Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models

Sidong Yang , Farhad Soheilmoghaddam , Peter Pivonka , Joan Li , Samuel Rudd , Trifanny Yeo , Ji Tu , Yibo Zhu , Justin J. Cooper-White

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (9) : e70046

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (9) : e70046 DOI: 10.1111/cpr.70046
REVIEW

Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models

Author information +
History +
PDF

Abstract

Intervertebral disc (IVD) degeneration is an age-related problem triggering chronic spinal issues, such as low back pain and IVD herniation. Standard surgical treatment for such spinal issues is the removal of the degenerated or herniated IVD and fusion of adjacent vertebrae to stabilise the joint and locally decompress the spinal cord and/or nerve roots to relieve pain. However, a key challenge of current surgical strategies is the increasing risk of adjacent segment degeneration due to the disruption of native biomechanics of the functional spinal unit, dominated by the loss of the IVD. In the past two decades, research has focused on developing a number of bioengineering approaches to repair and regenerate the IVD; in particular, tissue engineering of the IVD, using bioscaffolds and stem cells represents a promising area. This review highlights the current tissue engineering approaches utilising biomaterials, animal models and cell sources for IVD regeneration and discusses future opportunities.

Keywords

biomaterials / intervertebral disc degeneration / IVD regeneration / spine / stem cells / tissue engineering

Cite this article

Download citation ▾
Sidong Yang, Farhad Soheilmoghaddam, Peter Pivonka, Joan Li, Samuel Rudd, Trifanny Yeo, Ji Tu, Yibo Zhu, Justin J. Cooper-White. Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models. Cell Proliferation, 2025, 58(9): e70046 DOI:10.1111/cpr.70046

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Millecamps and L. S. Stone, “Delayed Onset of Persistent Discogenic Axial and Radiating Pain After a Single-Level Lumbar Intervertebral Disc Injury in Mice,” Pain 159, no. 9 (2018): 1843-1855.

[2]

M. G. Wiet, A. Piscioneri, S. N. Khan, M. N. Ballinger, J. A. Hoyland, and D. Purmessur, “Mast Cell-Intervertebral Disc Cell Interactions Regulate Inflammation, Catabolism and Angiogenesis in Discogenic Back Pain,” Scientific Reports 7, no. 1 (2017): 12492.

[3]

S. D. Yang, L. Ma, T. X. Gu, et al., “17β-Estradiol Protects Against Apoptosis Induced by Levofloxacin in Rat Nucleus Pulposus Cells by Upregulating Integrin α2β1,” Apoptosis 19, no. 5 (2014): 789-800.

[4]

S. D. Yang, D.-L. Yang, Y.-P. Sun, et al., “17β-Estradiol Protects Against Apoptosis Induced by Interleukin-1β in Rat Nucleus Pulposus Cells by Down-Regulating MMP-3 and MMP-13,” Apoptosis 20, no. 3 (2015): 348-357.

[5]

S. D. Yang, L. Ma, D. L. Yang, and W. Y. Ding, “Combined Effect of 17β-Estradiol and Resveratrol Against Apoptosis Induced by Interleukin-1β in Rat Nucleus Pulposus Cells via PI3K/Akt/Caspase-3 Pathway,” PeerJ 4 (2016): e1640.

[6]

A. Sharma, “The Role of Adipokines in Intervertebral Disc Degeneration,” Medical Science 6, no. 2 (2018): 34.

[7]

S. Yang, F. Zhang, J. Ma, and W. Ding, “Intervertebral Disc Ageing and Degeneration: The Antiapoptotic Effect of Oestrogen,” Ageing Research Reviews 57 (2020): 100978.

[8]

L. Y. Jin, X. X. Song, and X. F. Li, “The Role of Estrogen in Intervertebral Disc Degeneration,” Steroids 154 (2020): 108549.

[9]

J. Hartvigsen, M. J. Hancock, A. Kongsted, et al., “What Low Back Pain Is and Why We Need to Pay Attention,” Lancet 391, no. 10137 (2018): 2356-2367.

[10]

S. Mohanty and C. L. Dahia, “Defects in Intervertebral Disc and Spine During Development, Degeneration, and Pain: New Research Directions for Disc Regeneration and Therapy,” Wiley Interdisciplinary Reviews: Developmental Biology 8, no. 4 (2019): e343.

[11]

C. Maher, M. Underwood, and R. Buchbinder, “Non-Specific Low Back Pain,” Lancet 389, no. 10070 (2017): 736-747.

[12]

T. Vos, A. D. Flaxman, M. Naghavi, et al., “Years Lived With Disability (YLDs) for 1160 Sequelae of 289 Diseases and Injuries 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010,” Lancet 380, no. 9859 (2012): 2163-2196.

[13]

Global Burden of Disease Study 2013 Collaborators, “Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 301 Acute and Chronic Diseases and Injuries in 188 Countries, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013,” Lancet 386, no. 9995 (2015): 743-800.

[14]

GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, “Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 310 Diseases and Injuries, 1990-2015: A Systematic Analysis for the Global Burden of Disease Study 2015,” Lancet 388, no. 10053 (2016): 1545-1602.

[15]

GBD 2016 Disease and Injury Incidence and Prevalence Collaborators, “Global, Regional, and National Incidence, Prevalence, and Years Lived With Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016,” Lancet 390, no. 10100 (2017): 1211-1259.

[16]

Y. Lindbäck, H. Tropp, P. Enthoven, A. Abbott, and B. Öberg, “PREPARE: Presurgery Physiotherapy for Patients With Degenerative Lumbar Spine Disorder: A Randomized Controlled Trial,” Spine Journal 18, no. 8 (2018): 1347-1355.

