Research Advances of the Autophagy-Regulated Radiosensitivity

Hanyue Liu , Yanlan Xiao , Chuhao Dai , Keyu Chen , Xinyi Xu , Jianming Cai , Xuguang Hu , Jiaming Guo

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70056

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70056 DOI: 10.1111/cpr.70056
REVIEW

Research Advances of the Autophagy-Regulated Radiosensitivity

Author information +
History +
PDF

Abstract

Autophagy is an evolutionarily conserved process of cell self-catabolism that provides a minimum level of energy for cellular homeostasis during metabolic stress. In radiotherapy (RT), it has been explicitly explained that autophagy plays a dual role in tumour control by tuning cellular radiosensitivity. However, the underlying molecular mechanism remains a conundrum. Therefore, it is of utmost importance to gain insight into the molecular mechanisms elaborating the autophagy-mediated radiosensitivity and craft refined RT strategies for different tumours. Distinguishing it from previous reviews in the field, here we discuss the mechanisms of autophagy, especially its pro-survival and growth-suppressing mechanisms via regulation of radiosensitivity. We further outline some frontier RT adjuvant therapies targeting autophagy, in an endeavour to shed some light on the autophagy-mediated pathways to harness radiosensitivity.

Keywords

autophagy / metabolic regulation / oxidative stress / radiosensitivity / radiotherapy

Cite this article

Download citation ▾
Hanyue Liu, Yanlan Xiao, Chuhao Dai, Keyu Chen, Xinyi Xu, Jianming Cai, Xuguang Hu, Jiaming Guo. Research Advances of the Autophagy-Regulated Radiosensitivity. Cell Proliferation, 2025, 58(10): e70056 DOI:10.1111/cpr.70056

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Bao, X. Liu, Q. Wu, et al., “Mitochondrial-Targeted Antioxidant MitoQ-Mediated Autophagy: A Novel Strategy for Precise Radiation Protection,” Antioxidants (Basel) 12, no. 2 (2023): 453, https://doi.org/10.3390/antiox12020453.

[2]

P. Bischoff, A. Altmeyer, and F. Dumont, “Radiosensitising Agents for the Radiotherapy of Cancer: Advances in Traditional and Hypoxia Targeted Radiosensitisers,” Expert Opinion on Therapeutic Patents 19, no. 5 (2009): 643-662.

[3]

Z. Hong, T. Liu, L. Wan, et al., “Targeting Squalene Epoxidase Interrupts Homologous Recombination via the ER Stress Response and Promotes Radiotherapy Efficacy,” Cancer Research 82, no. 7 (2022): 1298-1312, https://doi.org/10.1158/0008-5472.CAN-21-2229.

[4]

N. H. Patel, S. S. Sohal, M. H. Manjili, J. C. Harrell, and D. A. Gewirtz, “The Roles of Autophagy and Senescence in the Tumor Cell Response to Radiation,” Radiation Research 194, no. 2 (2020): 103-115, https://doi.org/10.1667/RADE-20-00009.

[5]

H. Chen, Z. Han, Q. Luo, et al., “Radiotherapy Modulates Tumor Cell Fate Decisions: A Review,” Radiation Oncology (London, England) 17, no. 1 (2022): 196, https://doi.org/10.1186/s13014-022-02171-7.

[6]

H. Cheng, L. Chen, M. Huang, J. Hou, Z. Chen, and X. Yang, “Hunting Down NLRP3 Inflammasome: An Executioner of Radiation-Induced Injury,” Frontiers in Immunology 13 (2022): 967989, https://doi.org/10.3389/fimmu.2022.967989.

[7]

G. Lei, Y. Zhang, P. Koppula, et al., “The Role of Ferroptosis in Ionizing Radiation-Induced Cell Death and Tumor Suppression,” Cell Research 30, no. 2 (2020): 146-162, https://doi.org/10.1038/s41422-019-0263-3.

[8]

N. Liang, R. Zhong, X. Hou, et al., “Ataxia-Telangiectasia Mutated (ATM) Participates in the Regulation of Ionizing Radiation-Induced Cell Death via MAPK14 in Lung Cancer H1299 Cells,” Cell Proliferation 48, no. 5 (2015): 561-572, https://doi.org/10.1111/cpr.12203.

