Mechanistic Insights and Therapeutic Potentials of Ubiquitin-Proteasome System in Non-Small Cell Lung Cancer

Guangyao Zhou , Jiaxiong Tan , Pengpeng Zhang , Zhaokai Zhou , Lianmin Zhang , Zhenfa Zhang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70050

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70050 DOI: 10.1111/cpr.70050
LETTER TO THE EDITOR

Mechanistic Insights and Therapeutic Potentials of Ubiquitin-Proteasome System in Non-Small Cell Lung Cancer

Author information +
History +
PDF

Abstract

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality. Despite advancements in gene targeted therapies and immunotherapies, high heterogeneity contributes to limited efficacy and therapeutic resistance. Ubiquitination, a crucial post-translational modification that regulates protein stability and degradation, plays a significant role in cancer pathogenesis by influencing key oncogenic pathways and tumour progression. This review systematically explores the ubiquitin-proteasome system (UPS) and its potential as a therapeutic target for NSCLC. We highlight recent preclinical and clinical studies focusing on ubiquitination-related biomarkers, drug targets and emerging therapies like proteasome inhibitors and Proteolysis-targeting chimeras (PROTACs). By exploring the impact of the UPS on tumour biology, the progression of NSCLC and its response to therapy, we aim to underscore the potential of targeting the ubiquitination-deubiquitination system as a complementary or synergistic approach to existing therapeutic strategies in NSCLC, thereby enhancing patient outcomes and overcoming treatment resistance.

Keywords

cancer therapy / NSCLC / proteasome inhibition / targeted therapy / ubiquitination

Cite this article

Download citation ▾
Guangyao Zhou, Jiaxiong Tan, Pengpeng Zhang, Zhaokai Zhou, Lianmin Zhang, Zhenfa Zhang. Mechanistic Insights and Therapeutic Potentials of Ubiquitin-Proteasome System in Non-Small Cell Lung Cancer. Cell Proliferation, 2025, 58(7): e70050 DOI:10.1111/cpr.70050

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. G. Oser, M. J. Niederst, L. V. Sequist, and J. A. Engelman, “Transformation From Non-Small-Cell Lung Cancer to Small-Cell Lung Cancer: Molecular Drivers and Cells of Origin,” Lancet Oncology 16, no. 4 (2015): e165-e172, https://doi.org/10.1016/S1470-2045(14)71180-5.

[2]

M. Reck, D. Rodriguez-Abreu, A. G. Robinson, et al., “Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score >/=50. Journal of Clinical Oncology: Official Journal of the American Society of,” Clinical Oncology 39, no. 21 (2021): 2339-2349, https://doi.org/10.1200/JCO.21.00174.

[3]

M. Alexander, S. Y. Kim, and H. Cheng, “Update 2020: Management of Non-Small Cell Lung Cancer,” Lung 198, no. 6 (2020): 897-907, https://doi.org/10.1007/s00408-020-00407-5.

[4]

M. F. Baietti and R. N. Sewduth, “Novel Therapeutic Approaches Targeting Post-Translational Modifications in Lung Cancer,” Pharmaceutics 15, no. 1 (2023): 206, https://doi.org/10.3390/pharmaceutics15010206.

[5]

B. Q. Liu, J. Jin, and Y. Y. Li, “Ubiquitination Modification: Critical Regulation of IRF Family Stability and Activity,” Science China Life Sciences 64, no. 6 (2021): 957-965, https://doi.org/10.1007/s11427-020-1796-0.

[6]

S. Toma-Fukai and T. Shimizu, “Structural Diversity of Ubiquitin E3 Ligase,” Molecules 26, no. 21 (2021): 6682, https://doi.org/10.3390/molecules26216682.

[7]

Y. He, Q. Shi, Y. Ling, et al., “ABLIM1, a Novel Ubiquitin E3 Ligase, Promotes Growth and Metastasis of Colorectal Cancer Through Targeting IĸBα Ubiquitination and Activating NF-ĸB Signaling,” Cell Death and Differentiation 31, no. 2 (2024): 203-216, https://doi.org/10.1038/s41418-024-01256-y.

[8]

M. Cheng, H. Cao, P. Yao, et al., “PHF23 Promotes NSCLC Proliferation, Metastasis, and Chemoresistance via Stabilization of ACTN4 and Activation of the ERK Pathway,” Cell Death & Disease 14, no. 8 (2023): 558, https://doi.org/10.1038/s41419-023-06069-4.