[17]

B. Strömqvist, P. Fritzell, O. Hägg, et al., “Swespine: The Swedish Spine Register: The 2012 Report,” European Spine Journal 22, no. 4 (2013): 953-974.

[18]

X. Wang, G. Sun, R. Sun, et al., “Bipolar Sealer Device Reduces Blood Loss and Transfusion Requirements in Posterior Spinal Fusion for Degenerative Lumbar Scoliosis: A Randomized Control Trial,” Clinical Spine Surgery 29, no. 2 (2016): E107-E111.

[19]

W. Tong, Z. Lu, L. Qin, et al., “Cell Therapy for the Degenerating Intervertebral Disc,” Translational Research 181 (2017): 49-58.

[20]

J. Silva-Correia, S. I. Correia, J. M. Oliveira, and R. L. Reis, “Tissue Engineering Strategies Applied in the Regeneration of the Human Intervertebral Disk,” Biotechnology Advances 31, no. 8 (2013): 1514-1531.

[21]

B. P. Chan and K. W. Leong, “Scaffolding in Tissue Engineering: General Approaches and Tissue-Specific Considerations,” European Spine Journal 17, no. Suppl 4 (2008): 467-479.

[22]

S. Pina, V. P. Ribeiro, C. F. Marques, et al., “Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications,” Materials 12, no. 11 (2019): 1824.

[23]

F. Han, J. Wang, L. Ding, et al., “Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia,” Frontiers in Bioengineering and Biotechnology 8 (2020): 83.

[24]

G. Chu, C. Shi, H. Wang, et al., “Strategies for Annulus Fibrosus Regeneration: From Biological Therapies to Tissue Engineering,” Frontiers in Bioengineering and Biotechnology 6 (2018): 90.

[25]

S. van Uden, J. Silva-Correia, J. M. Oliveira, and R. L. Reis, “Current Strategies for Treatment of Intervertebral Disc Degeneration: Substitution and Regeneration Possibilities,” Biomaterials Research 21 (2017): 22.

[26]

A. De Pieri, A. M. Byerley, C. R. Musumeci, et al., “Electrospinning and 3D Bioprinting for Intervertebral Disc Tissue Engineering,” JOR Spine 3, no. 4 (2020): e1117.

[27]

S. R. Pye, D. M. Reid, M. Lunt, J. E. Adams, A. J. Silman, and T. W. O'Neill, “Lumbar Disc Degeneration: Association Between Osteophytes, End-Plate Sclerosis and Disc Space Narrowing,” Annals of the Rheumatic Diseases 66, no. 3 (2007): 330-333.

[28]

V. Francisco, J. Pino, M. Á. González-Gay, et al., “A New Immunometabolic Perspective of Intervertebral Disc Degeneration,” Nature Reviews Rheumatology 18, no. 1 (2022): 47-60.

[29]

U. Zehra, M. Tryfonidou, J. C. Iatridis, S. Illien-Jünger, F. Mwale, and D. Samartzis, “Mechanisms and Clinical Implications of Intervertebral Disc Calcification,” Nature Reviews Rheumatology 18, no. 6 (2022): 352-362.

[30]

R. Rodrigues-Pinto, A. Berry, K. Piper-Hanley, N. Hanley, S. M. Richardson, and J. A. Hoyland, “Spatiotemporal Analysis of Putative Notochordal Cell Markers Reveals CD24 and Keratins 8, 18, and 19 as Notochord-Specific Markers During Early Human Intervertebral Disc Development,” Journal of Orthopaedic Research 34, no. 8 (2016): 1327-1340.

[31]

F. C. Bach, S. A. de Vries, A. Krouwels, et al., “The Species-Specific Regenerative Effects of Notochordal Cell-Conditioned Medium on Chondrocyte-Like Cells Derived From Degenerated Human Intervertebral Discs,” European Cells & Materials 30 (2015): 132-146.

[32]

G. Tendulkar, T. Chen, S. Ehnert, et al., “Intervertebral Disc Nucleus Repair: Hype or Hope,” International Journal of Molecular Sciences 20, no. 15 (2019): 3622.

[33]

J. P. Urban and S. Roberts, “Degeneration of the Intervertebral Disc,” Arthritis Research & Therapy 5, no. 3 (2003): 120-130.

[34]

R. J. Moore, “The Vertebral End-Plate: What Do We Know,” European Spine Journal 9, no. 2 (2000): 92-96.

[35]

R. Rodrigues-Pinto, S. M. Richardson, and J. A. Hoyland, “Identification of Novel Nucleus Pulposus Markers: Interspecies Variations and Implications for Cell-Based Therapiesfor Intervertebral Disc Degeneration,” Bone & Joint Research 2, no. 8 (2013): 169-178.

[36]

H. B. Henriksson, T. Svanvik, M. Jonsson, et al., “Transplantation of Human Mesenchymal Stems Cells Into Intervertebral Discs in a Xenogeneic Porcine Model,” Spine 34, no. 2 (2009): 141-148.

[37]

J. Clouet, G. Grimandi, M. Pot-Vaucel, et al., “Identification of Phenotypic Discriminating Markers for Intervertebral Disc Cells and Articular Chondrocytes,” Rheumatology (Oxford, England) 48, no. 11 (2009): 1447-1450.