[9]

R. A. Saxton and D. M. Sabatini, “mTOR Signaling in Growth, Metabolism, and Disease,” Cell 169, no. 2 (2017): 361-371, https://doi.org/10.1016/j.cell.2017.03.035.

[10]

S. Zada, J. S. Hwang, M. Ahmed, et al., “Cross Talk Between Autophagy and Oncogenic Signaling Pathways and Implications for Cancer Therapy,” Biochimica Et Biophysica Acta. Reviews on Cancer 1876, no. 1 (2021): 188565.

[11]

J. Debnath, N. Gammoh, and K. M. Ryan, “Autophagy and Autophagy-Related Pathways in Cancer,” Nature Reviews Molecular Cell Biology 24, no. 8 (2023): 560-575.

[12]

M. F. Renne, Y. A. Klug, and P. Carvalho, “Lipid Droplet Biogenesis: A Mystery ‘Unmixing’?,” Seminars in Cell & Developmental Biology 108 (2020): 14-23, https://doi.org/10.1016/j.semcdb.2020.03.001.

[13]

S. Schuck, “Microautophagy - Distinct Molecular Mechanisms Handle Cargoes of Many Sizes,” Journal of Cell Science 133, no. 17 (2020): jcs246322.

[14]

L. Yu, X. Pang, L. Yang, et al., “Sensitivity of Substrate Translocation in Chaperone-Mediated Autophagy to Alzheimer's Disease Progression,” Aging 16, no. 10 (2024): 9072-9105, https://doi.org/10.18632/aging.205856.

[15]

E. Arias and A. M. Cuervo, “Pros and Cons of Chaperone-Mediated Autophagy in Cancer Biology,” Trends in Endocrinology and Metabolism 31, no. 1 (2020): 53-66.

[16]

Y. W. S. Cheung, S. E. Nam, and C. K. Yip, “Recent Advances in Single-Particle Electron Microscopic Analysis of Autophagy Degradation Machinery,” International Journal of Molecular Sciences 21, no. 21 (2020): 8051.

[17]

J. A. Olzmann and P. Carvalho, “Dynamics and Functions of Lipid Droplets,” Nature Reviews Molecular Cell Biology 20, no. 3 (2019): 137-155, https://doi.org/10.1038/s41580-018-0085-z.

[18]

G. Magnin, P. Bissel, Council-Troche R M, Z. Zhou, and M. Ehrich, “Studies Exploring the Interaction of the Organophosphorus Compound Paraoxon With Fullerenes,” ACS Omega 4, no. 20 (2019): 18663-18667, https://doi.org/10.1021/acsomega.9b02587.

[19]

P. Grumati and I. Dikic, “Ubiquitin Signaling and Autophagy,” Journal of Biological Chemistry 293, no. 15 (2018): 5404-5413.

[20]

T. C. Walther, J. Chung, and J. R. V. F , “Lipid Droplet Biogenesis,” Annual Review of Cell and Developmental Biology 33 (2017): 491-510, https://doi.org/10.1146/annurev-cellbio-100616-060608.

[21]

Y. Ge, M. Zhou, C. Chen, X. Wu, and X. Wang, “Role of AMPK Mediated Pathways in Autophagy and Aging,” Biochimie 195 (2022): 100-113, https://doi.org/10.1016/j.biochi.2021.11.008.

[22]

R. K. Amaravadi, A. C. Kimmelman, and J. Debnath, “Targeting Autophagy in Cancer: Recent Advances and Future Directions,” Cancer Discovery 9, no. 9 (2019): 1167-1181.

[23]

R. H. Chen, Y. H. Chen, and T. Y. Huang, “Ubiquitin-Mediated Regulation of Autophagy,” Journal of Biomedical Science 26, no. 1 (2019): 80.

[24]

K. R. Parzych and D. J. Klionsky, “An Overview of Autophagy: Morphology, Mechanism, and Regulation,” Antioxidants & Redox Signaling 20, no. 3 (2014): 460-473.

