Mechanistic Insights and Therapeutic Potentials of Ubiquitin-Proteasome System in Non-Small Cell Lung Cancer
Guangyao Zhou , Jiaxiong Tan , Pengpeng Zhang , Zhaokai Zhou , Lianmin Zhang , Zhenfa Zhang
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70050
Mechanistic Insights and Therapeutic Potentials of Ubiquitin-Proteasome System in Non-Small Cell Lung Cancer
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality. Despite advancements in gene targeted therapies and immunotherapies, high heterogeneity contributes to limited efficacy and therapeutic resistance. Ubiquitination, a crucial post-translational modification that regulates protein stability and degradation, plays a significant role in cancer pathogenesis by influencing key oncogenic pathways and tumour progression. This review systematically explores the ubiquitin-proteasome system (UPS) and its potential as a therapeutic target for NSCLC. We highlight recent preclinical and clinical studies focusing on ubiquitination-related biomarkers, drug targets and emerging therapies like proteasome inhibitors and Proteolysis-targeting chimeras (PROTACs). By exploring the impact of the UPS on tumour biology, the progression of NSCLC and its response to therapy, we aim to underscore the potential of targeting the ubiquitination-deubiquitination system as a complementary or synergistic approach to existing therapeutic strategies in NSCLC, thereby enhancing patient outcomes and overcoming treatment resistance.
cancer therapy / NSCLC / proteasome inhibition / targeted therapy / ubiquitination
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.
/
| 〈 |
|
〉 |