[38]

G. Pattappa, Z. Li, M. Peroglio, N. Wismer, M. Alini, and S. Grad, “Diversity of Intervertebral Disc Cells: Phenotype and Function,” Journal of Anatomy 221, no. 6 (2012): 480-496.

[39]

J. I. Sive, P. Baird, M. Jeziorsk, A. Watkins, J. A. Hoyland, and A. J. Freemont, “Expression of Chondrocyte Markers by Cells of Normal and Degenerate Intervertebral Discs,” Molecular Pathology 55, no. 2 (2002): 91-97.

[40]

S. Chen, S. E. Emery, and M. Pei, “Coculture of Synovium-Derived Stem Cells and Nucleus Pulposus Cells in Serum-Free Defined Medium With Supplementation of Transforming Growth Factor-Beta1: A Potential Application of Tissue-Specific Stem Cells in Disc Regeneration,” Spine 34, no. 12 (2009): 1272-1280.

[41]

N. Beeravolu, J. Brougham, I. Khan, C. McKee, M. Perez-Cruet, and G. R. Chaudhry, “Human Umbilical Cord Derivatives Regenerate Intervertebral Disc,” Journal of Tissue Engineering and Regenerative Medicine 12, no. 1 (2018): e579-e591.

[42]

D. J. Gorth, K. E. Lothstein, J. A. Chiaro, et al., “Hypoxic Regulation of Functional Extracellular Matrix Elaboration by Nucleus Pulposus Cells in Long-Term Agarose Culture,” Journal of Orthopaedic Research 33, no. 5 (2015): 747-754.

[43]

D. Sakai, T. Nakai, J. Mochida, M. Alini, and S. Grad, “Differential Phenotype of Intervertebral Disc Cells: Microarray and Immunohistochemical Analysis of Canine Nucleus Pulposus and Anulus Fibrosus,” Spine 34, no. 14 (2009): 1448-1456.

[44]

A. Gilson, M. Dreger, and J. P. Urban, “Differential Expression Level of Cytokeratin 8 in Cells of the Bovine Nucleus Pulposus Complicates the Search for Specific Intervertebral Disc Cell Markers,” Arthritis Research & Therapy 12, no. 1 (2010): R24.

[45]

H. Choi, Z. I. Johnson, and M. V. Risbud, “Understanding Nucleus Pulposus Cell Phenotype: A Prerequisite for Stem Cell Based Therapies to Treat Intervertebral Disc Degeneration,” Current Stem Cell Research & Therapy 10, no. 4 (2015): 307-316.

[46]

K. A. Power, S. Grad, J. P. Rutges, et al., “Identification of Cell Surface-Specific Markers to Target Human Nucleus Pulposus Cells: Expression of Carbonic Anhydrase XII Varies With Age and Degeneration,” Arthritis and Rheumatism 63, no. 12 (2011): 3876-3886.

[47]

S. M. Richardson, F. E. Ludwinski, K. K. Gnanalingham, R. A. Atkinson, A. J. Freemont, and J. A. Hoyland, “Notochordal and Nucleus Pulposus Marker Expression is Maintained by Sub-Populations of Adult Human Nucleus Pulposus Cells Through Aging and Degeneration,” Scientific Reports 7, no. 1 (2017): 1501.

[48]

A. A. Thorpe, A. L. Binch, L. B. Creemers, C. Sammon, and C. L. Le Maitre, “Nucleus Pulposus Phenotypic Markers to Determine Stem Cell Differentiation: Fact or Fiction,” Oncotarget 7, no. 3 (2016): 2189-2200.

[49]

J. Hua, N. Shen, J. Wang, et al., “Small Molecule-Based Strategy Promotes Nucleus Pulposus Specific Differentiation of Adipose-Derived Mesenchymal Stem Cells,” Molecules and Cells 42, no. 9 (2019): 661-671.

[50]

F. Lv, V. Y. Leung, S. Huang, Y. Huang, Y. Sun, and K. M. Cheung, “In Search of Nucleus Pulposus-Specific Molecular Markers,” Rheumatology (Oxford, England) 53, no. 4 (2014): 600-610.

[51]

P. Li, R. Zhang, L. Wang, et al., “Long-Term Load Duration Induces N-Cadherin Down-Regulation and Loss of Cell Phenotype of Nucleus Pulposus Cells in a Disc Bioreactor Culture,” Bioscience Reports 37, no. 2 (2017): BSR20160582.

[52]

R. Rodrigues-Pinto, S. M. Richardson, and J. A. Hoyland, “An Understanding of Intervertebral Disc Development, Maturation and Cell Phenotype Provides Clues to Direct Cell-Based Tissue Regeneration Therapies for Disc Degeneration,” European Spine Journal 23, no. 9 (2014): 1803-1814.

[53]

G. Feng, X. Jin, J. Hu, et al., “Effects of Hypoxias and Scaffold Architecture on Rabbit Mesenchymal Stem Cell Differentiation Towards a Nucleus Pulposus-Like Phenotype,” Biomaterials 32, no. 32 (2011): 8182-8189.

[54]

N. Karaarslan, I. Yilmaz, H. Ozbek, et al., “Are Specific Gene Expressions of Extracellular Matrix and Nucleus Pulposus Affected by Primary Cell Cultures Prepared From Intact or Degenerative Intervertebral Disc Tissues,” Turkish Neurosurgery 29, no. 1 (2019): 43-52.

[55]

M. V. Risbud, Z. R. Schoepflin, F. Mwale, et al., “Defining the Phenotype of Young Healthy Nucleus Pulposus Cells: Recommendations of the Spine Research Interest Group at the 2014 Annual ORS Meeting,” Journal of Orthopaedic Research 33, no. 3 (2015): 283-293.