[9]

C. Sampson, Q. Wang, W. Otkur, et al., “The Roles of E3 Ubiquitin Ligases in Cancer Progression and Targeted Therapy,” Clinical and Translational Medicine 13, no. 3 (2023): e1204, https://doi.org/10.1002/ctm2.1204.

[10]

Y. Zhao, J. Huang, K. Zhao, M. Li, and S. Wang, “Ubiquitination and Deubiquitination in the Regulation of N(6)-Methyladenosine Functional Molecules,” Journal of Molecular Medicine (Berlin, Germany) 102, no. 3 (2024): 337-351, https://doi.org/10.1007/s00109-024-02417-9.

[11]

I. Garcia-Santisteban, G. J. Peters, E. Giovannetti, and J. A. Rodriguez, “USP1 Deubiquitinase: Cellular Functions, Regulatory Mechanisms and Emerging Potential as Target in Cancer Therapy,” Molecular Cancer 12 (2013): 91, https://doi.org/10.1186/1476-4598-12-91.

[12]

C. Qiu, Y. Liu, Y. Mei, et al., “Ubiquitin-Speci Fi c Protease 4 Promotes Metastasis of Hepatocellular Carcinoma by Increasing TGF-Beta Signaling-Induced Epithelial-Mesenchymal Transition,” Aging 10, no. 10 (2018): 2783-2799, https://doi.org/10.18632/aging.101587.

[13]

P. J. Eichhorn, L. Rodon, A. Gonzalez-Junca, et al., “USP15 Stabilizes TGF-β Receptor I and Promotes Oncogenesis Through the Activation of TGF-β Signaling in Glioblastoma,” Nature Medicine 18, no. 3 (2012): 429-435, https://doi.org/10.1038/nm.2619.

[14]

C. Harakandi, L. Nininahazwe, H. Xu, et al., “Recent Advances on the Intervention Sites Targeting USP7-MDM2-p53 in Cancer Therapy,” Bioorganic Chemistry 116 (2021): 105273, https://doi.org/10.1016/j.bioorg.2021.105273.

[15]

G. Dewson, P. J. A. Eichhorn, and D. Komander, “Deubiquitinases in Cancer,” Nature Reviews. Cancer 23, no. 12 (2023): 842-862, https://doi.org/10.1038/s41568-023-00633-y.

[16]

Y. J. Kim, Y. Lee, H. Shin, S. Hwang, J. Park, and E. J. Song, “Ubiquitin-Proteasome System as a Target for Anticancer Treatment-An Update,” Archives of Pharmacal Research 46, no. 7 (2023): 573-597, https://doi.org/10.1007/s12272-023-01455-0.

[17]

D. Han, L. Wang, S. Jiang, and Q. Yang, “The Ubiquitin-Proteasome System in Breast Cancer,” Trends in Molecular Medicine 29, no. 8 (2023): 599-621, https://doi.org/10.1016/j.molmed.2023.05.006.

[18]

S. Wang, P. Liu, J. Yu, and T. Liu, “Multi-Omics Analysis Elucidates the Immune and Intratumor Microbes Characteristics of Ubiquitination Subtypes in Lung Adenocarcinoma,” Translational Oncology 36 (2023): 101754, https://doi.org/10.1016/j.tranon.2023.101754.

[19]

S. Singh, N. Y. Yeat, Y. T. Wang, et al., “PTPN23 Ubiquitination by WDR4 Suppresses EGFR and c-MET Degradation to Define a Lung Cancer Therapeutic Target,” Cell Death & Disease 14, no. 10 (2023): 671, https://doi.org/10.1038/s41419-023-06201-4.

[20]

M. S. Kim, S. H. Kim, S. H. Yang, and M. S. Kim, “miR-4487 Enhances Gefitinib-Mediated Ubiquitination and Autophagic Degradation of EGFR in Non-Small Cell Lung Cancer Cells by Targeting USP37,” Cancer Research and Treatment 54, no. 2 (2022): 445-457, https://doi.org/10.4143/crt.2021.622.

[21]

H. Zhang, B. Han, H. Lu, et al., “USP22 Promotes Resistance to EGFR-TKIs by Preventing Ubiquitination-Mediated EGFR Degradation in EGFR-Mutant Lung Adenocarcinoma,” Cancer Letters 433 (2018): 186-198, https://doi.org/10.1016/j.canlet.2018.07.002.

