NSun2-Mediated tsRNAs Alleviate Liver Fibrosis via FAK Dephosphorylation

Pengcheng Li , Sunyang Ying , Yu Zou , Xin Wang , Runxue Zhang , Cheng Huang , Moyu Dai , Kai Xu , Guihai Feng , Xin Li , Haiping Jiang , Zhikun Li , Ying Zhang , Wei Li , Qi Zhou

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70058

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70058 DOI: 10.1111/cpr.70058
ORIGINAL ARTICLE

NSun2-Mediated tsRNAs Alleviate Liver Fibrosis via FAK Dephosphorylation

Author information +
History +
PDF

Abstract

Sinusoidal capillarization – key symptoms of liver fibrosis progression – represents potential therapeutic targets. tRNA modification-mediated tRNA-derived small RNAs (tsRNAs) play a role in angiogenesis. NSun2, an RNA methyltransferase, generates a significant number of tsRNAs. However, the role of NSun2 and its mediated tsRNAs in liver fibrosis remains unclear. In this study, NSun2 deficiency was found to inhibit sinusoidal capillarization, alleviating liver fibrosis. Furthermore, endothelial cell angiogenesis and migration were disrupted in NSun2 knockout mice. Mechanistically, reduced NSun2 expression led to alterations in the functional tsRNAs tRF-1-S25 and tRF-5-V31, which regulate sinusoidal capillarization by targeting key proteins, including DUSP1 and FAK – crucial clinical targets. Moreover, intravenous injection of tRF-1-S25 and tRF-5-V31 inhibitor rescued liver fibrosis in mice. In conclusion, tsRNAs generated by NSun2-mediated modification of tRNAs inhibit sinusoidal capillarization. Furthermore, targeting the DUSP1/FAK/p-FAK pathway offers an innovative approach to treat this disease.

Keywords

FAK / liver fibrosis / NSun2 / sinusoidal capillarization / tsRNA

Cite this article

Download citation ▾
Pengcheng Li, Sunyang Ying, Yu Zou, Xin Wang, Runxue Zhang, Cheng Huang, Moyu Dai, Kai Xu, Guihai Feng, Xin Li, Haiping Jiang, Zhikun Li, Ying Zhang, Wei Li, Qi Zhou. NSun2-Mediated tsRNAs Alleviate Liver Fibrosis via FAK Dephosphorylation. Cell Proliferation, 2025, 58(10): e70058 DOI:10.1111/cpr.70058

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. A. Tsochatzis, J. Bosch, and A. K. Burroughs, “Liver Cirrhosis,” Lancet (London, England) 383, no. 9930 (2014): 1749-1761, https://doi.org/10.1016/S0140-6736(14)60121-5.

[2]

H. K. Seitz, R. Bataller, H. Cortez-Pinto, et al., “Alcoholic Liver Disease,” Nature Reviews. Disease Primers 4, no. 1 (2018): 16, https://doi.org/10.1038/s41572-018-0014-7.

[3]

X. Zhang, P. Sharma, P. Maschmeyer, et al., “GARP on Hepatic Stellate Cells is Essential for the Development of Liver Fibrosis,” Journal of Hepatology 79, no. 5 (2023): 1214-1225, https://doi.org/10.1016/j.jhep.2023.05.043.

[4]

T. Tsuchida and S. L. Friedman, “Mechanisms of Hepatic Stellate Cell Activation,” Nature Reviews. Gastroenterology & Hepatology 14, no. 7 (2017): 397-411, https://doi.org/10.1038/nrgastro.2017.38.

[5]

K. R. Karlmark, R. Weiskirchen, H. W. Zimmermann, et al., “Hepatic Recruitment of the Inflammatory Gr1+ Monocyte Subset Upon Liver Injury Promotes Hepatic Fibrosis,” Hepatology 50, no. 1 (2009): 261-274, https://doi.org/10.1002/hep.22950.

[6]

F. L. de Oliveira, K. Carneiro, J. M. Brito, et al., “Galectin-3, Histone Deacetylases, and Hedgehog Signaling: Possible Convergent Targets in Schistosomiasis-Induced Liver Fibrosis,” PLoS Neglected Tropical Diseases 11, no. 2 (2017): e0005137, https://doi.org/10.1371/journal.pntd.0005137.

[7]

H. Wobser, C. Dorn, T. S. Weiss, et al., “Lipid Accumulation in Hepatocytes Induces Fibrogenic Activation of Hepatic Stellate Cells,” Cell Research 19, no. 8 (2009): 996-1005, https://doi.org/10.1038/cr.2009.73.

