera, and A. M. Kalergis, “Implications of Macrophage Polarization in Autoimmunity,” Immunology 154 (2018): 186-195.

[146]

X. C. Li, W. Wang, C. Jiang, et al., “CD206(+) M2-Like Macrophages Protect Against Intervertebral Disc Degeneration Partially by Targeting R-Spondin-2,” Osteoarthritis and Cartilage 32 (2024): 66-81.

[147]

X. C. Li, S. J. Luo, W. Fan, T. L. Zhou, C. M. Huang, and M. S. Wang, “M2 Macrophage-Conditioned Medium Inhibits Intervertebral Disc Degeneration in a Tumor Necrosis Factor-α-Rich Environment,” Journal of Orthopaedic Research 40 (2022): 2488-2501.

[148]

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The Chemokine System in Diverse Forms of Macrophage Activation and Polarization,” Trends in Immunology 25 (2004): 677-686.

[149]

F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage Activation and Polarization,” Frontiers in Bioscience: A Journal and Virtual Library 13 (2008): 453-461, https://doi.org/10.2741/2692.

[150]

S. Colin, G. Chinetti-Gbaguidi, and B. Staels, “Macrophage Phenotypes in Atherosclerosis,” Immunological Reviews 262 (2014): 153-166.

[151]

J. C. Gensel and B. Zhang, “Macrophage Activation and Its Role in Repair and Pathology After Spinal Cord Injury,” Brain Research 1619 (2015): 1-11.

[152]

Q. Wang, H. Ni, L. Lan, X. Wei, R. Xiang, and Y. Wang, “Fra-1 Protooncogene Regulates IL-6 Expression in Macrophages and Promotes the Generation of M2d Macrophages,” Cell Research 20 (2010): 701-712.

[153]

S. J. Forbes and N. Rosenthal, “Preparing the Ground for Tissue Regeneration: From Mechanism to Therapy,” Nature Medicine 20 (2014): 857-869.

[154]

T. Rőszer, “Understanding the Mysterious M2 Macrophage Through Activation Markers and Effector Mechanisms,” Mediators of Inflammation 2015 (2015): 816460.

[155]

T. A. Wynn and K. M. Vannella, “Macrophages in Tissue Repair, Regeneration, and Fibrosis,” Immunity 44 (2016): 450-462.

[156]

L. Li, K. Wei, Y. Ding, et al., “M2a Macrophage-Secreted CHI3L1 Promotes Extracellular Matrix Metabolic Imbalances via Activation of IL-13Rα2/MAPK Pathway in Rat Intervertebral Disc Degeneration,” Frontiers in Immunology 12 (2021): 666361.

[157]

L. X. Wang, S. X. Zhang, H. J. Wu, X. L. Rong, and J. Guo, “M2b Macrophage Polarization and Its Roles in Diseases,” Journal of Leukocyte Biology 106 (2019): 345-358.

[158]

C. F. Anderson and D. M. Mosser, “A Novel Phenotype for an Activated Macrophage: The Type 2 Activated Macrophage,” Journal of Leukocyte Biology 72 (2002): 101-106.

[159]

A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, et al., “Macrophage Plasticity, Polarization, and Function in Health and Disease,” Journal of Cellular Physiology 233 (2018): 6425.

[160]

C. A. Ambarus, K. C. Santegoets, L. van Bon, et al., “Soluble Immune Complexes Shift the TLR-Induced Cytokine Production of Distinct Polarized Human Macrophage Subsets Towards IL-10,” PLoS One 7, no. 4 (2012): e35994, https://doi.org/10.1371/journal.pone.0035994.

[161]

I. Ito, A. Asai, S. Suzuki, M. Kobayashi, and F. Suzuki, “M2b Macrophage Polarization Accompanied With Reduction of Long Noncoding RNA GAS5,” Biochemical and Biophysical Research Communications 493 (2017): 170-175.

[162]

S. M. Ohlsson, C. P. Linge, B. Gullstrand, et al., “Serum From Patients With Systemic Vasculitis Induces Alternatively Activated Macrophage M2c Polarization,” Clinical Immunology 152 (2014): 10.

[163]

Y. Liu, M. Xue, Y. Han, et al., “Exosomes From M2c Macrophages Alleviate Intervertebral Disc Degeneration by Promoting Synthesis of the Extracellular Matrix via MiR-124/CILP/TGF-β,” Bioengineering & Translational Medicine 8 (2023): e10500.

[164]

C. Atri, F. Z. Guerfali, and D. Laouini, “Role of Human Macrophage Polarization in Inflammation During Infectious Diseases,” International Journal of Molecular Sciences 19 (2018): 1801.

[165]

J. Bystrom, I. Evans, J. Newson, et al., “Resolution-Phase Macrophages Possess a Unique Inflammatory Phenotype That Is Controlled by cAMP,” Blood 112 (2008): 4117-4127.

[166]

H. Zhang, D. Cai, and X. Bai, “Macrophages Regulate the Progression of Osteoarthritis,” Osteoarthritis and Cartilage 28 (2020): 555-561.