[22]

N. Zhang, Y. Liao, W. Lv, et al., “FBXO32 Targets PHPT1 for Ubiquitination to Regulate the Growth of EGFR Mutant Lung Cancer,” Cellular Oncology (Dordrecht) 45, no. 2 (2022): 293-307, https://doi.org/10.1007/s13402-022-00669-6.

[23]

J. Li, Y. Wang, Y. Luo, et al., “USP5-Beclin 1 Axis Overrides p53-Dependent Senescence and Drives Kras-Induced Tumorigenicity,” Nature Communications 13, no. 1 (2022): 7799, https://doi.org/10.1038/s41467-022-35557-y.

[24]

S. Bansod, P. B. Dodhiawala, Y. Geng, et al., “The TRIM4 E3 Ubiquitin Ligase Degrades TPL2 and Is Modulated by Oncogenic KRAS,” Cell Reports 43, no. 9 (2024): 114667, https://doi.org/10.1016/j.celrep.2024.114667.

[25]

B. Wang, Z. Jie, D. Joo, et al., “TRAF2 and OTUD7B Govern a Ubiquitin-Dependent Switch That Regulates mTORC2 Signalling,” Nature 545, no. 7654 (2017): 365-369, https://doi.org/10.1038/nature22344.

[26]

N. Karachaliou, J. W. P. Bracht, M. Fernandez Bruno, et al., “Association of PALB2 Messenger RNA Expression With Platinum-Docetaxel Efficacy in Advanced Non-Small Cell Lung Cancer,” Journal of Thoracic Oncology 14, no. 2 (2019): 304-310, https://doi.org/10.1016/j.jtho.2018.10.168.

[27]

R. M. Pascale, C. Joseph, G. Latte, M. Evert, F. Feo, and D. F. Calvisi, “DNA-PKcs: A Promising Therapeutic Target in Human Hepatocellular Carcinoma?,” DNA Repair (Amst) 47 (2016): 12-20, https://doi.org/10.1016/j.dnarep.2016.10.004.

[28]

Z. Luo, X. Ye, F. Shou, Y. Cheng, F. Li, and G. Wang, “RNF115-Mediated Ubiquitination of p53 Regulates Lung Adenocarcinoma Proliferation,” Biochemical and Biophysical Research Communications 530, no. 2 (2020): 425-431, https://doi.org/10.1016/j.bbrc.2020.05.061.

[29]

J. Y. Ke, C. J. Dai, W. L. Wu, et al., “USP11 Regulates p53 Stability by Deubiquitinating p53,” Journal of Zhejiang University. Science. B 15, no. 12 (2014): 1032-1038, https://doi.org/10.1631/jzus.B1400180.

[30]

K. Zhang, T. Sun, W. Li, et al., “Inhibition of USP7 Upregulates USP22 and Activates Its Downstream Cancer-Related Signaling Pathways in Human Cancer Cells,” Cell Communication and Signaling: CCS 21, no. 1 (2023): 319, https://doi.org/10.1186/s12964-023-01320-z.

[31]

Y. Li, C. Ma, T. Zhou, Y. Liu, L. Sun, and Z. Yu, “TRIM65 Negatively Regulates p53 Through Ubiquitination,” Biochemical and Biophysical Research Communications 473, no. 1 (2016): 278-282, https://doi.org/10.1016/j.bbrc.2016.03.093.

[32]

G. Chen, T. Zhou, Y. Liu, and Z. Yu, “Combinatory Inhibition of TRIM65 and MDM2 in Lung Cancer Cells,” Biochemical and Biophysical Research Communications 506, no. 3 (2018): 698-702, https://doi.org/10.1016/j.bbrc.2018.10.130.

[33]

A. Mogi and H. Kuwano, “TP53 Mutations in Nonsmall Cell Lung Cancer,” Journal of Biomedical Biotechnology 2011 (2011): 583929, https://doi.org/10.1155/2011/583929.

[34]

H. Yang, X. Zhang, M. Lao, et al., “Targeting Ubiquitin-Specific Protease 8 Sensitizes Anti-Programmed Death-Ligand 1 Immunotherapy of Pancreatic Cancer,” Cell Death and Differentiation 30, no. 2 (2023): 560-575, https://doi.org/10.1038/s41418-022-01102-z.