[8]

X. Wu, L. Shu, Z. Zhang, et al., “Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk Between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells,” Advanced Science (Weinheim) 8, no. 11 (2021): e2003721, https://doi.org/10.1002/advs.202003721.

[9]

G. Xie, X. Wang, L. Wang, et al., “Role of Differentiation of Liver Sinusoidal Endothelial Cells in Progression and Regression of Hepatic Fibrosis in Rats,” Gastroenterology 142, no. 4 (2012): 918-927.e6, https://doi.org/10.1053/j.gastro.2011.12.017.

[10]

J. Poisson, S. Lemoinne, C. Boulanger, et al., “Liver Sinusoidal Endothelial Cells: Physiology and Role in Liver Diseases,” Journal of Hepatology 66, no. 1 (2017): 212-227, https://doi.org/10.1016/j.jhep.2016.07.009.

[11]

S. He, Y. Luo, W. Ma, et al., “Endothelial POFUT1 Controls Injury-Induced Liver Fibrosis by Repressing Fibrinogen Synthesis,” Journal of Hepatology 81, no. 1 (2024): 135-148, https://doi.org/10.1016/j.jhep.2024.02.032.

[12]

M. Winkler, T. Staniczek, S. W. Kürschner, et al., “Endothelial GATA4 Controls Liver Fibrosis and Regeneration by Preventing a Pathogenic Switch in Angiocrine Signaling,” Journal of Hepatology 74, no. 2 (2021): 380-393, https://doi.org/10.1016/j.jhep.2020.08.033.

[13]

S. Thomann, S. M. E. Weiler, S. Marquard, et al., “YAP Orchestrates Heterotypic Endothelial Cell Communication via HGF/c-MET Signaling in Liver Tumorigenesis,” Cancer Research 80, no. 24 (2020): 5502-5514, https://doi.org/10.1158/0008-5472.CAN-20-0242.

[14]

M. Fernández, D. Semela, J. Bruix, I. Colle, M. Pinzani, and J. Bosch, “Angiogenesis in Liver Disease,” Journal of Hepatology 50, no. 3 (2009): 604-620, https://doi.org/10.1016/j.jhep.2008.12.011.

[15]

L. Wang, Y. Feng, X. Xie, et al., “Neuropilin-1 Aggravates Liver Cirrhosis by Promoting Angiogenesis via VEGFR2-Dependent PI3K/Akt Pathway in Hepatic Sinusoidal Endothelial Cells,” eBioMedicine 43 (2019): 525-536, https://doi.org/10.1016/j.ebiom.2019.04.050.

[16]

P. K. Brastianos, E. L. Twohy, E. R. Gerstner, et al., “Alliance A071401: Phase II Trial of Focal Adhesion Kinase Inhibition in Meningiomas With Somatic NF2 Mutations,” Journal of Clinical Oncology 41, no. 3 (2023): 618-628, https://doi.org/10.1200/JCO.21.02371.

[17]

H. K. Kim, G. Fuchs, S. Wang, et al., “A Transfer-RNA-Derived Small RNA Regulates Ribosome Biogenesis,” Nature 552, no. 7683 (2017): 57-62, https://doi.org/10.1038/nature25005.

[18]

S. Blanco, R. Bandiera, M. Popis, et al., “Stem Cell Function and Stress Response Are Controlled by Protein Synthesis,” Nature 534, no. 7607 (2016): 335-340, https://doi.org/10.1038/nature18282.

[19]

Z. Deng, D. Long, H. Liu, et al., “tRNA-Derived Fragment tRF-5009A Regulates Autophagy and Degeneration of Cartilage in Osteoarthritis via Targeting mTOR,” Oxidative Medicine and Cellular Longevity 2022 (2022): 5781660, https://doi.org/10.1155/2022/5781660.

[20]

J. Zhou, F. Wan, Y. Wang, J. Long, and X. Zhu, “Small RNA Sequencing Reveals a Novel tsRNA-26576 Mediating Tumorigenesis of Breast Cancer,” Cancer Management and Research 11 (2019): 3945-3956, https://doi.org/10.2147/CMAR.S199281.

[21]

S. Karaiskos and A. Grigoriev, “Dynamics of tRNA Fragments and Their Targets in Aging Mammalian Brain,” F1000Research 5 (2016): 2758, https://doi.org/10.12688/f1000research.10116.1.

[22]

Y. Luo, J. Feng, Q. Xu, W. Wang, and X. Wang, “NSun2 Deficiency Protects Endothelium From Inflammation via mRNA Methylation of ICAM-1,” Circulation Research 118, no. 6 (2016): 944-956, https://doi.org/10.1161/CIRCRESAHA.115.307674.