[167]

J. Ge, Q. Yan, Y. Wang, et al., “IL-10 Delays the Degeneration of Intervertebral Discs by Suppressing the p38 MAPK Signaling Pathway,” Free Radical Biology & Medicine 147 (2020): 262-270.

[168]

T. Xiang, C. Yang, Z. Deng, D. Sun, F. Luo, and Y. Chen, “Krüppel-Like Factors Family in Health and Disease,” MedComm 5 (2024): e723.

[169]

S. Chen, S. Liu, K. Ma, L. Zhao, H. Lin, and Z. Shao, “TGF-β Signaling in Intervertebral Disc Health and Disease,” Osteoarthritis and Cartilage 27 (2019): 1109-1117.

[170]

F. J. Lyu, H. Cui, H. Pan, et al., “Painful Intervertebral Disc Degeneration and Inflammation: From Laboratory Evidence to Clinical Interventions,” Bone Research 9 (2021): 7.

[171]

P. M. Vidal, E. Lemmens, D. Dooley, and S. Hendrix, “The Role of ‘Anti-Inflammatory’ Cytokines in Axon Regeneration,” Cytokine & Growth Factor Reviews 24 (2013): 1-12.

[172]

M. Quiros, H. Nishio, P. A. Neumann, et al., “Macrophage-Derived IL-10 Mediates Mucosal Repair by Epithelial WISP-1 Signaling,” Journal of Clinical Investigation 127 (2017): 3510-3520.

[173]

C. Cunha, C. R. Almeida, M. I. Almeida, et al., “Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration,” Stem Cells Translational Medicine 6 (2017): 1029-1039.

[174]

K. Y. Howangyin, I. Zlatanova, C. Pinto, et al., “Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor,” Circulation 133 (2016): 826-839.

[175]

K. E. Glinton, W. Ma, C. Lantz, et al., “Macrophage-Produced VEGFC Is Induced by Efferocytosis to Ameliorate Cardiac Injury and Inflammation,” Journal of Clinical Investigation 132, no. 9 (2022): e140685.

[176]

N. Nacu, I. G. Luzina, K. Highsmith, et al., “Macrophages Produce TGF-Beta-Induced (Beta-Ig-h3) Following Ingestion of Apoptotic Cells and Regulate MMP14 Levels and Collagen Turnover in Fibroblasts,” Journal of Immunology 180 (2008): 5036.

[177]

E. S. Silagi, E. Schipani, I. M. Shapiro, and M. V. Risbud, “The Role of HIF Proteins in Maintaining the Metabolic Health of the Intervertebral Disc,” Nature Reviews Rheumatology 17 (2021): 426-439.

[178]

Y. T. Wang, A. J. Trzeciak, W. S. Rojas, et al., “Metabolic Adaptation Supports Enhanced Macrophage Efferocytosis in Limited-Oxygen Environments,” Cell Metabolism 35 (2023): 316-331.e6.

[179]

F. Li, Y. Bai, Z. Guan, et al., “Dexmedetomidine Attenuates Sepsis-Associated Acute Lung Injury by Regulating Macrophage Efferocytosis Through the ROS/ADAM10/AXL Pathway,” International Immunopharmacology 142 no. Pt A (2024): 112832, https://doi.org/10.1016/j.intimp.2024.112832.

[180]

Q. Li, Q. Song, Z. Zhao, et al., “Genetically Engineered Artificial Exosome-Constructed Hydrogel for Ovarian Cancer Therapy,” ACS Nano 17 (2023): 10376-10392.

[181]

R. Han, Z. Ren, Q. Wang, et al., “Synthetic Biomimetic Liposomes Harness Efferocytosis Machinery for Highly Efficient Macrophages-Targeted Drug Delivery to Alleviate Inflammation,” Advanced Science 11, no. 29 (2024): e2308325, https://doi.org/10.1002/advs.202308325.

[182]

S. Morioka, D. Kajioka, Y. Yamaoka, et al., “Chimeric Efferocytic Receptors Improve Apoptotic Cell Clearance and Alleviate Inflammation,” Cell 185 (2022): 4887-4903.e17.

[183]

P. Mehrotra and K. S. Ravichandran, “Drugging the Efferocytosis Process: Concepts and Opportunities,” Nature Reviews. Drug Discovery 21 (2022): 601-620.

[184]

A. Tajbakhsh, S. M. Gheibihayat, H. Askari, et al., “Statin-Regulated Phagocytosis and Efferocytosis in Physiological and Pathological Conditions,” Pharmacology & Therapeutics 238 (2022): 108282.

[185]

S. Yuan, Y. Chai, J. Xu, et al., “Engineering Efferocytosis-Mimicking Nanovesicles to Regulate Joint Anti-Inflammation and Peripheral Immunosuppression for Rheumatoid Arthritis Therapy,” Advanced Science 11 (2024): e2404198.

[186]

X. Zhou, D. Zhu, D. Wu, et al., “Microneedle Delivery of CAR-M-Like Engineered Macrophages Alleviates Intervertebral Disc Degeneration Through Enhanced Efferocytosis Capacity,” Cell Reports Medicine 6 (2025): 102079.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/