[56]

B. M. Minogue, S. M. Richardson, L. A. Zeef, A. J. Freemont, and J. A. Hoyland, “Characterization of the Human Nucleus Pulposus Cell Phenotype and Evaluation of Novel Marker Gene Expression to Define Adult Stem Cell Differentiation,” Arthritis and Rheumatism 62, no. 12 (2010): 3695-3705.

[57]

J. V. Stoyanov, B. Gantenbein-Ritter, A. Bertolo, et al., “Role of Hypoxia and Growth and Differentiation Factor-5 on Differentiation of Human Mesenchymal Stem Cells Towards Intervertebral Nucleus Pulposus-Like Cells,” European Cells & Materials 21 (2011): 533-547.

[58]

S. M. Richardson, R. Knowles, J. Tyler, A. Mobasheri, and J. A. Hoyland, “Expression of Glucose Transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in Normal and Degenerate Human Intervertebral Disc,” Histochemistry and Cell Biology 129, no. 4 (2008): 503-511.

[59]

R. Rajpurohit, M. V. Risbud, P. Ducheyne, E. J. Vresilovic, and I. M. Shapiro, “Phenotypic Characteristics of the Nucleus Pulposus: Expression of Hypoxia Inducing Factor-1, Glucose Transporter-1 and MMP-2,” Cell and Tissue Research 308, no. 3 (2002): 401-407.

[60]

J. P. Urban and C. P. Winlove, “Pathophysiology of the Intervertebral Disc and the Challenges for MRI,” Journal of Magnetic Resonance Imaging 25, no. 2 (2007): 419-432.

[61]

N. Newell, J. P. Little, A. Christou, M. A. Adams, C. J. Adam, and S. D. Masouros, “Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results,” Journal of the Mechanical Behavior of Biomedical Materials 69 (2017): 420-434.

[62]

T. Guehring, F. Unglaub, H. Lorenz, G. Omlor, H. J. Wilke, and M. W. Kroeber, “Intradiscal Pressure Measurements in Normal Discs, Compressed Discs and Compressed Discs Treated With Axial Posterior Disc Distraction: An Experimental Study on the Rabbit Lumbar Spine Model,” European Spine Journal 15, no. 5 (2006): 597-604.

[63]

J. P. Urban and A. Maroudas, “Swelling of the Intervertebral Disc In Vitro,” Connective Tissue Research 9, no. 1 (1981): 1-10.

[64]

E. D. Bonnevie, S. E. Gullbrand, B. G. Ashinsky, et al., “Aberrant Mechanosensing in Injured Intervertebral Discs as a Result of Boundary-Constraint Disruption and Residual-Strain Loss,” Nature Biomedical Engineering 3, no. 12 (2019): 998-1008.

[65]

A. M. Ellingson and D. J. Nuckley, “Intervertebral Disc Viscoelastic Parameters and Residual Mechanics Spatially Quantified Using a Hybrid Confined/In Situ Indentation Method,” Journal of Biomechanics 45, no. 3 (2012): 491-496.

[66]

T. P. Holsgrove, H. S. Gill, A. W. Miles, and S. Gheduzzi, “Dynamic, Six-Axis Stiffness Matrix Characteristics of the Intact Intervertebral Disc and a Disc Replacement,” Proceedings of the Institution of Mechanical Engineers. Part H 229, no. 11 (2015): 769-777.

[67]

W. Johannessen and D. M. Elliott, “Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression,” Spine 30, no. 24 (2005): E724-E729.

[68]

J. M. Cloyd, N. R. Malhotra, L. Weng, et al., “Material Properties in Unconfined Compression of Human Nucleus Pulposus, Injectable Hyaluronic Acid-Based Hydrogels and Tissue Engineering Scaffolds,” European Spine Journal 16, no. 11 (2007): 1892-1898.

[69]

J. C. Iatridis, L. A. Setton, M. Weidenbaum, and V. C. Mow, “The Viscoelastic Behavior of the Non-Degenerate Human Lumbar Nucleus Pulposus in Shear,” Journal of Biomechanics 30, no. 10 (1997): 1005-1013.

[70]

H. Mizuno, A. K. Roy, C. A. Vacanti, et al., “Tissue-Engineered Composites of Anulus Fibrosus and Nucleus Pulposus for Intervertebral Disc Replacement,” Spine 29, no. 12 (2004): 1290-1297.

[71]

N. Wismer, S. Grad, G. Fortunato, S. J. Ferguson, M. Alini, and D. Eglin, “Biodegradable Electrospun Scaffolds for Annulus Fibrosus Tissue Engineering: Effect of Scaffold Structure and Composition on Annulus Fibrosus Cells In Vitro,” Tissue Engineering. Part A 20, no. 3-4 (2014): 672-682.

[72]

G. A. Holzapfel, C. A. J. Schulze-Bauer, G. Feigl, and P. Regitnig, “Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus,” Biomechanics and Modeling in Mechanobiology 3, no. 3 (2005): 125-140.

[73]

Z. Shan, S. Li, J. Liu, M. Mamuti, C. Wang, and F. Zhao, “Correlation Between Biomechanical Properties of the Annulus Fibrosus and Magnetic Resonance Imaging (MRI) Findings,” European Spine Journal 24, no. 9 (2015): 1909-1916.