[35]

R. M. Pipitone, G. Lupo, R. Zito, et al., “The PD-1/PD-L1 Axis in the Biology of MASLD,” International Journal of Molecular Sciences 25, no. 7 (2024): 3671, https://doi.org/10.3390/ijms25073671.

[36]

Z. Kuang, X. Liu, N. Zhang, et al., “USP2 Promotes Tumor Immune Evasion via Deubiquitination and Stabilization of PD-L1,” Cell Death and Differentiation 30, no. 10 (2023): 2249-2264, https://doi.org/10.1038/s41418-023-01219-9.

[37]

Y. He, X. Jiang, L. Duan, et al., “LncRNA PKMYT1AR Promotes Cancer Stem Cell Maintenance in Non-Small Cell Lung Cancer via Activating Wnt Signaling Pathway,” Molecular Cancer 20, no. 1 (2021): 156, https://doi.org/10.1186/s12943-021-01469-6.

[38]

C. H. Tung, J. E. Wu, M. F. Huang, et al., “Ubiquitin-Specific Peptidase 5 Facilitates Cancer Stem Cell-Like Properties in Lung Cancer by Deubiquitinating β-Catenin,” Cancer Cell International 23, no. 1 (2023): 207, https://doi.org/10.1186/s12935-023-03059-6.

[39]

T. He, Y. Wang, W. Lv, et al., “FBP1 Inhibits NSCLC Stemness by Promoting Ubiquitination of Notch1 Intracellular Domain and Accelerating Degradation,” Cellular and Molecular Life Sciences 81, no. 1 (2024): 87, https://doi.org/10.1007/s00018-024-05138-x.

[40]

Z. Cheng, H. Xin, and T. Han, “BECN1 Promotes the Migration of NSCLC Cells Through Regulating the Ubiquitination of Vimentin,” Cell Adhesion & Migration 13, no. 1 (2019): 249-259, https://doi.org/10.1080/19336918.2019.1638690.

[41]

J. Wang, D. Liu, Z. Sun, et al., “Autophagy Augments the Self-Renewal of Lung Cancer Stem Cells by the Degradation of Ubiquitinated p53,” Cell Death & Disease 12, no. 1 (2021): 98, https://doi.org/10.1038/s41419-021-03392-6.

[42]

L. Li, D. Cui, S. J. Zheng, H. Lou, and J. Tang, “Regulation of Actinomycin D Induced Upregulation of Mdm2 in H1299 Cells,” DNA Repair (Amst) 11, no. 2 (2012): 112-119, https://doi.org/10.1016/j.dnarep.2011.10.010.

[43]

F. Tang, C. Lu, X. He, et al., “E3 Ligase Trim35 Inhibits LSD1 Demethylase Activity Through K63-Linked Ubiquitination and Enhances Anti-Tumor Immunity in NSCLC,” Cell Reports 42, no. 12 (2023): 113477, https://doi.org/10.1016/j.celrep.2023.113477.

[44]

Z. Sun, H. Mai, C. Xue, et al., “Hsa-LINC02418/Mmu-4930573I07Rik Regulated by METTL3 Dictates Anti-PD-L1 Immunotherapeutic Efficacy via Enhancement of Trim21-Mediated PD-L1 Ubiquitination,” Journal for Immunotherapy of Cancer 11, no. 12 (2023): e007415, https://doi.org/10.1136/jitc-2023-007415.

[45]

J. Li, D. Shi, S. Li, et al., “KEAP1 Promotes Anti-Tumor Immunity by Inhibiting PD-L1 Expression in NSCLC,” Cell Death & Disease 15, no. 2 (2024): 175, https://doi.org/10.1038/s41419-024-06563-3.

[46]

T. Zhong, J. Zhang, X. Liu, and H. Li, “TRIM17-Mediated Ubiquitination and Degradation of RBM38 Promotes Cisplatin Resistance in Non-Small Cell Lung Cancer,” Cellular Oncology (Dordrecht) 46, no. 5 (2023): 1493-1507, https://doi.org/10.1007/s13402-023-00825-6.

[47]

E. Anastasiadou, L. S. Jacob, and F. J. Slack, “Non-Coding RNA Networks in Cancer,” Nature Reviews. Cancer 18, no. 1 (2018): 5-18, https://doi.org/10.1038/nrc.2017.99.

