KYNA Ameliorates Hepatic Ischemia–Reperfusion Injury by Activating the Hippo Signalling Pathway via FTO-Dependent m6A Demethylation of LATS1

Wenjie Zheng , Xiaowen Wang , Haoqi Chen , Kaiming He , Xijing Yan , Yuan Zhang , Yang Yang , Peng Zhang , Wenfeng Zhu , Shuguang Zhu , Hua Li

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70048

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70048 DOI: 10.1111/cpr.70048
ORIGINAL ARTICLE

KYNA Ameliorates Hepatic Ischemia–Reperfusion Injury by Activating the Hippo Signalling Pathway via FTO-Dependent m6A Demethylation of LATS1

Author information +
History +
PDF

Abstract

Hepatic ischemia–reperfusion injury (HIRI) substantially influences the prognosis of liver transplant recipients. Although kynurenic acid (KYNA) has been associated with protective effects against ischemia–reperfusion injury in various organs, the precise mechanisms underlying its protective role in HIRI are not well elucidated. In this study, a 70% mouse HIRI model and an in vitro hypoxia/reoxygenation model were employed to examine the protective effects of KYNA on HIRI. In this study, we illustrate that KYNA influences the methylation status of the Hippo signalling pathway by enhancing the expression of the fat mass and obesity-associated gene (FTO). Within this pathway, large tumour suppressor kinase 1 (LATS1) is identified as a direct target of FTO. Moreover, the stability of LATS1 mRNA exhibits an inverse correlation with FTO levels and is modulated through its interaction with YTH N6-Methyladenosine RNA Binding Protein F2 (YTHDF2). The reduction in LATS1 expression facilitated Yes-associated protein (YAP) nuclear translocation, decreased hepatocyte apoptosis, and mitigated HIRI. Clinically, elevated levels of serum KYNA correlate with a diminished severity of liver injury post-transplantation. our work revealed that KYNA possesses significant clinical translational potential for the prevention of HIRI, and further exploration of its underlying mechanisms was conducted.

Keywords

FTO / hepatic ischemia–reperfusion injury / Kynurenic acid / liver transplantation / m6A

Cite this article

Download citation ▾
Wenjie Zheng, Xiaowen Wang, Haoqi Chen, Kaiming He, Xijing Yan, Yuan Zhang, Yang Yang, Peng Zhang, Wenfeng Zhu, Shuguang Zhu, Hua Li. KYNA Ameliorates Hepatic Ischemia–Reperfusion Injury by Activating the Hippo Signalling Pathway via FTO-Dependent m6A Demethylation of LATS1. Cell Proliferation, 2025, 58(10): e70048 DOI:10.1111/cpr.70048

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Goikoetxea-Usandizaga, M. Serrano-Maciá, T. C. Delgado, et al., “Mitochondrial Bioenergetics Boost Macrophage Activation, Promoting Liver Regeneration in Metabolically Compromised Animals,” Hepatology (Baltimore, MD.) 75, no. 3 (2022): 550-566, https://doi.org/10.1002/hep.32149.

[2]

Z. Guo, Q. Zhao, Z. Jia, et al., “A Randomized-Controlled Trial of Ischemia-Free Liver Transplantation for End-Stage Liver Disease,” Journal of Hepatology 79 (2023): 394-402, https://doi.org/10.1016/j.jhep.2023.04.010.

[3]

T. Kaizu, A. Ikeda, A. Nakao, et al., “Donor Graft Adenoviral iNOS Gene Transfer Ameliorates Rat Liver Transplant Preservation Injury and Improves Survival,” Hepatology (Baltimore, MD.) 43, no. 3 (2006): 464-473, https://doi.org/10.1002/hep.21067.

[4]

H. Hirao, K. Nakamura, and J. W. Kupiec-Weglinski, “Liver Ischaemia-Reperfusion Injury: A New Understanding of the Role of Innate Immunity,” Nature Reviews. Gastroenterology & Hepatology 19 (2022): 239-256, https://doi.org/10.1038/s41575-021-00549-8.

[5]

F. Resta, A. Masi, M. Sili, A. Laurino, F. Moroni, and G. Mannaioni, “Kynurenic Acid and Zaprinast Induce Analgesia by Modulating HCN Channels Through GPR35 Activation,” Neuropharmacology 108 (2016): 136-143, https://doi.org/10.1016/j.neuropharm.2016.04.038.