[25]

S. Nakamura and T. Yoshimori, “New Insights Into Autophagosome-Lysosome Fusion,” Journal of Cell Science 130, no. 7 (2017): 1209-1216.

[26]

A. Scrivo, M. Bourdenx, O. Pampliega, et al., “Selective Autophagy as a Potential Therapeutic Target for Neurodegenerative Disorders,” Lancet Neurology 17, no. 9 (2018): 802-815.

[27]

C. Viret and M. Faure, “Regulation of Syntaxin 17 During Autophagosome Maturation,” Trends in Cell Biology 29, no. 1 (2019): 1-3.

[28]

L. Yu, Y. Chen, and S. A. Tooze, “Autophagy Pathway: Cellular and Molecular Mechanisms,” Autophagy 14, no. 2 (2018): 207-215.

[29]

R. N. Tamaddondoust, A. Wong, M. Chandrashekhar, E. I. Azzam, T. Alain, and Y. Wang, “Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening,” International Journal of Molecular Sciences 23, no. 15 (2022): 8774, https://doi.org/10.3390/ijms23158774.

[30]

H. Wang, B. Wang, J. Wei, et al., “Molecular Mechanisms Underlying Increased Radiosensitivity in Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma,” International Journal of Biological Sciences 16, no. 6 (2020): 1035-1043, https://doi.org/10.7150/ijbs.40880.

[31]

J. Tong and T. K. Hei, “Aging and Age-Related Health Effects of Ionizing Radiation,” Radiation Medicine and Protection 1, no. 1 (2020): 15-23.

[32]

,“The 2007 Recommendations of the International Commission on Radiological Protection,” Annals of the ICRP 37, no. 2-4 (2007): 1-332.

[33]

D. Heylmann, V. Ponath, T. Kindler, and B. Kaina, “Comparison of DNA Repair and Radiosensitivity of Different Blood Cell Populations,” Scientific Reports 11, no. 1 (2021): 2478, https://doi.org/10.1038/s41598-021-81058-1.

[34]

Z. Gao, Q. Zhao, Y. Xu, and L. Wang, “Improving the Efficacy of Combined Radiotherapy and Immunotherapy: Focusing on the Effects of Radiosensitivity,” Radiation Oncology (London, England) 18, no. 1 (2023): 89, https://doi.org/10.1186/s13014-023-02278-5.

[35]

M. A. Olivares-Urbano, C. Griñán-Lisón, J. A. Marchal, and M. I. Núñez, “CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer,” Cells 9, no. 7 (2020): 1651, https://doi.org/10.3390/cells9071651.

[36]

A. Freites-Martinez, N. Santana, S. Arias-Santiago, and A. Viera, “Using the Common Terminology Criteria for Adverse Events (CTCAE - Version 5.0) to Evaluate the Severity of Adverse Events of Anticancer Therapies,” Actas Dermo-Sifiliográficas 112, no. 1 (2021): 90-92, https://doi.org/10.1016/j.ad.2019.05.009.

[37]

J. D. Cox, J. Stetz, and T. F. Pajak, “Toxicity Criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC),” International Journal of Radiation Oncology, Biology, Physics 31, no. 5 (1995): 1341-1346.

[38]

COPERNIC Project Investigators, A. Granzotto, M. A. Benadjaoud, et al., “Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity,” International Journal of Radiation Oncology, Biology, Physics 94, no. 3 (2016): 450-460, https://doi.org/10.1016/j.ijrobp.2015.11.013.

[39]

L. El-Nachef, J. Al-Choboq, J. Restier-Verlet, et al., “Human Radiosensitivity and Radiosusceptibility: What Are the Differences?,” International Journal of Molecular Sciences 22, no. 13 (2021): 7158.

[40]

L. Galluzzi, J. M. Bravo-San Pedro, S. Demaria, S. C. Formenti, and G. Kroemer, “Activating Autophagy to Potentiate Immunogenic Chemotherapy and Radiation Therapy,” Nature Reviews Clinical Oncology 14, no. 4 (2017): 247-258.