[48]

S. Dong, X. Qu, W. Li, et al., “The Long Non-Coding RNA, GAS5, Enhances Gefitinib-Induced Cell Death in Innate EGFR Tyrosine Kinase Inhibitor-Resistant Lung Adenocarcinoma Cells With Wide-Type EGFR via Downregulation of the IGF-1R Expression,” Journal of Hematology & Oncology 8 (2015): 43, https://doi.org/10.1186/s13045-015-0140-6.

[49]

J. He, S. Jin, W. Zhang, et al., “Long Non-Coding RNA LOC554202 Promotes Acquired Gefitinib Resistance in Non-Small Cell Lung Cancer Through Upregulating miR-31 Expression,” Journal of Cancer 10, no. 24 (2019): 6003-6013, https://doi.org/10.7150/jca.35097.

[50]

Y. Li, Y. Shen, M. Xie, et al., “LncRNAs LCETRL3 and LCETRL4 at Chromosome 4q12 Diminish EGFR-TKIs Efficiency in NSCLC Through Stabilizing TDP43 and EIF2S1,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 30, https://doi.org/10.1038/s41392-021-00847-2.

[51]

Z. D. Hua, X. B. Liu, J. H. Sheng, et al., “UBE2V2 Positively Correlates With PD-L1 Expression and Confers Poor Patient Survival in Lung Adenocarcinoma,” Applied Immunohistochemistry & Molecular Morphology 29, no. 8 (2021): 585-591, https://doi.org/10.1097/PAI.0000000000000928.

[52]

Y. Liu, Y. Luo, S. Yan, et al., “CRL2(KLHDC3) Mediates p14ARF N-Terminal Ubiquitylation Degradation to Promote Non-Small Cell Lung Carcinoma Progression,” Oncogene 41, no. 22 (2022): 3104-3117, https://doi.org/10.1038/s41388-022-02318-6.

[53]

S. Misaghi, P. J. Galardy, W. J. Meester, H. Ovaa, H. L. Ploegh, and R. Gaudet, “Structure of the Ubiquitin Hydrolase UCH-L3 Complexed With a Suicide Substrate,” Journal of Biological Chemistry 280, no. 2 (2005): 1512-1520, https://doi.org/10.1074/jbc.M410770200.

[54]

T. Satoh, A. Sumiyoshi, M. Yagi-Utsumi, et al., “Mode of Substrate Recognition by the Josephin Domain of Ataxin-3, Which has an Endo-Type Deubiquitinase Activity,” FEBS Letters 588, no. 23 (2014): 4422-4430, https://doi.org/10.1016/j.febslet.2014.10.013.

[55]

A. H. Tencer, Q. Liang, and Z. Zhuang, “Divergence in Ubiquitin Interaction and Catalysis Among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes,” Biochemistry 55, no. 33 (2016): 4708-4719, https://doi.org/10.1021/acs.biochem.6b00033.

[56]

B. Zhang, C. Liu, Z. Yang, et al., “Discovery of BWA-522, a First-In-Class and Orally Bioavailable PROTAC Degrader of the Androgen Receptor Targeting N-Terminal Domain for the Treatment of Prostate Cancer,” Journal of Medicinal Chemistry 66, no. 16 (2023): 11158-11186, https://doi.org/10.1021/acs.jmedchem.3c00585.

[57]

C. M. Adams, R. Mitra, Y. Xiao, et al., “Targeted MDM2 Degradation Reveals a New Vulnerability for p53-Inactivated Triple-Negative Breast Cancer,” Cancer Discovery 13, no. 5 (2023): 1210-1229, https://doi.org/10.1158/2159-8290.CD-22-1131.

[58]

X. Li and Y. Song, “Proteolysis-Targeting Chimera (PROTAC) for Targeted Protein Degradation and Cancer Therapy,” Journal of Hematology & Oncology 13, no. 1 (2020): 50, https://doi.org/10.1186/s13045-020-00885-3.

[59]

Z. Zhang, Z. Cui, Z. Xie, et al., “Deubiquitinase USP5 Promotes Non-Small Cell Lung Cancer Cell Proliferation by Stabilizing Cyclin D1,” Translational Lung Cancer Research 10, no. 10 (2021): 3995-4011, https://doi.org/10.21037/tlcr-21-767.

