Elucidating the Role and Mechanism of Alpha-Enolase in Senescent Amelioration via Metabolic Reprogramming

Yun Haeng Lee , Hyunwoong Lim , Gyungmin Kim , Geonhee Jang , Myeong Uk Kuk , Ji Ho Park , Jee hee Yoon , Yoo Jin Lee , Duyeol Kim , Byeonghyeon So , Minseon Kim , Hyung Wook Kwon , Youngjoo Byun , Joon Tae Park

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70049

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70049 DOI: 10.1111/cpr.70049
ORIGINAL ARTICLE

Elucidating the Role and Mechanism of Alpha-Enolase in Senescent Amelioration via Metabolic Reprogramming

Author information +
History +
PDF

Abstract

Senescent cells are characterised by increased glycolysis dependence. Normalisation of glycolysis metabolism is essential for senescence amelioration. However, the mechanism of proteins involved in cellular glycolysis metabolism has not been fully elucidated. Here, we identified a candidate compound, an oxazole analogue (KB2764), that can improve senescence. To elucidate the mechanism of the KB2764, we investigated the interacting proteins. KB2764 interacted with alpha-enolase (ENO1) and pyruvate kinase M (PKM), ultimately allowing PKM to phosphorylate ENO1. KB2764 consequently increased mitochondrial ATP production and reduced reliance on glycolysis. Knockdown of the ENO1 experiment in senescent cells demonstrates that regulation of ENO1 activity is a prerequisite for recovery of mitochondrial function. Furthermore, the action of KB2764 extends its application to extend the lifespan of Caenorhabditis elegans. Taken together, our findings reveal a novel mechanism by which senescence is ameliorated through metabolic reprogramming and mitochondrial functional recovery via KB2764-mediated regulation of ENO1 protein activity.

Keywords

alpha-enolase / Caenorhabditis elegans / metabolic reprogramming / senescence amelioration

Cite this article

Download citation ▾
Yun Haeng Lee, Hyunwoong Lim, Gyungmin Kim, Geonhee Jang, Myeong Uk Kuk, Ji Ho Park, Jee hee Yoon, Yoo Jin Lee, Duyeol Kim, Byeonghyeon So, Minseon Kim, Hyung Wook Kwon, Youngjoo Byun, Joon Tae Park. Elucidating the Role and Mechanism of Alpha-Enolase in Senescent Amelioration via Metabolic Reprogramming. Cell Proliferation, 2025, 58(10): e70049 DOI:10.1111/cpr.70049

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Hayflick, “The Limited In Vitro Lifetime of Human Diploid Cell Strains,” Experimental Cell Research 37, no. 3 (1965): 614-636.

[2]

D. Boffoli, S. C. Scacco, R. Vergari, G. Solarino, G. Santacroce, and S. Papa, “Decline With Age of the Respiratory Chain Activity in Human Skeletal Muscle,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1226, no. 1 (1994): 73-82.

[3]

D. B. Zorov, M. Juhaszova, and S. J. Sollott, “Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release,” Physiological Reviews 94, no. 3 (2014): 909-950.

[4]

A. H. Bittles and N. Harper, “Increased Glycolysis in Ageing Cultured Human Diploid Fibroblasts,” Bioscience Reports 4, no. 9 (1984): 751-756.

[5]

S. Din, M. H. Konstandin, B. Johnson, et al., “Metabolic Dysfunction Consistent With Premature Aging Results From Deletion of Pim Kinases,” Circulation Research 115, no. 3 (2014): 376-387.

[6]

S. Kakkar and B. Narasimhan, “A Comprehensive Review on Biological Activities of Oxazole Derivatives,” BMC Chemistry 13, no. 1 (2019): 16.

[7]

Y. H. Lee, D. Choi, G. Jang, et al., “Targeting Regulation of ATP Synthase 5 Alpha/Beta Dimerization Alleviates Senescence,” Aging (Albany NY) 14, no. 2 (2022): 678-707.

[8]

T. P. Kilpeläinen, H. T. Pätsi, R. Svarcbahs, et al., “Nonpeptidic Oxazole-Based Prolyl Oligopeptidase Ligands With Disease-Modifying Effects on α-Synuclein Mouse Models of Parkinson's Disease,” Journal of Medicinal Chemistry 66, no. 11 (2023): 7475-7496.

[9]

P. Samakkarnthai, D. Saul, L. Zhang, et al., “In Vitro and In Vivo Effects of Zoledronic Acid on Senescence and Senescence-Associated Secretory Phenotype Markers,” Aging (Albany NY) 15, no. 9 (2023): 3331-3355.

[10]

V. Spirin, A. Shpunt, J. Seebacher, et al., “Assigning Spectrum-Specific P-Values to Protein Identifications by Mass Spectrometry,” Bioinformatics (Oxford, England) 27, no. 8 (2011): 1128-1134.