[74]

R. D. Bowles, H. H. Gebhard, R. Härtl, and L. J. Bonassar, “Tissue-Engineered Intervertebral Discs Produce New Matrix, Maintain Disc Height, and Restore Biomechanical Function to the Rodent Spine,” Proceedings. National Academy of Sciences. United States of America 108, no. 32 (2011): 13106-13111.

[75]

G. Chu, C. Shi, J. Lin, et al., “Biomechanics in Annulus Fibrosus Degeneration and Regeneration,” Advances in Experimental Medicine and Biology 1078 (2018): 409-420.

[76]

P. Lama, U. Zehra, C. Balkovec, et al., “Significance of Cartilage Endplate Within Herniated Disc Tissue,” European Spine Journal 23, no. 9 (2014): 1869-1877.

[77]

K. R. Wade, P. A. Robertson, A. Thambyah, and N. D. Broom, “How Healthy Discs Herniate: A Biomechanical and Microstructural Study Investigating the Combined Effects of Compression Rate and Flexion,” Spine 39, no. 13 (2014): 1018-1028.

[78]

J. P. Grant, T. R. Oxland, and M. F. Dvorak, “Mapping the Structural Properties of the Lumbosacral Vertebral Endplates,” Spine 26, no. 8 (2001): 889-896.

[79]

T. Kadow, G. Sowa, N. Vo, and J. D. Kang, “Molecular Basis of Intervertebral Disc Degeneration and Herniations: What Are the Important Translational Questions,” Clinical Orthopaedics and Related Research 473, no. 6 (2015): 1903-1912.

[80]

C. K. Kepler, R. K. Ponnappan, C. A. Tannoury, M. V. Risbud, and D. G. Anderson, “The Molecular Basis of Intervertebral Disc Degeneration,” Spine Journal 13, no. 3 (2013): 318-330.

[81]

M. T. Modic and J. S. Ross, “Lumbar Degenerative Disk Disease,” Radiology 245, no. 1 (2007): 43-61.

[82]

S. Roberts, H. Evans, J. Trivedi, and J. Menage, “Histology and Pathology of the Human Intervertebral Disc,” Journal of Bone and Joint Surgery. American Volume 88, no. Suppl 2 (2006): 10-14.

[83]

F. Galbusera, M. van Rijsbergen, K. Ito, J. M. Huyghe, M. Brayda-Bruno, and H.-J. Wilke, “Ageing and Degenerative Changes of the Intervertebral Disc and Their Impact on Spinal Flexibility,” European Spine Journal 23, no. Suppl 3 (2014): S324-S332.

[84]

F. Cianci, G. Ferraccioli, E. S. Ferraccioli, and E. Gremese, “Comprehensive Review on Intravertebral Intraspinal, Intrajoint, and Intradiscal Vacuum Phenomenon: From Anatomy and Physiology to Pathology,” Modern Rheumatology 31, no. 2 (2021): 303-311.

[85]

D. J. Gorth, O. K. Ottone, I. M. Shapiro, and M. V. Risbud, “Differential Effect of Long-Term Systemic Exposure of TNFα on Health of the Annulus Fibrosus and Nucleus Pulposus of the Intervertebral Disc,” Journal of Bone and Mineral Research 35, no. 4 (2020): 725-737.

[86]

F. C. Li, N. Zhang, W. S. Chen, and Q. X. Chen, “Endplate Degeneration May Be the Origination of the Vacuum Phenomenon in Intervertebral Discs,” Medical Hypotheses 75, no. 2 (2010): 169-171.

[87]

C. A. Séguin, R. M. Pilliar, P. J. Roughley, and R. A. Kandel, “Tumor Necrosis Factor-Alpha Modulates Matrix Production and Catabolism in Nucleus Pulposus Tissue,” Spine 30, no. 17 (2005): 1940-1948.

[88]

C. A. Séguin, M. Bojarski, R. M. Pilliar, P. J. Roughley, and R. A. Kandel, “Differential Regulation of Matrix Degrading Enzymes in a TNFalpha-Induced Model of Nucleus Pulposus Tissue Degeneration,” Matrix Biology 25, no. 7 (2006): 409-418.

[89]

X. Zheng, P. Liu, C. Yang, and X. Wu, “Amyloid Protein Aggregation in Diabetes Mellitus Accelerate Intervertebral Disc Degeneration,” Medical Hypotheses 141 (2020): 109739.

[90]

K. Ngo, P. Pohl, D. Wang, et al., “ADAMTS5 Deficiency Protects Mice From Chronic Tobacco Smoking-Induced Intervertebral Disc Degeneration,” Spine 42, no. 20 (2017): 1521-1528.

[91]

E. Okada, K. Daimon, H. Fujiwara, et al., “Ten-Year Longitudinal Follow-Up MRI Study of Age-Related Changes in Thoracic Intervertebral Discs in Asymptomatic Subjects,” Spine 44, no. 22 (2019): E1317-E1324.

[92]

M. Nakahashi, M. Esumi, and Y. Tokuhashi, “Detection of Apoptosis and Matrical Degeneration Within the Intervertebral Discs of Rats due to Passive Cigarette Smoking,” PLoS One 14, no. 8 (2019): e0218298.

[93]

Z. Chen, X. Li, F. Pan, D. Wu, and H. Li, “A Retrospective Study: Does Cigarette Smoking Induce Cervical Disc Degeneration,” International Journal of Surgery 53 (2018): 269-273.

[94]

I. Altun and K. Z. Yuksel, “An Experimental Study on the Effects of Smoking in the Perinatal Period and During Lactation on the Intervertebral Disks of Newborns,” World Neurosurgery 99 (2017): 1-5.