[60]

Y. Zheng, L. Wang, X. Niu, et al., “EOAI, a Ubiquitin-Specific Peptidase 5 Inhibitor, Prevents Non-Small Cell Lung Cancer Progression by Inducing DNA Damage,” BMC Cancer 23, no. 1 (2023): 28, https://doi.org/10.1186/s12885-023-10506-0.

[61]

Z. Zhang, W. Gao, L. Zhou, et al., “Repurposing Brigatinib for the Treatment of Colorectal Cancer Based on Inhibition of ER-Phagy,” Theranostics 9, no. 17 (2019): 4878-4892, https://doi.org/10.7150/thno.36254.

[62]

K. Zhang, L. Yang, J. Wang, et al., “Ubiquitin-Specific Protease 22 Is Critical to In Vivo Angiogenesis, Growth and Metastasis of Non-Small Cell Lung Cancer,” Cell Communication and Signaling: CCS 17, no. 1 (2019): 167, https://doi.org/10.1186/s12964-019-0480-x.

[63]

W. Ren, Z. Xu, Y. Chang, et al., “Pharmaceutical Targeting of OTUB2 Sensitizes Tumors to Cytotoxic T Cells via Degradation of PD-L1,” Nature Communications 15, no. 1 (2024): 9, https://doi.org/10.1038/s41467-023-44466-7.

[64]

X. Wang, S. Xia, H. Li, et al., “The Deubiquitinase USP10 Regulates KLF4 Stability and Suppresses Lung Tumorigenesis,” Cell Death and Differentiation 27, no. 6 (2020): 1747-1764, https://doi.org/10.1038/s41418-019-0458-7.

[65]

J. Li, X. Xiao, Y. Ou, et al., “USP51/PD-L1/ITGB1-Deployed Juxtacrine Interaction Plays a Cell-Intrinsic Role in Promoting Chemoresistant Phenotypes in Non-Small Cell Lung Cancer,” Cancer Communications 43, no. 7 (2023): 765-787, https://doi.org/10.1002/cac2.12460.

[66]

Z. Yang, G. Xu, B. Wang, et al., “USP12 Downregulation Orchestrates a Protumourigenic Microenvironment and Enhances Lung Tumour Resistance to PD-1 Blockade,” Nature Communications 12, no. 1 (2021): 4852, https://doi.org/10.1038/s41467-021-25032-5.

[67]

A. Sheryazdanova, N. D. Amoedo, S. Dufour, F. Impens, R. Rossignol, and A. Sablina, “The Deubiquitinase OTUB1 Governs Lung Cancer Cell Fitness by Modulating Proteostasis of OXPHOS Proteins,” Biochimica et Biophysica Acta - Molecular Basis of Disease 1869, no. 7 (2023): 166767, https://doi.org/10.1016/j.bbadis.2023.166767.

[68]

S. O. Rohondia, Z. S. O. Ahmed, and Q. P. Dou, “Updated Review and Perspective on 20S Proteasome Inhibitors in the Treatment of Lung Cancer,” Current Cancer Drug Targets 20, no. 6 (2020): 392-409, https://doi.org/10.2174/1568009620666200226094000.

[69]

S. Kawabata, J. J. Gills, J. R. Mercado-Matos, et al., “Synergistic Effects of Nelfinavir and Bortezomib on Proteotoxic Death of NSCLC and Multiple Myeloma Cells,” Cell Death & Disease 3, no. 7 (2012): e353, https://doi.org/10.1038/cddis.2012.87.

[70]

L. Besse, M. Kraus, A. Besse, C. Driessen, and I. Tarantino, “The Cytotoxic Activity of Carfilzomib Together With Nelfinavir Is Superior to the Bortezomib/Nelfinavir Combination in Non-Small Cell Lung Carcinoma,” Scientific Reports 13, no. 1 (2023): 4411, https://doi.org/10.1038/s41598-023-31400-6.

[71]

M. Millward, T. Price, A. Townsend, et al., “Phase 1 Clinical Trial of the Novel Proteasome Inhibitor Marizomib With the Histone Deacetylase Inhibitor Vorinostat in Patients With Melanoma, Pancreatic and Lung Cancer Based on In Vitro Assessments of the Combination,” Investigational New Drugs 30, no. 6 (2012): 2303-2317, https://doi.org/10.1007/s10637-011-9766-6.