[6]

V. Rothhammer and F. J. Quintana, “The Aryl Hydrocarbon Receptor: An Environmental Sensor Integrating Immune Responses in Health and Disease,” Nature Reviews. Immunology 19 (2019): 184-197, https://doi.org/10.1038/s41577-019-0125-8.

[7]

B. C. DiNatale, I. A. Murray, J. C. Schroeder, et al., “Kynurenic Acid is a Potent Endogenous Aryl Hydrocarbon Receptor Ligand That Synergistically Induces Interleukin-6 in the Presence of Inflammatory Signaling,” Toxicological Sciences: An Official Journal of the Society of Toxicology 115 (2010): 89-97, https://doi.org/10.1093/toxsci/kfq024.

[8]

B. A. Olenchock, J. Moslehi, A. H. Baik, et al., “EGLN1 Inhibition and Rerouting of α-Ketoglutarate Suffice for Remote Ischemic Protection,” Cell 164 (2016): 884-895, https://doi.org/10.1016/j.cell.2016.02.006.

[9]

R. B. Nahomi, M. H. Nam, J. Rankenberg, et al., “Kynurenic Acid Protects Against Ischemia/Reperfusion-Induced Retinal Ganglion Cell Death in Mice,” International Journal of Molecular Sciences 21 (2020): 1795, https://doi.org/10.3390/ijms21051795.

[10]

G. D. Colpo, V. R. Venna, L. D. McCullough, and A. L. Teixeira, “Systematic Review on the Involvement of the Kynurenine Pathway in Stroke: Pre-Clinical and Clinical Evidence,” Frontiers in Neurology 10 (2019): 778, https://doi.org/10.3389/fneur.2019.00778.

[11]

K. Boulias and E. L. Greer, “Biological Roles of Adenine Methylation in RNA,” Nature Reviews. Genetics 24 (2023): 143-160, https://doi.org/10.1038/s41576-022-00534-0.

[12]

X. Lin, F. Wang, J. Chen, et al., “N(6)-Methyladenosine Modification of CENPK mRNA by ZC3H13 Promotes Cervical Cancer Stemness and Chemoresistance,” Military Medical Research 9 (2022): 19, https://doi.org/10.1186/s40779-022-00378-z.

[13]

J. Chen, C. Xu, K. Yang, et al., “Inhibition of ALKBH5 Attenuates I/R-Induced Renal Injury in Male Mice by Promoting Ccl28 m6A Modification and Increasing Treg Recruitment,” Nature Communications 14 (2023): 1161, https://doi.org/10.1038/s41467-023-36747-y.

[14]

L. Wang, J. Wang, P. Yu, et al., “METTL14 Is Required for Exercise-Induced Cardiac Hypertrophy and Protects Against Myocardial Ischemia-Reperfusion Injury,” Nature Communications 13 (2022): 6762, https://doi.org/10.1038/s41467-022-34434-y.

[15]

Z. Yu, L. Zheng, Y. Geng, et al., “FTO Alleviates Cerebral Ischemia/Reperfusion-Induced Neuroinflammation by Decreasing cGAS mRNA Stability in an m6A-Dependent Manner,” Cellular Signalling 109 (2023): 110751, https://doi.org/10.1016/j.cellsig.2023.110751.

[16]

Y. D. Du, W. Y. Guo, C. H. Han, et al., “N6-Methyladenosine Demethylase FTO Impairs Hepatic Ischemia-Reperfusion Injury via Inhibiting Drp1-Mediated Mitochondrial Fragmentation,” Cell Death & Disease 12 (2021): 442, https://doi.org/10.1038/s41419-021-03622-x.

[17]

S. Yu, X. Liu, Y. Xu, et al., “m6A-Mediated Gluconeogenic Enzyme PCK1 Upregulation Protects Against Hepatic Ischemia-Reperfusion Injury,” Hepatology (Baltimore, MD.) 81, no. 1 (2023): 94-110, https://doi.org/10.1097/hep.0000000000000716.

[18]

H. Huang, H. Weng, and J. Chen, “M(6)A Modification in Coding and Non-Coding RNAs: Roles and Therapeutic Implications in Cancer,” Cancer Cell 37 (2020): 270-288, https://doi.org/10.1016/j.ccell.2020.02.004.