[41]

N. Foray, M. Bourguignon, and N. Hamada, “Individual Response to Ionizing Radiation,” Mutation Research, Reviews in Mutation Research 770 (2016): 369-386.

[42]

R. X. Huang and P. K. Zhou, “DNA Damage Response Signaling Pathways and Targets for Radiotherapy Sensitization in Cancer,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 60.

[43]

L. Zhao, C. Bao, Y. Shang, et al., “The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks,” BioMed Research International 2020 (2020): 4834965.

[44]

F. Ochs, K. Somyajit, M. Altmeyer, M. B. Rask, J. Lukas, and C. Lukas, “53BP1 Fosters Fidelity of Homology-Directed DNA Repair,” Nature Structural & Molecular Biology 23, no. 8 (2016): 714-721, https://doi.org/10.1038/nsmb.3251.

[45]

B. Cirauqui, M. Margelí, V. Quiroga, et al., “DNA Repair Pathways to Regulate Response to Chemoradiotherapy in Patients With Locally Advanced Head and Neck Cancer,” Tumour Biology 37, no. 10 (2016): 13435-13443, https://doi.org/10.1007/s13277-016-5149-0.

[46]

G. Van de Kamp, T. Heemskerk, R. Kanaar, et al., “DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation,” Frontiers in Genetics 12 (2021): 738230.

[47]

M. Gachechiladze, J. Škarda, A. Soltermann, and M. Joerger, “RAD51 as a Potential Surrogate Marker for DNA Repair Capacity in Solid Malignancies,” International Journal of Cancer 141, no. 7 (2017): 1286-1294, https://doi.org/10.1002/ijc.30764.

[48]

A. Balbous, U. Cortes, K. Guilloteau, et al., “A Radiosensitizing Effect of RAD51 Inhibition in Glioblastoma Stem-Like Cells,” BMC Cancer 16 (2016): 604, https://doi.org/10.1186/s12885-016-2647-9.

[49]

J. H. L. Fok, A. Ramos-Montoya, M. Vazquez-Chantada, et al., “AZD7648 Is a Potent and Selective DNA-PK Inhibitor That Enhances Radiation, Chemotherapy and Olaparib Activity,” Nature Communications 10, no. 1 (2019): 5065, https://doi.org/10.1038/s41467-019-12836-9.

[50]

C. E. Willoughby, Y. Jiang, H. D. Thomas, et al., “Selective DNA-PKcs Inhibition Extends the Therapeutic Index of Localized Radiotherapy and Chemotherapy,” Journal of Clinical Investigation 130, no. 1 (2020): 258-271, https://doi.org/10.1172/JCI127483.

[51]

Q. Sun, Y. Guo, X. Liu, et al., “Therapeutic Implications of p53 Status on Cancer Cell Fate Following Exposure to Ionizing Radiation and the DNA-PK Inhibitor M3814,” Molecular Cancer Research: MCR 17, no. 12 (2019): 2457-2468, https://doi.org/10.1158/1541-7786.MCR-19-0362.

[52]

M. Srivastava and S. C. Raghavan, “DNA Double-Strand Break Repair Inhibitors as Cancer Therapeutics,” Chemistry & Biology 22, no. 1 (2015): 17-29.

[53]

Q. Liu, K. Lopez, J. Murnane, T. Humphrey, and M. H. Barcellos-Hoff, “Misrepair in Context: TGFβ Regulation of DNA Repair,” Frontiers in Oncology 9 (2019): 799, https://doi.org/10.3389/fonc.2019.00799.

[54]

B. Liang, D. Kong, Y. Liu, et al., “Autophagy Inhibition Plays the Synergetic Killing Roles With Radiation in the Multi-Drug Resistant SKVCR Ovarian Cancer Cells,” Radiation Oncology 7 (2012): 213, https://doi.org/10.1186/1748-717X-7-213.

[55]

X. Zhang, X. Cheng, L. Yu, et al., “MCOLN1 Is a ROS Sensor in Lysosomes That Regulates Autophagy,” Nature Communications 7, no. 12109 (2016): 12109, https://doi.org/10.1038/ncomms12109.

