GANT61 Modulates Autophagy and Lipid Metabolism in Ovarian Cancer

Yibin Pan , Lingfeng Chen , Jinlu Shen , Shihao Hong , Xiaojing Guan , Xudong Ma , Rongrong Tang , Meifei Lu , Fangying Sun , Shanliang Shang , Yongdong Dai , Zhaokai Zhou , Songying Zhang , Jianhua Yang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70051

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70051 DOI: 10.1111/cpr.70051
LETTER TO THE EDITOR

GANT61 Modulates Autophagy and Lipid Metabolism in Ovarian Cancer

Author information +
History +
PDF

Cite this article

Download citation ▾
Yibin Pan, Lingfeng Chen, Jinlu Shen, Shihao Hong, Xiaojing Guan, Xudong Ma, Rongrong Tang, Meifei Lu, Fangying Sun, Shanliang Shang, Yongdong Dai, Zhaokai Zhou, Songying Zhang, Jianhua Yang. GANT61 Modulates Autophagy and Lipid Metabolism in Ovarian Cancer. Cell Proliferation, 2025, 58(7): e70051 DOI:10.1111/cpr.70051

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. A. Torre, B. Trabert, C. E. DeSantis, et al., “Ovarian Cancer Statistics, 2018,” CA: A Cancer Journal for Clinicians 68 (2018): 284-296.

[2]

R. L. Siegel, K. D. Miller, N. S. Wagle, and A. Jemal, “Cancer Statistics, 2023,” CA: A Cancer Journal for Clinicians 73 (2023): 17-48.

[3]

J. E. Kwon, Y. Jang, B. S. Yun, et al., “MET Overexpression in Ovarian Cancer via CD24-Induced Downregulation of miR-181a: A Signalling for Cellular Quiescence-Like State and Chemoresistance in Ovarian CSCs,” Cell Proliferation 57 (2024): e13582.

[4]

J. Prat, “Ovarian Carcinomas: Five Distinct Diseases With Different Origins, Genetic Alterations, and Clinicopathological Features,” Virchows Archiv 460 (2012): 237-249.

[5]

J. A. Ledermann, F. A. Raja, C. Fotopoulou, A. Gonzalez-Martin, N. Colombo, and C. Sessa, “Newly Diagnosed and Relapsed Epithelial Ovarian Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up,” Annals of Oncology 24 (2013): vi24-vi32.

[6]

E. Pujade-Lauraine, S. Banerjee, and S. Pignata, “Management of Platinum-Resistant, Relapsed Epithelial Ovarian Cancer and New Drug Perspectives,” Journal of Clinical Oncology 37 (2019): 2437-2448.

[7]

R. Agarwal and S. B. Kaye, “Ovarian Cancer: Strategies for Overcoming Resistance to Chemotherapy,” Nature Reviews Cancer 3 (2003): 502-516.

[8]

D. D. Bowtell, S. Böhm, A. A. Ahmed, et al., “Rethinking Ovarian Cancer II: Reducing Mortality From High-Grade Serous Ovarian Cancer,” Nature Reviews Cancer 15, no. 11 (2015): 668-679, https://doi.org/10.1038/nrc4019.

[9]

S. J. Scales and F. J. de Sauvage, “Mechanisms of Hedgehog Pathway Activation in Cancer and Implications for Therapy,” Trends in Pharmacological Sciences 30 (2009): 303-312.

[10]

F. Aberger, D. Kern, R. Greil, and T. N. Hartmann, “Canonical and Noncanonical Hedgehog/GLI Signaling in Hematological Malignancies,” Vitamins and Hormones 88 (2012): 25-54.

[11]

E. Currie, A. Schulze, R. Zechner, T. C. Walther, and R. V. Farese, “Cellular Fatty Acid Metabolism and Cancer,” Cell Metabolism 18 (2013): 153-161.

[12]

R. K. Amaravadi, A. C. Kimmelman, and J. Debnath, “Targeting Autophagy in Cancer: Recent Advances and Future Directions,” Cancer Discovery 9 (2019): 1167-1181.

[13]

M. S. D'arcy, “Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy,” Cell Biology International 43, no. 6 (2019): 582-592, https://doi.org/10.1002/cbin.11137.

[14]

X. Zeng, H. Zhao, Y. Li, et al., “Targeting Hedgehog Signaling Pathway and Autophagy Overcomes Drug Resistance of BCR-ABL-Positive Chronic Myeloid Leukemia,” Autophagy 11 (2015): 355-372.

[15]

Y. Zhang and P. A. Beachy, “Cellular and Molecular Mechanisms of Hedgehog Signalling,” Nature Reviews. Molecular Cell Biology 24 (2023): 668-687.