[19]

X. Chen, X. Zhou, and X. Wang, “M(6)A Binding Protein YTHDF2 in Cancer,” Experimental Hematology & Oncology 11 (2022): 21, https://doi.org/10.1186/s40164-022-00269-y.

[20]

B. Lőrinczi, A. Csámpai, F. Fülöp, and I. Szatmári, “Synthesis of New C-3 Substituted Kynurenic Acid Derivatives,” Molecules (Basel, Switzerland) 25, no. 4 (2020): 937, https://doi.org/10.3390/molecules25040937.

[21]

Y. Cai, D. J. Kim, T. Takahashi, et al., “Kynurenic Acid May Underlie Sex-Specific Immune Responses to COVID-19,” Science Signaling 14, no. 690 (2021): eabf8483, https://doi.org/10.1126/scisignal.abf8483.

[22]

M. R. Jennings, D. Munn, and J. Blazeck, “Immunosuppressive Metabolites in Tumoral Immune Evasion: Redundancies, Clinical Efforts, and Pathways Forward,” Journal for Immunotherapy of Cancer 9 (2021): e003013, https://doi.org/10.1136/jitc-2021-003013.

[23]

L. Colas, A. L. Royer, J. Massias, et al., “Urinary Metabolomic Profiling From Spontaneous Tolerant Kidney Transplanted Recipients Shows Enrichment in Tryptophan-Derived Metabolites,” eBioMedicine 77 (2022): 103844, https://doi.org/10.1016/j.ebiom.2022.103844.

[24]

G. A. Wyant, W. Yu, I. I. P. Doulamis, et al., “Mitochondrial Remodeling and Ischemic Protection by G Protein-Coupled Receptor 35 Agonists,” Science (New York, N.Y.) 377, no. 6606 (2022): 621-629, https://doi.org/10.1126/science.abm1638.

[25]

S. Marciniak, A. Wnorowski, K. Smolińska, et al., “Kynurenic Acid Protects Against Thioacetamide-Induced Liver Injury in Rats,” Analytical Cellular Pathology (Amsterdam) 2018 (2018): 1270483, https://doi.org/10.1155/2018/1270483.

[26]

Z. Zhao, J. Meng, R. Su, et al., “Epitranscriptomics in Liver Disease: Basic Concepts and Therapeutic Potential,” Journal of Hepatology 73 (2020): 664-679, https://doi.org/10.1016/j.jhep.2020.04.009.

[27]

S. Wang, S. Chen, J. Sun, et al., “M(6)A Modification-Tuned Sphingolipid Metabolism Regulates Postnatal Liver Development in Male Mice,” Nature Metabolism 5 (2023): 842-860, https://doi.org/10.1038/s42255-023-00808-9.

[28]

Y. Tian, H. Xiao, Y. Yang, et al., “Crosstalk Between 5-Methylcytosine and N(6)-Methyladenosine Machinery Defines Disease Progression, Therapeutic Response and Pharmacogenomic Landscape in Hepatocellular Carcinoma,” Molecular Cancer 22 (2023): 5, https://doi.org/10.1186/s12943-022-01706-6.

[29]

S. Xiang, Y. Wang, D. Lei, et al., “Donor Graft METTL3 Gene Transfer Ameliorates Rat Liver Transplantation Ischemia-Reperfusion Injury by Enhancing HO-1 Expression in an m6A-Dependent Manner,” Clinical Immunology (Orlando, Fla.) 251 (2023): 109325, https://doi.org/10.1016/j.clim.2023.109325.

[30]

Y. Gao, M. Wang, R. Qin, C. Zhao, and J. Gong, “METTL3 Deficiency Aggravates Hepatic Ischemia/Reperfusion Injury in Mice by Activating the MAPK Signaling Pathway,” International Journal of Medical Sciences 21 (2024): 1037-1048, https://doi.org/10.7150/ijms.94177.

[31]

R. Li, X. Yan, C. Xiao, et al., “FTO Deficiency in Older Livers Exacerbates Ferroptosis During Ischaemia/Reperfusion Injury by Upregulating ACSL4 and TFRC,” Nature Communications 15 (2024): 4760, https://doi.org/10.1038/s41467-024-49202-3.