[95]

Y. Chen, X. Wang, X. Zhang, et al., “Low Virulence Bacterial Infections in Cervical Intervertebral Discs: A Prospective Case Series,” European Spine Journal 27, no. 10 (2018): 2496-2505.

[96]

Z. Shan, X. Zhang, S. Li, T. Yu, J. Liu, and F. Zhao, “Propionibacterium acnes Incubation in the Discs Can Result in Time-Dependent Modic Changes: A Long-Term Rabbit Model,” Spine 42, no. 21 (2017): 1595-1603.

[97]

Z. Shan, X. Zhang, S. Li, et al., “The Influence of Direct Inoculation of Propionibacterium acnes on Modic Changes in the Spine: Evidence From a Rabbit Model,” Journal of Bone and Joint Surgery (American Volume) 99, no. 6 (2017): 472-481.

[98]

S. Rajasekaran, D. C. R. Soundararajan, C. Tangavel, et al., “Human Intervertebral Discs Harbour a Unique Microbiome and Dysbiosis Determines Health and Disease,” European Spine Journal 29, no. 7 (2020): 1621-1640.

[99]

H. Che, J. Li, Y. Li, et al., “p16 Deficiency Attenuates Intervertebral Disc Degeneration by Adjusting Oxidative Stress and Nucleus Pulposus Cell Cycle,” eLife 3, no. 9 (2020): e52570.

[100]

Y. Li, T. Zhang, W. Tian, et al., “Loss of TIMP3 Expression Induces Inflammation, Matrix Degradation, and Vascular Ingrowth in Nucleus Pulposus: A New Mechanism of Intervertebral Disc Degeneration,” FASEB Journal 34, no. 4 (2020): 5483-5498.

[101]

Y. Chen, J. Lin, J. Chen, et al., “Mfn2 is Involved in Intervertebral Disc Degeneration Through Autophagy Modulation,” Osteoarthritis and Cartilage 28, no. 3 (2020): 363-374.

[102]

Y. Guo, Y. Meng, H. Liu, et al., “Acid-Sensing Ion Channels Mediate the Degeneration of Intervertebral Disc via Various Pathways-A Systematic Review,” Channels 13, no. 1 (2019): 367-373.

[103]

A. Beierfuß, M. Hunjadi, A. Ritsch, C. Kremser, C. Thomé, and D. S. Mern, “APOE-Knockout in Rabbits Causes Loss of Cells in Nucleus Pulposus and Enhances the Levels of Inflammatory Catabolic Cytokines Damaging the Intervertebral Disc Matrix,” PLoS One 14, no. 11 (2019): e0225527.

[104]

Y. Xi, J. Ma, and Y. Chen, “PTEN Promotes Intervertebral Disc Degeneration by Regulating Nucleus Pulposus Cell Behaviors,” Cell Biology International 44, no. 2 (2020): 583-592.

[105]

R. Maidhof, A. Rafiuddin, F. Chowdhury, T. Jacobsen, and N. O. Chahine, “Timing of Mesenchymal Stem Cell Delivery Impacts the Fate and Therapeutic Potential in Intervertebral Disc Repair,” Journal of Orthopaedic Research 35, no. 1 (2017): 32-40.

[106]

R. Gawri, T. Shiba, R. Pilliar, and R. Kandel, “Inorganic Polyphosphates Enhances Nucleus Pulposus Tissue Formation In Vitro,” Journal of Orthopaedic Research 35, no. 1 (2017): 41-50.

[107]

Z. Li, G. Lang, L. S. Karfeld-Sulzer, et al., “Heterodimeric BMP-2/7 for Nucleus Pulposus Regeneration—In Vitro and Ex Vivo Studies,” Journal of Orthopaedic Research 35, no. 1 (2017): 51-60.

[108]

J. C. Iatridis, J. Kang, R. Kandel, and M. V. Risbud, “New Horizons in Spine Research: Intervertebral Disc Repair and Regeneration,” Journal of Orthopaedic Research 35, no. 1 (2017): 5-7.

[109]

J. T. Martin, D. H. Kim, A. H. Milby, et al., “In Vivo Performance of an Acellular Disc-Like Angle Ply Structure (DAPS) for Total Disc Replacement in a Small Animal Model,” Journal of Orthopaedic Research 35, no. 1 (2017): 23-31.

[110]

J. E. Song, E. Y. Kim, W. Y. Ahn, et al., “The Potential of DBP Gels Containing Intervertebral Disc Cells for Annulus Fibrosus Supplementation: In Vivo,” Journal of Tissue Engineering and Regenerative Medicine 9, no. 11 (2015): E98-E107.

[111]

E. H. Ledet, W. Jeshuran, J. C. Glennon, et al., “Small Intestinal Submucosa for Anular Defect Closure: Long-Term Response in an In Vivo Sheep Model,” Spine 34, no. 14 (2009): 1457-1463.

[112]

R. Kang, H. Li, Z. Xi, et al., “Surgical Repair of Annulus Defect With Biomimetic Multilamellar Nano/Microfibrous Scaffold in a Porcine Model,” Journal of Tissue Engineering and Regenerative Medicine 12, no. 1 (2018): 164-174.

[113]

M. Gluais, J. Clouet, M. Fusellier, et al., “In Vitro and In Vivo Evaluation of an Electrospun-Aligned Microfibrous Implant for Annulus Fibrosus Repair,” Biomaterials 205 (2019): 81-93.