[56]

Y. Xin, “Role of Autophagy in Regulating the Radiosensitivity of Tumor Cells,” Journal of Cancer Research and Clinical Oncology 143, no. 11 (2017): 2147-2157, https://doi.org/10.1007/s00432-017-2487-2.

[57]

M. Podralska, S. Ciesielska, J. Kluiver, A. van den Berg, A. Dzikiewicz-Krawczyk, and I. Slezak-Prochazka, “Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways,” Cancers 12, no. 6 (2020): 1662, https://doi.org/10.3390/cancers12061662.

[58]

S. O. Bustos, F. Antunes, M. C. Rangel, and R. Chammas, “Emerging Autophagy Functions Shape the Tumor Microenvironment and Play a Role in Cancer Progression - Implications for Cancer Therapy,” Frontiers in Oncology 10 (2020): 606436, https://doi.org/10.3389/fonc.2020.606436.

[59]

J. Hao, A. Ma, L. Wang, et al., “General Requirements for Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12926.

[60]

X. Li, S. He, and B. Ma, “Autophagy and Autophagy-Related Proteins in Cancer,” Molecular Cancer 19, no. 1 (2020): 12.

[61]

H. T. Chen, H. Liu, M. J. Mao, et al., “Crosstalk Between Autophagy and Epithelial-Mesenchymal Transition and Its Application in Cancer Therapy,” Molecular Cancer 18, no. 1 (2019): 101.

[62]

N. S. Katheder, R. Khezri, F. O'Farrell, et al., “Microenvironmental Autophagy Promotes Tumour Growth,” Nature 541, no. 7637 (2017): 417-420, https://doi.org/10.1038/nature20815.

[63]

J. M. M. Levy, C. G. Towers, and A. Thorburn, “Targeting Autophagy in Cancer Nature Reviews,” Cancer 17, no. 9 (2017): 528-542.

[64]

E. White, C. Karp, A. M. Strohecker, Y. Guo, and R. Mathew, “Role of Autophagy in Suppression of Inflammation and Cancer,” Current Opinion in Cell Biology 22, no. 2 (2010): 212-217, https://doi.org/10.1016/j.ceb.2009.12.008.

[65]

R. Mathew, C. M. Karp, B. Beaudoin, et al., “Autophagy Suppresses Tumorigenesis Through Elimination of p62,” Cell 137, no. 6 (2009): 1062-1075, https://doi.org/10.1016/j.cell.2009.03.048.

[66]

L. Qiang, B. Zhao, M. Ming, et al., “Regulation of Cell Proliferation and Migration by p62 Through Stabilization of Twist1,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 25 (2014): 9241-9246.

[67]

A. Roy, S. Bera, L. Saso, and B. S. Dwarakanath, “Role of Autophagy in Tumor Response to Radiation: Implications for Improving Radiotherapy,” Frontiers in Oncology 12 (2022): 957373, https://doi.org/10.3389/fonc.2022.957373.

[68]

R. Zhu, C. Tian, N. Gao, et al., “Hypomethylation Induced Overexpression of PLOD3 Facilitates Colorectal Cancer Progression Through TM9SF4-Mediated Autophagy,” Cell Death & Disease 16, no. 1 (2025): 206, https://doi.org/10.1038/s41419-025-07503-5.

[69]

H. Wang, P. Sun, X. Yuan, et al., “Autophagy in Tumor Immune Escape and Immunotherapy,” Molecular Cancer 24, no. 1 (2025): 85, https://doi.org/10.1186/s12943-025-02277-y.

[70]

Y. Wang, F. Liu, C. Fang, et al., “Combination of Rapamycin and SAHA Enhanced Radiosensitization by Inducing Autophagy and Acetylation in NSCLC,” Aging 13, no. 14 (2021): 18223-18237, https://doi.org/10.18632/aging.203226.