[23]

N. Guzzi, M. Cieśla, P. C. T. Ngoc, et al., “Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells,” Cell 173, no. 5 (2018): 1204-1216.e26, https://doi.org/10.1016/j.cell.2018.03.008.

[24]

P. Huang, B. Tu, H.-J. Liao, et al., “Elevation of Plasma tRNA Fragments as a Promising Biomarker for Liver Fibrosis in Nonalcoholic Fatty Liver Disease,” Scientific Reports 11, no. 1 (2021): 5886, https://doi.org/10.1038/s41598-021-85421-0.

[25]

S. Ying, P. Li, J. Wang, et al., “tRF-Gln-CTG-026 Ameliorates Liver Injury by Alleviating Global Protein Synthesis,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 144, https://doi.org/10.1038/s41392-023-01351-5.

[26]

J. Di Martino, P. Mascalchi, P. Legros, et al., “Actin Depolymerization in Dedifferentiated Liver Sinusoidal Endothelial Cells Promotes Fenestrae Re-Formation,” Hepatology Communications 3, no. 2 (2019): 213-219, https://doi.org/10.1002/hep4.1301.

[27]

X. Xiong, H. Kuang, S. Ansari, et al., “Landscape of Intercellular Crosstalk in Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis,” Molecular Cell 75, no. 3 (2019): 644-660.e5, https://doi.org/10.1016/j.molcel.2019.07.028.

[28]

X. Zhao and J.-L. Guan, “Focal Adhesion Kinase and Its Signaling Pathways in Cell Migration and Angiogenesis,” Advanced Drug Delivery Reviews 63, no. 8 (2011): 610-615, https://doi.org/10.1016/j.addr.2010.11.001.

[29]

V. Moncho-Amor, I. Ibañez de Cáceres, E. Bandres, et al., “DUSP1/MKP1 Promotes Angiogenesis, Invasion and Metastasis in Non-Small-Cell Lung Cancer,” Oncogene 30, no. 6 (2011): 668-678, https://doi.org/10.1038/onc.2010.449.

[30]

M. Ma, C. Wang, M. Wu, et al., “CSGALNACT2 Restricts Ovarian Cancer Migration and Invasion by Modulating MAPK/ERK Pathway Through DUSP1,” Cellular Oncology (Dordrecht) 47, no. 3 (2024): 897-915, https://doi.org/10.1007/s13402-023-00903-9.

[31]

Y. Zheng, Y. Xia, D. Hawke, et al., “FAK Phosphorylation by ERK Primes Ras-Induced Tyrosine Dephosphorylation of FAK Mediated by PIN1 and PTP-PEST,” Molecular Cell 35, no. 1 (2009): 11-25, https://doi.org/10.1016/j.molcel.2009.06.013.

[32]

J. Hardesty, L. Day, J. Warner, et al., “Hepatic Protein and Phosphoprotein Signatures of Alcohol-Associated Cirrhosis and Hepatitis,” American Journal of Pathology 192, no. 7 (2022): 1066-1082, https://doi.org/10.1016/j.ajpath.2022.04.004.

[33]

L. Zhu, J. Li, Y. Gong, et al., “Exosomal tRNA-Derived Small RNA as a Promising Biomarker for Cancer Diagnosis,” Molecular Cancer 18, no. 1 (2019): 74, https://doi.org/10.1186/s12943-019-1000-8.

[34]

Y. Zuo, S. Chen, L. Yan, et al., “Development of a tRNA-Derived Small RNA Diagnostic and Prognostic Signature in Liver Cancer,” Genes & Diseases 9, no. 2 (2022): 393-400, https://doi.org/10.1016/j.gendis.2021.01.006.

[35]

F. Zhong, Z. Hu, K. Jiang, et al., “Complement C3 Activation Regulates the Production of tRNA-Derived Fragments Gly-tRFs and Promotes Alcohol-Induced Liver Injury and Steatosis,” Cell Research 29, no. 7 (2019): 548-561, https://doi.org/10.1038/s41422-019-0175-2.

[36]

X.-Y. Han, L.-J. Kong, D. Li, et al., “Targeting Endothelial Glycolytic Reprogramming by tsRNA-1599 for Ocular Anti-Angiogenesis Therapy,” Theranostics 14, no. 9 (2024): 3509-3525, https://doi.org/10.7150/thno.96946.

[37]

Q. Li, B. Hu, G.-W. Hu, et al., “tRNA-Derived Small Non-Coding RNAs in Response to Ischemia Inhibit Angiogenesis,” Scientific Reports 6 (2016): 20850, https://doi.org/10.1038/srep20850.