[114]

A. H. Shamsah, S. H. Cartmell, S. M. Richardson, and L. A. Bosworth, “Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro,” Polymers 12, no. 3 (2020): 700.

[115]

A. H. Shamsah, S. H. Cartmell, S. M. Richardson, and L. A. Bosworth, “Tissue Engineering the Annulus Fibrosus Using 3D Rings of Electrospun PCL:PLLA Angle-Ply Nanofiber Sheets,” Frontiers in Bioengineering and Biotechnology 7 (2019): 437.

[116]

G. Vadalà, P. Mozetic, A. Rainer, et al., “Bioactive Electrospun Scaffold for Annulus Fibrosus Repair and Regeneration,” European Spine Journal 21, no. Suppl 1 (2012): S20-S26.

[117]

M. Elsaadany, K. Winters, S. Adams, A. Stasuk, H. Ayan, and E. Yildirim-Ayan, “Equiaxial Strain Modulates Adipose-Derived Stem Cell Differentiation Within 3D Biphasic Scaffolds Towards Annulus Fibrosus,” Scientific Reports 7, no. 1 (2017): 12868.

[118]

A. Dewle, P. Rakshasmare, and A. Srivastava, “A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration,” ACS Applied Bio Materials 4, no. 2 (2021): 1238-1251.

[119]

T. Pirvu, S. B. Blanquer, L. M. Benneker, et al., “A Combined Biomaterial and Cellular Approach for Annulus Fibrosus Rupture Repair,” Biomaterials 42 (2015): 11-19.

[120]

J. Du, R. G. Long, T. Nakai, et al., “Functional Cell Phenotype Induction With TGF-β1 and Collagen-Polyurethane Scaffold for Annulus Fibrosus Rupture Repair,” European Cells & Materials 39 (2020): 1-17.

[121]

O. Guillaume, A. Daly, K. Lennon, J. Gansau, S. F. Buckley, and C. T. Buckley, “Shape-Memory Porous Alginate Scaffolds for Regeneration of the Annulus Fibrosus: Effect of TGF-β3 Supplementation and Oxygen Culture Conditions,” Acta Biomaterialia 10, no. 5 (2014): 1985-1995.

[122]

Z. Zhou, S. Zeiter, T. Schmid, et al., “Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration,” Cartilage 11, no. 2 (2020): 169-180.

[123]

Q. Yu, F. Han, Z. Yuan, et al., “Fucoidan-Loaded Nanofibrous Scaffolds Promote Annulus Fibrosus Repair by Ameliorating the Inflammatory and Oxidative Microenvironments in Degenerative Intervertebral Discs,” Acta Biomaterialia 148 (2022): 73-89.

[124]

T. Nukaga, D. Sakai, J. Schol, M. Sato, and M. Watanabe, “Annulus Fibrosus Cell Sheets Limit Disc Degeneration in a Rat Annulus Fibrosus Injury Model,” JOR Spine 2, no. 2 (2019): e1050.

[125]

M. Sato, T. Asazuma, M. Ishihara, T. Kikuchi, M. Kikuchi, and K. Fujikawa, “An Experimental Study of the Regeneration of the Intervertebral Disc With an Allograft of Cultured Annulus Fibrosus Cells Using a Tissue-Engineering Method,” Spine 28, no. 6 (2003): 548-553.

[126]

M. Sato, M. Kikuchi, M. Ishihara, et al., “Tissue Engineering of the Intervertebral Disc With Cultured Annulus Fibrosus Cells Using Atelocollagen Honeycomb-Shaped Scaffold With a Membrane Seal (ACHMS Scaffold),” Medical & Biological Engineering & Computing 41, no. 3 (2003): 365-371.

[127]

X. Xu, J. Hu, and H. Lu, “Histological Observation of a Gelatin Sponge Transplant Loaded With Bone Marrow-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma in Repairing an Annulus Defect,” PLoS One 12, no. 2 (2017): e0171500.

[128]

M. Bhattacharjee, S. Chawla, S. Chameettachal, S. Murab, N. S. Bhavesh, and S. Ghosh, “Role of Chondroitin Sulphate Tethered Silk Scaffold in Cartilaginous Disc Tissue Regeneration,” Biomedical Materials (Bristol, England) 11, no. 2 (2016): 025014.

[129]

M. Bhattacharjee, S. Chawla, S. Chameettachal, S. Murab, N. S. Bhavesh, and S. Ghosh, “Oriented Lamellar Silk Fibrous Scaffolds to Drive Cartilage Matrix Orientation: Towards Annulus Fibrosus Tissue Engineering,” Acta Biomaterialia 8, no. 9 (2012): 3313-3325.

[130]

R. Borem, A. Madeline, R. Vela, S. Gill, and J. Mercuri, “Multi-Laminate Annulus Fibrosus Repair Scaffold With an Interlamellar Matrix Enhances Impact Resistance, Prevents Herniation and Assists in Restoring Spinal Kinematics,” Journal of the Mechanical Behavior of Biomedical Materials 95 (2019): 41-52.

[131]

R. Borem, A. Madeline, J. Walters, H. Mayo, S. Gill, and J. Mercuri, “Angle-Ply Biomaterial Scaffold for Annulus Fibrosus Repair Replicates Native Tissue Mechanical Properties, Restores Spinal Kinematics, and Supports Cell Viability,” Acta Biomaterialia 58 (2017): 254-268.

[132]

T. R. Christiani, E. Baroncini, J. Stanzione, and A. J. Vernengo, “In Vitro Evaluation of 3D Printed Polycaprolactone Scaffolds With Angle-Ply Architecture for Annulus Fibrosus Tissue Engineering,” Regenerative Biomaterials 6, no. 3 (2019): 175-184.