[71]

J. Wang, T. Hu, Q. Wang, et al., “Repression of the AURKA-CXCL5 Axis Induces Autophagic Cell Death and Promotes Radiosensitivity in Non-Small-Cell Lung Cancer,” Cancer Letters 509 (2021): 89-104, https://doi.org/10.1016/j.canlet.2021.03.028.

[72]

B. Wang, X. Huang, H. Liang, et al., “PLK1 Inhibition Sensitizes Breast Cancer Cells to Radiation via Suppressing Autophagy,” International Journal of Radiation Oncology, Biology, Physics 110, no. 4 (2021): 1234-1247, https://doi.org/10.1016/j.ijrobp.2021.02.025.

[73]

Z. X. Chong, S. K. Yeap, and W. Y. Ho, “Regulation of Autophagy by microRNAs in Human Breast Cancer,” Journal of Biomedical Science 28, no. 1 (2021): 21.

[74]

J. Kim, H. Kang, B. Son, et al., “NRBF2-Mediated Autophagy Contributes to Metabolite Replenishment and Radioresistance in Glioblastoma,” Experimental & Molecular Medicine 54, no. 11 (2022): 1872-1885, https://doi.org/10.1038/s12276-022-00873-2.

[75]

W. Zhuang, B. Li, L. Long, L. Chen, Q. Huang, and Z. Liang, “Induction of Autophagy Promotes Differentiation of Glioma-Initiating Cells and Their Radiosensitivity,” International Journal of Cancer 129, no. 11 (2011): 2720-2731, https://doi.org/10.1002/ijc.25975.

[76]

Z. Li, Y. Ge, J. Dong, et al., “BZW1 Facilitates Glycolysis and Promotes Tumor Growth in Pancreatic Ductal Adenocarcinoma Through Potentiating eIF2α Phosphorylation,” Gastroenterology 162, no. 4 (2022): 1256-1271.

[77]

E. White, J. M. Mehnert, and C. S. Chan, “Autophagy, Metabolism, and Cancer,” Clinical Cancer Research 21, no. 22 (2015): 5037-5046.

[78]

G. Tai, H. Zhang, J. Du, et al., “TIGAR Overexpression Diminishes Radiosensitivity of Parotid Gland Fibroblast Cells and Inhibits IR-Induced Cell Autophagy,” International journal of clinical and experimental pathology 8, no. 5 (2015): 4823-4829.

[79]

M. B. Meng, H. H. Wang, W. H. Guo, et al., “Targeting Pyruvate Kinase M2 Contributes to Radiosensitivity of Non-Small Cell Lung Cancer Cells In Vitro and In Vivo,” Cancer Letters 356, no. 2 Pt B (2015): 985-993, https://doi.org/10.1016/j.canlet.2014.11.016.

[80]

Y. Feng, Y. Jiang, J. Liu, et al., “Targeting RPA Promotes Autophagic Flux and the Antitumor Response to Radiation in Nasopharyngeal Carcinoma,” Journal of Translational Medicine 21, no. 1 (2023): 738, https://doi.org/10.1186/s12967-023-04574-w.

[81]

S. S. Deville, S. Luft, M. Kaufmann, and N. Cordes, “Keap1 Inhibition Sensitizes Head and Neck Squamous Cell Carcinoma Cells to Ionizing Radiation via Impaired Non-Homologous End Joining and Induced Autophagy,” Cell Death & Disease 11, no. 10 (2020): 887, https://doi.org/10.1038/s41419-020-03100-w.

[82]

J. Y. Oh, Y. J. Lee, S. Sai, et al., “The Unfolded Protein Response: Neutron-Induced Therapy Autophagy as a Promising Treatment Option for Osteosarcoma,” International Journal of Molecular Sciences 21, no. 11 (2020): 3766.

[83]

S. K. Mishra, A. C. Dhadve, A. Mal, et al., “Photothermal Therapy (PTT) is an Effective Treatment Measure Against Solid Tumors Which Fails to Respond Conventional Chemo/Radiation Therapies in Clinic,” Biomaterials Advances 143 (2022): 213153, https://doi.org/10.1016/j.bioadv.2022.213153.