[32]

A. K. Chokkalla, S. Jeong, S. L. Mehta, et al., “Cerebroprotective Role of N6-Methyladenosine Demethylase FTO (Fat Mass and Obesity-Associated Protein) After Experimental Stroke,” Stroke 54, no. 1 (2023): 245-254, https://doi.org/10.1161/strokeaha.122.040401.

[33]

F. Sun, C. An, C. Liu, et al., “FTO Represses NLRP3-Mediated Pyroptosis and Alleviates Myocardial Ischemia-Reperfusion Injury via Inhibiting CBL-Mediated Ubiquitination and Degradation of β-Catenin,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 37 (2023): e22964, https://doi.org/10.1096/fj.202201793RR.

[34]

C. Badouel and H. McNeill, “SnapShot: The Hippo Signaling Pathway,” Cell 145 (2011): 484-484.e1, https://doi.org/10.1016/j.cell.2011.04.009.

[35]

M. Fu, Y. Hu, T. Lan, K. L. Guan, T. Luo, and M. Luo, “The Hippo Signalling Pathway and Its Implications in Human Health and Diseases,” Signal Transduction and Targeted Therapy 7 (2022): 376, https://doi.org/10.1038/s41392-022-01191-9.

[36]

J. H. Driskill and D. Pan, “The Hippo Pathway in Liver Homeostasis and Pathophysiology,” Annual Review of Pathology 16 (2021): 299-322, https://doi.org/10.1146/annurev-pathol-030420-105050.

[37]

T. Moroishi, T. Hayashi, W. W. Pan, et al., “The Hippo Pathway Kinases LATS1/2 Suppress Cancer Immunity,” Cell 167 (2016): 1525-1539.e1517, https://doi.org/10.1016/j.cell.2016.11.005.

[38]

S. Qi, Y. Zhu, X. Liu, et al., “WWC Proteins Mediate LATS1/2 Activation by Hippo Kinases and Imply a Tumor Suppression Strategy,” Molecular Cell 82 (2022): 1850-1864.e1857, https://doi.org/10.1016/j.molcel.2022.03.027.

[39]

S. Ma, Z. Wu, F. Yang, et al., “Hippo Signalling Maintains ER Expression and ER(+) Breast Cancer Growth,” Nature 591 (2021): E1-e10, https://doi.org/10.1038/s41586-020-03131-5.

[40]

B. Xie, J. Lin, X. Chen, et al., “CircXRN2 Suppresses Tumor Progression Driven by Histone Lactylation Through Activating the Hippo Pathway in Human Bladder Cancer,” Molecular Cancer 22 (2023): 151, https://doi.org/10.1186/s12943-023-01856-1.

[41]

Y. Xu, M. Song, Z. Hong, et al., “The N6-Methyladenosine METTL3 Regulates Tumorigenesis and Glycolysis by Mediating m6A Methylation of the Tumor Suppressor LATS1 in Breast Cancer,” Journal of Experimental & Clinical Cancer Research: CR 42 (2023): 10, https://doi.org/10.1186/s13046-022-02581-1.

[42]

L. Wang, M. Lin, M. Chu, et al., “SPOP Promotes Ubiquitination and Degradation of LATS1 to Enhance Kidney Cancer Progression,” eBioMedicine 56 (2020): 102795, https://doi.org/10.1016/j.ebiom.2020.102795.

[43]

S. Zhang, Z. Sun, Z. Chen, et al., “Endothelial YAP/TEAD1-CXCL17 Signaling Recruits Myeloid-Derived Suppressor Cells Against Liver Ischemia-Reperfusion Injury,” Hepatology (Baltimore, MD.) 81, no. 3 (2025): 888-902, https://doi.org/10.1097/hep.0000000000000773.

[44]

Y. Liu, T. Lu, C. Zhang, et al., “Activation of YAP Attenuates Hepatic Damage and Fibrosis in Liver Ischemia-Reperfusion Injury,” Journal of Hepatology 71 (2019): 719-730, https://doi.org/10.1016/j.jhep.2019.05.029.

[45]

S. Zhu, X. Wang, H. Chen, et al., “Hippo (YAP)-Autophagy Axis Protects Against Hepatic Ischemia-Reperfusion Injury Through JNK Signaling,” Chinese Medical Journal 137 (2024): 657-668, https://doi.org/10.1097/cm9.0000000000002727.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/