[11]

Y. H. Lee, J. Y. Park, H. Lee, et al., “Targeting Mitochondrial Metabolism as a Strategy to Treat Senescence,” Cells 10, no. 11 (2021): 3003.

[12]

B. Park, J. Y. Kim, O. F. Riffey, et al., “Pyruvate Kinase M1 Regulates Butyrate Metabolism in Cancerous Colonocytes,” Scientific Reports 12, no. 1 (2022): 8771.

[13]

H. Ji, J. Wang, J. Guo, et al., “Progress in the Biological Function of Alpha-Enolase,” Animal Nutrition 2, no. 1 (2016): 12-17.

[14]

C. J. Miller and B. E. Turk, “Homing in: Mechanisms of Substrate Targeting by Protein Kinases,” Trends in Biochemical Sciences 43, no. 5 (2018): 380-394.

[15]

S. Miwa, S. Kashyap, E. Chini, and T. von Zglinicki, “Mitochondrial Dysfunction in Cell Senescence and Aging,” Journal of Clinical Investigation 132, no. 13 (2022): e158447.

[16]

R. M. Mayers, R. J. Butlin, E. Kilgour, et al., “AZD7545, a Novel Inhibitor of Pyruvate Dehydrogenase Kinase 2 (PDHK2), Activates Pyruvate Dehydrogenase In Vivo and Improves Blood Glucose Control in Obese (Fa/Fa) Zucker Rats,” Biochemical Society Transactions 31, no. Pt 6 (2003): 1165-1167.

[17]

L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, et al., “Mitochondrial Membrane Potential,” Analytical Biochemistry 552 (2018): 50-59.

[18]

S. Ghosh, R. Lertwattanarak, N. Lefort, et al., “Reduction in Reactive Oxygen Species Production by Mitochondria From Elderly Subjects With Normal and Impaired Glucose Tolerance,” Diabetes 60, no. 8 (2011): 2051-2060.

[19]

B. Westermann, “Bioenergetic Role of Mitochondrial Fusion and Fission,” Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817, no. 10 (2012): 1833-1838.

[20]

M. A. Petr, T. Tulika, L. M. Carmona-Marin, and M. Scheibye-Knudsen, “Protecting the Aging Genome,” Trends in Cell Biology 30, no. 2 (2020): 117-132.

[21]

D. R. Green, L. Galluzzi, and G. Kroemer, “Mitochondria and the Autophagy-Inflammation-Cell Death Axis in Organismal Aging,” Science 333, no. 6046 (2011): 1109-1112.

[22]

H. Jiang, Z. Ju, and K. L. Rudolph, “Telomere Shortening and Ageing,” Zeitschrift für Gerontologie und Geriatrie 40, no. 5 (2007): 314-324.

[23]

L. Zhang, L. E. Pitcher, M. J. Yousefzadeh, L. J. Niedernhofer, P. D. Robbins, and Y. Zhu, “Cellular Senescence: A Key Therapeutic Target in Aging and Diseases,” Journal of Clinical Investigation 132, no. 15 (2022): e158450.

[24]

Z. Pincus, T. C. Mazer, and F. J. Slack, “Autofluorescence as a Measure of Senescence in C. elegans: Look to Red, Not Blue or Green,” Aging (Albany NY) 8, no. 5 (2016): 889-898.

[25]

M. Uno and E. Nishida, “Lifespan-Regulating Genes in C. elegans,” npj Aging and Mechanisms of Disease 2, no. 1 (2016): 16010.

[26]

H. Zhang and W. Chen, “Automated Recognition and Analysis of Body Bending Behavior in C. elegans,” BMC Bioinformatics 24, no. 1 (2023): 175.

[27]

G. Qiao, A. Wu, X. Chen, Y. Tian, and X. Lin, “Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment,” International Journal of Biological Sciences 17, no. 14 (2021): 3981-3992.

[28]

N. Dephoure, C. Zhou, J. Villén, et al., “A Quantitative Atlas of Mitotic Phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 31 (2008): 10762-10767.

[29]

S. Gao, H. Li, Y. Cai, et al., “Mitochondrial Binding of α-Enolase Stabilizes Mitochondrial Membrane: Its Role in Doxorubicin-Induced Cardiomyocyte Apoptosis,” Archives of Biochemistry and Biophysics 542 (2014): 46-55.

[30]

C. Giorgi, S. Marchi, I. C. M. Simoes, et al., “Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases,” International Review of Cell and Molecular Biology 340 (2018): 209-344.

[31]

C. Guo, L. Sun, X. Chen, and D. Zhang, “Oxidative Stress, Mitochondrial Damage and Neurodegenerative Diseases,” Neural Regeneration Research 8, no. 21 (2013): 2003-2014.