[84]

Y. Kuwahara, K. Tomita, Y. Urushihara, T. Sato, A. Kurimasa, and M. Fukumoto, “Association Between Radiation-Induced Cell Death and Clinically Relevant Radioresistance,” Histochemistry and Cell Biology 150, no. 6 (2018): 649-659, https://doi.org/10.1007/s00418-018-1728-z.

[85]

M. L. Bristol, X. Di, M. J. Beckman, et al., “Dual Functions of Autophagy in the Response of Breast Tumor Cells to Radiation: Cytoprotective Autophagy With Radiation Alone and Cytotoxic Autophagy in Radiosensitization by Vitamin D3,” Autophagy 8, no. 5 (2012): 739-753.

[86]

K. Sharma, R. W. Goehe, X. Di, et al., “A Novel Cytostatic Form of Autophagy in Sensitization of Non-Small Cell Lung Cancer Cells to Radiation by Vitamin D and the Vitamin D Analog, EB 1089,” Autophagy 10, no. 12 (2014): 2346-2361.

[87]

P. Zhang, H. Wang, Y. Chen, et al., “DR5 Related Autophagy Can Promote Apoptosis in Gliomas After Irradiation,” Biochemical and Biophysical Research Communications 522, no. 4 (2020): 910-916, https://doi.org/10.1016/j.bbrc.2019.11.161.

[88]

K. Wang, “Autophagy and Apoptosis in Liver Injury,” Cell Cycle 14, no. 11 (2015): 1631-1642.

[89]

J. Li, Y. Sun, X. Zhao, et al., “Radiation Induces IRAK1 Expression to Promote Radioresistance by Suppressing Autophagic Cell Death via Decreasing the Ubiquitination of PRDX1 in Glioma Cells,” Cell Death & Disease 14, no. 4 (2023): 259, https://doi.org/10.1038/s41419-023-05732-0.

[90]

J. Liu, F. Kuang, G. Kroemer, D. J. Klionsky, R. Kang, and D. Tang, “Autophagy-Dependent Ferroptosis: Machinery and Regulation,” Cell Chemical Biology 27, no. 4 (2020): 420-435, https://doi.org/10.1016/j.chembiol.2020.02.005.

[91]

L. Hu, H. Wang, L. Huang, Y. Zhao, and J. Wang, “Crosstalk Between Autophagy and Intracellular Radiation Response (Review),” International Journal of Oncology 49, no. 6 (2016): 2217-2226, https://doi.org/10.3892/ijo.2016.3719.

[92]

A. M. Strohecker, J. Y. Guo, G. Karsli-Uzunbas, et al., “Autophagy Sustains Mitochondrial Glutamine Metabolism and Growth of Braf V600E-Driven Lung Tumors,” Cancer Discovery 3, no. 11 (2013): 1272-1285.

[93]

A. Mukha, U. Kahya, A. Linge, et al., “GLS-Driven Glutamine Catabolism Contributes to Prostate Cancer Radiosensitivity by Regulating the Redox State, Stemness and ATG5-Mediated Autophagy,” Theranostics 11, no. 16 (2021): 7844-7868, https://doi.org/10.7150/thno.58655.

[94]

H. Feng, J. Wang, W. Chen, et al., “Hypoxia-Induced Autophagy as an Additional Mechanism in Human Osteosarcoma Radioresistance,” Journal of Bone Oncology 5, no. 2 (2016): 67-73, https://doi.org/10.1016/j.jbo.2016.03.001.

[95]

X. Chen, P. Wang, F. Guo, et al., “Autophagy Enhanced the Radioresistance of Non-Small Cell Lung Cancer by Regulating ROS Level Under Hypoxia Condition,” International Journal of Radiation Biology 93, no. 8 (2017): 764-770, https://doi.org/10.1080/09553002.2017.1325025.

[96]

Y. Y. Lan, D. Londoño, R. Bouley, M. S. Rooney, and N. Hacohen, “Dnase2a Deficiency Uncovers Lysosomal Clearance of Damaged Nuclear DNA via Autophagy,” Cell Reports 9, no. 1 (2014): 180-192, https://doi.org/10.1016/j.celrep.2014.08.074.