[38]

M. Di Pascoli, M. Diví, A. Rodríguez-Vilarrupla, et al., “Resveratrol Improves Intrahepatic Endothelial Dysfunction and Reduces Hepatic Fibrosis and Portal Pressure in Cirrhotic Rats,” Journal of Hepatology 58, no. 5 (2013): 904-910, https://doi.org/10.1016/j.jhep.2012.12.012.

[39]

H. Yoshiji, S. Kuriyama, J. Yoshii, et al., “Vascular Endothelial Growth Factor and Receptor Interaction is a Prerequisite for Murine Hepatic Fibrogenesis,” Gut 52, no. 9 (2003): 1347-1354.

[40]

L. Yang, J. Kwon, Y. Popov, et al., “Vascular Endothelial Growth Factor Promotes Fibrosis Resolution and Repair in Mice,” Gastroenterology 146, no. 5 (2014): 1339-1350.e1, https://doi.org/10.1053/j.gastro.2014.01.061.

[41]

C. D. John, S. Alan, G. S. Dwayne, et al., “Targeting FAK in Anticancer Combination Therapies,” Nature Reviews Cancer 21, no. 5 (2021): 313-324, https://doi.org/10.1038/s41568-021-00340-6.

[42]

S. Agarwal, A. R. Simon, V. Goel, et al., “Pharmacokinetics and Pharmacodynamics of the Small Interfering Ribonucleic Acid, Givosiran, in Patients With Acute Hepatic Porphyria,” Clinical Pharmacology and Therapeutics 108, no. 1 (2020): 63-72, https://doi.org/10.1002/cpt.1802.

[43]

M. Winkle, S. M. El-Daly, M. Fabbri, and G. A. Calin, “Noncoding RNA Therapeutics - Challenges and Potential Solutions,” Nature Reviews. Drug Discovery 20, no. 8 (2021): 629-651, https://doi.org/10.1038/s41573-021-00219-z.

[44]

C. C. Rosemary, R. K. Sripriya, C. Xinhong, et al., “Adeno-Associated Virus Toolkit to Target Diverse Brain Cells,” Annual Review of Neuroscience 45, no. 1 (2022): 447-469, https://doi.org/10.1146/annurev-neuro-111020-100834.

[45]

P. Roy, A.-A. Gabriela, B. Genc, et al., “Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System,” Advanced Materials 34, no. 16 (2022): 2201095, https://doi.org/10.1002/adma.202201095.

[46]

L. Dingfeng, G. Xinyi, M. Xiaolin, et al., “Aging-Induced tRNAGlu-Derived Fragment Impairs Glutamate Biosynthesis by Targeting Mitochondrial Translation-Dependent Cristae Organization,” Cell Metabolism 36, no. 5 (2024): 1059-1075.e9, https://doi.org/10.1016/j.cmet.2024.02.011.

[47]

G. Farrell, J. M. Schattenberg, I. Leclercq, et al., “Mouse Models of Nonalcoholic Steatohepatitis: Toward Optimization of Their Relevance to Human Nonalcoholic Steatohepatitis,” Hepatology 69, no. 5 (2019): 2241-2257, https://doi.org/10.1002/hep.30333.

[48]

S. Coulon, S. Francque, I. Colle, et al., “Evaluation of Inflammatory and Angiogenic Factors in Patients With Non-Alcoholic Fatty Liver Disease,” Cytokine 59, no. 2 (2012): 442-449, https://doi.org/10.1016/j.cyto.2012.05.001.

[49]

D. Thabut, C. Routray, G. Lomberk, et al., “Complementary Vascular and Matrix Regulatory Pathways Underlie the Beneficial Mechanism of Action of Sorafenib in Liver Fibrosis,” Hepatology 54, no. 2 (2011): 573-585, https://doi.org/10.1002/hep.24427.

[50]

D. Inverso, J. Shi, K. H. Lee, et al., “A Spatial Vascular Transcriptomic, Proteomic, and Phosphoproteomic Atlas Unveils an Angiocrine Tie-Wnt Signaling Axis in the Liver,” Developmental Cell 56, no. 11 (2021): 1677-1693.e10, https://doi.org/10.1016/j.devcel.2021.05.001.

[51]

M. Xu, H.-H. Xu, Y. Lin, et al., “LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis,” Cell 178, no. 6 (2019): 1478-1492.e20, https://doi.org/10.1016/j.cell.2019.07.021.

[52]

Y. Lin, M.-Q. Dong, Z.-M. Liu, et al., “A Strategy of Vascular-Targeted Therapy for Liver Fibrosis,” Hepatology 76, no. 3 (2022): 660-675, https://doi.org/10.1002/hep.32299.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/