[32]

G. Tian, J. Sawashita, H. Kubo, et al., “Ubiquinol-10 Supplementation Activates Mitochondria Functions to Decelerate Senescence in Senescence-Accelerated Mice,” Antioxidants & Redox Signaling 20, no. 16 (2014): 2606-2620.

[33]

Y. Ohya, N. Umemoto, I. Tanida, A. Ohta, H. Iida, and Y. Anraku, “Calcium-Sensitive Cls Mutants of Saccharomyces cerevisiae Showing a Pet-Phenotype Are Ascribable to Defects of Vacuolar Membrane H(+)-ATPase Activity,” Journal of Biological Chemistry 266, no. 21 (1991): 13971-13977.

[34]

C. D. Wiley and J. Campisi, “From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence,” Cell Metabolism 23, no. 6 (2016): 1013-1021.

[35]

L. Matos, A. M. Gouveia, and H. Almeida, “Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis,” Oxidative Medicine and Cellular Longevity 2017 (2017): 3793817.

[36]

K. S. Bhullar and B. P. Hubbard, “Lifespan and Healthspan Extension by Resveratrol,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1852, no. 6 (2015): 1209-1218.

[37]

S. A. Hawley, A. E. Gadalla, G. S. Olsen, and D. G. Hardie, “The Antidiabetic Drug Metformin Activates the AMP-Activated Protein Kinase Cascade via an Adenine Nucleotide-Independent Mechanism,” Diabetes 51, no. 8 (2002): 2420-2425.

[38]

A. S. Kulkarni, S. Gubbi, and N. Barzilai, “Benefits of Metformin in Attenuating the Hallmarks of Aging,” Cell Metabolism 32, no. 1 (2020): 15-30.

[39]

J. Chen, Y. Ou, Y. Li, S. Hu, L.-W. Shao, and Y. Liu, “Metformin Extends C. elegans Lifespan Through Lysosomal Pathway,” eLife 6 (2017): e31268.

[40]

R. Lopez-Alemany, P. Correc, L. Camoin, and P. Burtin, “Purification of the Plasmin Receptor From Human Carcinoma Cells and Comparison to Alpha-Enolase,” Thrombosis Research 75, no. 4 (1994): 371-381.

[41]

L. A. Miles, C. M. Dahlberg, J. Plescia, J. Felez, K. Kato, and E. F. Plow, “Role of Cell-Surface Lysines in Plasminogen Binding to Cells: Identification of Alpha-Enolase as a Candidate Plasminogen Receptor,” Biochemistry 30, no. 6 (1991): 1682-1691.

[42]

M. Wygrecka, L. M. Marsh, R. E. Morty, et al., “Enolase-1 Promotes Plasminogen-Mediated Recruitment of Monocytes to the Acutely Inflamed Lung,” Blood 113, no. 22 (2009): 5588-5598.

[43]

A. Díaz-Ramos, A. Roig-Borrellas, A. García-Melero, and R. López-Alemany, “α-Enolase, a Multifunctional Protein: Its Role on Pathophysiological Situations,” Journal of Biomedicine & Biotechnology 2012 (2012): 156795.

[44]

D. A. Butterfield and M. L. Lange, “Multifunctional Roles of Enolase in Alzheimer's Disease Brain: Beyond Altered Glucose Metabolism,” Journal of Neurochemistry 111, no. 4 (2009): 915-933.

[45]

A. Castegna, M. Aksenov, V. Thongboonkerd, et al., “Proteomic Identification of Oxidatively Modified Proteins in Alzheimer's Disease Brain. Part II: Dihydropyrimidinase-Related Protein 2, Alpha-Enolase and Heat Shock Cognate 71,” Journal of Neurochemistry 82, no. 6 (2002): 1524-1532.

[46]

A. Kinloch, V. Tatzer, R. Wait, et al., “Identification of Citrullinated Alpha-Enolase as a Candidate Autoantigen in Rheumatoid Arthritis,” Arthritis Research & Therapy 7, no. 6 (2005): R1421-R1429.

[47]

X. Chang and C. Wei, “Glycolysis and Rheumatoid Arthritis,” International Journal of Rheumatic Diseases 14, no. 3 (2011): 217-222.

[48]

R. Lopez-Alemany, M. Suelves, A. Diaz-Ramos, B. Vidal, and P. Munoz-Canoves, “Alpha-Enolase Plasminogen Receptor in Myogenesis,” Frontiers in Bioscience 10 (2005): 30-36.

[49]

R. Ramadasan-Nair, N. Gayathri, S. Mishra, et al., “Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration: Implications for Muscular Dystrophy and Related Muscle Pathologies,” Journal of Biological Chemistry 289, no. 1 (2014): 485-509.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/