[97]

T. Saleh, H. M. As Sobeai, A. Alhoshani, K. Alhazzani, M. M. Almutairi, and M. Alotaibi, “Effect of Autophagy Inhibitors on Radiosensitivity in DNA Repair-Proficient and -Deficient Glioma Cells,” Medicina 58, no. 7 (2022): 889.

[98]

D. Zhang, B. Tang, X. Xie, Y. F. Xiao, S. M. Yang, and J. W. Zhang, “The Interplay Between DNA Repair and Autophagy in Cancer Therapy,” Cancer Biology & Therapy 16, no. 7 (2015): 1005-1013, https://doi.org/10.1080/15384047.2015.1046022.

[99]

S. Li, Q. Lin, X. Shao, et al., “Drp1-Regulated PARK2-Dependent Mitophagy Protects Against Renal Fibrosis in Unilateral Ureteral Obstruction,” Free Radical Biology and Medicine 152 (2020): 632-649, https://doi.org/10.1016/j.freeradbiomed.2019.12.005.

[100]

L. Yu, X. Yang, X. Li, et al., “Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation,” Oxidative Medicine and Cellular Longevity 2021 (2021): 5595652.

[101]

Z. Liu, T. Li, F. Zhu, S. Deng, X. Li, and Y. He, “Regulatory Roles of miR-22/Redd1-Mediated Mitochondrial ROS and Cellular Autophagy in Ionizing Radiation-Induced BMSC Injury,” Cell Death & Disease 10, no. 3 (2019): 227, https://doi.org/10.1038/s41419-019-1373-z.

[102]

Q. Chen, W. Zheng, L. Zhu, et al., “LACTB2 Renders Radioresistance by Activating PINK1/Parkin-Dependent Mitophagy in Nasopharyngeal Carcinoma,” Cancer Letters 518 (2021): 127-139, https://doi.org/10.1016/j.canlet.2021.07.019.

[103]

S. Wu, Z. Li, H. Li, and K. Liao, “Dihydroartemisinin Reduces Irradiation-Induced Mitophagy and Radioresistance in Lung Cancer A549 Cells via CIRBP Inhibition,” Life (Basel, Switzerland) 12, no. 8 (2022): 1129, https://doi.org/10.3390/life12081129.

[104]

K. L. Cook, A. Wärri, D. R. Soto-Pantoja, et al., “Chloroquine Inhibits Autophagy to Potentiate Antiestrogen Responsiveness in ER+ Breast Cancer,” Clinical Cancer Research 20, no. 12 (2014): 3222-3232, https://doi.org/10.1158/1078-0432.CCR-13-3227.

[105]

S. Sai, E. H. Kim, W. S. Koom, et al., “Carbon-Ion Beam Irradiation and the miR-200c Mimic Effectively Eradicate Pancreatic Cancer Stem Cells Under In Vitro and In Vivo Conditions,” Oncotargets and Therapy 14 (2021): 4749-4760, https://doi.org/10.2147/OTT.S311567.

[106]

M. Dutta, D. Mohapatra, A. P. Mohapatra, S. Senapati, and A. Roychowdhury, “ATAD2 Suppression Enhances the Combinatorial Effect of Gemcitabine and Radiation in Pancreatic Cancer Cells,” Biochemical and Biophysical Research Communications 635 (2022): 179-186, https://doi.org/10.1016/j.bbrc.2022.10.021.

[107]

M. Russo, S. Moccia, D. Luongo, and G. L. Russo, “Senolytic Flavonoids Enhance Type-I and Type-II Cell Death in Human Radioresistant Colon Cancer Cells Through AMPK/MAPK Pathway,” Cancers 15, no. 9 (2023): 2660, https://doi.org/10.3390/cancers15092660.

[108]

C. W. Yun, J. Jeon, G. Go, J. H. Lee, and S. H. Lee, “The Dual Role of Autophagy in Cancer Development and a Therapeutic Strategy for Cancer by Targeting Autophagy,” International Journal of Molecular Sciences 22, no. 1 (2021): 179.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/