[72]

A. Qin, L. Wells, B. Malhotra, et al., “A Phase II Trial of Pevonedistat and Docetaxel in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer,” Clinical Lung Cancer 25, no. 2 (2024): 128-134, https://doi.org/10.1016/j.cllc.2023.10.011.

[73]

J. W. Li, G. Zheng, F. J. Kaye, and L. Wu, “PROTAC Therapy as a New Targeted Therapy for Lung Cancer,” Molecular Therapy: The Journal of the American Society of Gene Therapy 31, no. 3 (2023): 647-656, https://doi.org/10.1016/j.ymthe.2022.11.011.

[74]

G. M. Burslem, B. E. Smith, A. C. Lai, et al., “The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study,” Cell Chemical Biology 25, no. 1 (2018): 67-77, https://doi.org/10.1016/j.chembiol.2017.09.009.

[75]

M. Zeng, Y. Xiong, N. Safaee, et al., “Exploring Targeted Degradation Strategy for Oncogenic KRASG12C,” Cell Chemical Biology 27, no. 1 (2020): 19-31, https://doi.org/10.1016/j.chembiol.2019.12.006.

[76]

M. J. Bond, L. Chu, D. A. Nalawansha, K. Li, and C. M. Crews, “Targeted Degradation of Oncogenic KRAS(G12C) by VHL-Recruiting PROTACs,” ACS Central Science 6, no. 8 (2020): 1367-1375, https://doi.org/10.1021/acscentsci.0c00411.

[77]

C. Zhou, Z. Fan, Z. Zhou, et al., “Discovery of the First-In-Class Agonist-Based SOS1 PROTACs Effective in Human Cancer Cells Harboring Various KRAS Mutations,” Journal of Medicinal Chemistry 65, no. 5 (2022): 3923-3942, https://doi.org/10.1021/acs.jmedchem.1c01774.

[78]

P. G. Richardson, T. Hideshima, and K. C. Anderson, “Bortezomib (PS-341): A Novel, First-In-Class Proteasome Inhibitor for the Treatment of Multiple Myeloma and Other Cancers,” Cancer Control 10, no. 5 (2003): 361-369, https://doi.org/10.1177/107327480301000502.

[79]

S. Frankland-Searby and S. R. Bhaumik, “The 26S Proteasome Complex: An Attractive Target for Cancer Therapy,” Biochimica et Biophysica Acta 1825, no. 1 (2012): 64-76, https://doi.org/10.1016/j.bbcan.2011.10.003.

[80]

P. G. Richardson, H. Briemberg, S. Jagannath, et al., “Frequency, Characteristics, and Reversibility of Peripheral Neuropathy During Treatment of Advanced Multiple Myeloma With Bortezomib,” Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 24, no. 19 (2006): 3113-3120, https://doi.org/10.1200/JCO.2005.04.7779.

[81]

L. T. Vassilev, B. T. Vu, B. Graves, et al., “In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2,” Science 303, no. 5659 (2004): 844-848, https://doi.org/10.1126/science.1092472.

[82]

V. Tisato, R. Voltan, A. Gonelli, P. Secchiero, and G. Zauli, “MDM2/X Inhibitors Under Clinical Evaluation: Perspectives for the Management of Hematological Malignancies and Pediatric Cancer,” Journal of Hematology & Oncology 10, no. 1 (2017): 133, https://doi.org/10.1186/s13045-017-0500-5.

[83]

C. Sarisozen, Y. Tan, J. Liu, et al., “MDM2 Antagonist-Loaded Targeted Micelles in Combination With Doxorubicin: Effective Synergism Against Human Glioblastoma via p53 Re-Activation,” Journal of Drug Targeting 27, no. 5-6 (2019): 624-633, https://doi.org/10.1080/1061186X.2019.1570518.

[84]

L. Deng, T. Meng, L. Chen, W. Wei, and P. Wang, “The Role of Ubiquitination in Tumorigenesis and Targeted Drug Discovery,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 11, https://doi.org/10.1038/s41392-020-0107-0.

[85]

E. K. Rowinsky, A. Paner, J. G. Berdeja, et al., “Phase 1 Study of the Protein Deubiquitinase Inhibitor VLX1570 in Patients With Relapsed and/or Refractory Multiple Myeloma,” Investigational New Drugs 38, no. 5 (2020): 1448-1453, https://doi.org/10.1007/s10637-020-00915-4.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/