[16]

C. E. Cadena Del Castillo, J. T. Hannich, A. Kaech, et al., “Patched Regulates Lipid Homeostasis by Controlling Cellular Cholesterol Levels,” Nature Communications 12 (2021): 4898.

[17]

Y. Liang, R. Zhang, S. Biswas, et al., “Integrated Single-Cell Transcriptomics Reveals the Hypoxia-Induced Inflammation-Cancer Transformation in NASH-Derived Hepatocellular Carcinoma,” Cell Proliferation 57 (2024): e13576.

[18]

J. Yi, J. Zhu, J. Wu, C. B. Thompson, and X. Jiang, “Oncogenic Activation of PI3K-AKT-mTOR Signaling Suppresses Ferroptosis via SREBP-Mediated Lipogenesis,” Proceedings of the National Academy of Sciences of the United States of America 117 (2020): 31189-31197.

[19]

A. K. Mehta, E. M. Cheney, C. A. Hartl, et al., “Targeting Immunosuppressive Macrophages Overcomes PARP Inhibitor Resistance in BRCA1-Associated Triple-Negative Breast Cancer,” Nature Cancer 2 (2021): 66-82.

[20]

J. Han, E. Li, L. Chen, et al., “The CREB Coactivator CRTC2 Controls Hepatic Lipid Metabolism by Regulating SREBP1,” Nature 524 (2015): 243-246.

[21]

W. Wei, B. Qin, W. Wen, et al., “FBXW7beta Loss-Of-Function Enhances FASN-Mediated Lipogenesis and Promotes Colorectal Cancer Growth,” Signal Transduction and Targeted Therapy 8 (2023): 187.

[22]

Y. Mo, Y. Han, Y. Chen, et al., “ZDHHC20 Mediated S-Palmitoylation of Fatty Acid Synthase (FASN) Promotes Hepatocarcinogenesis,” Molecular Cancer 23 (2024): 274.

[23]

F. Shu, H. Xiao, Q. N. Li, et al., “Epigenetic and Post-Translational Modifications in Autophagy: Biological Functions and Therapeutic Targets,” Signal Transduction and Targeted Therapy 8 (2023): 32.

[24]

N. Rotem-Dai, A. Muraleedharan, and E. Livneh, “PKCeta Promotes Stress-Induced Autophagy and Senescence in Breast Cancer Cells, Presenting a Target for Therapy,” Pharmaceutics 14 (2022): 1704.

[25]

Z. Li, W. Si, W. Jin, Z. Yuan, Y. Chen, and L. Fu, “Targeting Autophagy in Colorectal Cancer: An Update on Pharmacological Small-Molecule Compounds,” Drug Discovery Today 27 (2022): 2373-2385.

[26]

N. H. Patel, S. Bloukh, E. Alwohosh, A. Alhesa, T. Saleh, and D. A. Gewirtz, “Autophagy and Senescence in Cancer Therapy,” Advances in Cancer Research 150 (2021): 1-74.

[27]

D. A. Gewirtz, “Cytoprotective and Nonprotective Autophagy in Cancer Therapy,” Autophagy 9 (2013): 1263-1265.

[28]

S. M. Hwang, D. Awasthi, J. Jeong, et al., “Transgelin 2 Guards T Cell Lipid Metabolism and Antitumour Function,” Nature 635 (2024): 1010-1018.

[29]

K. M. Nieman, H. A. Kenny, C. V. Penicka, et al., “Adipocytes Promote Ovarian Cancer Metastasis and Provide Energy for Rapid Tumor Growth,” Nature Medicine 17 (2011): 1498-1503.

[30]

Y. Wang, M. Hu, J. Cao, et al., “ACSL4 and Polyunsaturated Lipids Support Metastatic Extravasation and Colonization,” Cell 188 (2025): 412-429e427.

[31]

A. Mukherjee, C. Y. Chiang, H. A. Daifotis, et al., “Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance,” Cancer Research 80 (2020): 1748-1761.

[32]

Q. Zhang, Z. Xu, R. Han, et al., “Proteogenomic Characterization of Skull-Base Chordoma,” Nature Communications 15 (2024): 8338.

[33]

K. Zhang, J. Wei, S. Zhang, et al., “A Chemical Screen Identifies PRMT5 as a Therapeutic Vulnerability for Paclitaxel-Resistant Triple-Negative Breast Cancer,” Cell Chemical Biology 31 (2024): 1942-1957e1946.

[34]

T. M. Baker, S. Waise, M. Tarabichi, and P. Van Loo, “Aneuploidy and Complex Genomic Rearrangements in Cancer Evolution,” Nature Cancer 5 (2024): 228-239.

[35]

D. A. Lukow, E. L. Sausville, P. Suri, et al., “Chromosomal Instability Accelerates the Evolution of Resistance to Anti-Cancer Therapies,” Developmental Cell 56 (2021): 2427, e2424-2439.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/