[133]

I. Doench, T. Ahn Tran, L. David, et al., “Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair,” Biomimetics (Basel) 4, no. 1 (2019): 19.

[134]

P. Grunert, B. H. Borde, S. B. Towne, et al., “Riboflavin Crosslinked High-Density Collagen Gel for the Repair of Annular Defects in Intervertebral Discs: An In Vivo Study,” Acta Biomaterialia 26 (2015): 215-224.

[135]

Q. Guo, C. Liu, J. Li, C. Zhu, H. Yang, and B. Li, “Gene Expression Modulation in TGF-β3-Mediated Rabbit Bone Marrow Stem Cells Using Electrospun Scaffolds of Various Stiffness,” Journal of Cellular and Molecular Medicine 19, no. 7 (2015): 1582-1592.

[136]

M. Likhitpanichkul, M. Dreischarf, S. Illien-Junger, et al., “Fibrin-Genipin Adhesive Hydrogel for Annulus Fibrosus Repair: Performance Evaluation With Large Animal Organ Culture, In Situ Biomechanics, and In Vivo Degradation Tests,” European Cells & Materials 28 (2014): 25-37.

[137]

R. McGuire, R. Borem, and J. Mercuri, “The Fabrication and Characterization of a Multi-Laminate, Angle-Ply Collagen Patch for Annulus Fibrosus Repair,” Journal of Tissue Engineering and Regenerative Medicine 11, no. 12 (2017): 3488-3493.

[138]

D. R. Pereira, J. Silva-Correia, J. M. Oliveira, R. L. Reis, A. Pandit, and M. J. Biggs, “Nanocellulose Reinforced Gellan-Gum Hydrogels as Potential Biological Substitutes for Annulus Fibrosus Tissue Regeneration,” Nanomedicine (London, England) 14, no. 3 (2018): 897-908.

[139]

Y. Wan, G. Feng, F. H. Shen, G. Balian, C. T. Laurencin, and X. Li, “Novel Biodegradable Poly(1,8-Octanediol Malate) for Annulus Fibrosus Regeneration,” Macromolecular Bioscience 7, no. 11 (2007): 1217-1224.

[140]

Y. Wan, G. Feng, F. H. Shen, C. T. Laurencin, and X. Li, “Biphasic Scaffold for Annulus Fibrosus Tissue Regeneration,” Biomaterials 29, no. 6 (2008): 643-652.

[141]

Y. H. Wang, T. F. Kuo, and J. L. Wang, “The Implantation of Non-Cell-Based Materials to Prevent the Recurrent Disc Herniation: An In Vivo Porcine Model Using Quantitative Discomanometry Examination,” European Spine Journal 16, no. 7 (2007): 1021-1027.

[142]

C. Zhu, J. Li, C. Liu, P. Zhou, H. Yang, and B. Li, “Modulation of the Gene Expression of Annulus Fibrosus-Derived Stem Cells Using Poly(Ether Carbonate Urethane)urea Scaffolds of Tunable Elasticity,” Acta Biomaterialia 29 (2016): 228-238.

[143]

R. Borem, A. Madeline, C. Theos, et al., “Angle-Ply Scaffold Supports Annulus Fibrosus Matrix Expression and Remodeling by Mesenchymal Stromal and Annulus Fibrosus Cells,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 110, no. 5 (2022): 1056-1068.

[144]

C. Liu, Y. Li, Y. Zhang, and H. Xu, “The Experimental Study of Regeneration of Annulus Fibrosus Using Decellularized Annulus Fibrosus Matrix/Poly(Ether Carbonate Urethane)urea-Blended Fibrous Scaffolds With Varying Elastic Moduli,” Journal of Biomedical Materials Research. Part A 110, no. 5 (2022): 991-1003.

[145]

Y. Peng, D. Huang, J. Li, S. Liu, X. Qing, and Z. Shao, “Genipin-Crosslinked Decellularized Annulus Fibrosus Hydrogels Induces Tissue-Specific Differentiation of Bone Mesenchymal Stem Cells and Intervertebral Disc Regeneration,” Journal of Tissue Engineering and Regenerative Medicine 14, no. 3 (2020): 497-509.

[146]

X. Jin, R. Kang, R. Deng, et al., “Fabrication and Characterization of an Acellular Annulus Fibrosus Scaffold With Aligned Porous Construct for Tissue Engineering,” Journal of Biomaterials Applications 36, no. 6 (2022): 985-995.

[147]

A. S. Croft, S. Ćorluka, J. Fuhrer, et al., “Repairing Annulus Fibrosus Fissures Using Methacrylated Gellan Gum Combined With Novel Silk,” Materials (Basel, Switzerland) 16, no. 8 (2023): 3173.

[148]

Q. Wei, D. Liu, G. Chu, et al., “TGF-β1-Supplemented Decellularized Annulus Fibrosus Matrix Hydrogels Promote Annulus Fibrosus Repair,” Bioactive Materials 19 (2023): 581-593.

[149]

Y. Zhu, J. Tan, H. Zhu, et al., “Development of Kartogenin-Conjugated Chitosan-Hyaluronic Acid Hydrogel for Nucleus Pulposus Regeneration,” Biomaterials Science 5, no. 4 (2017): 784-791.

[150]

H. B. Renani, M. Ghorbani, B. H. Beni, et al., “Determination and Comparison of Specifics of Nucleus Pulposus Cells of Human Intervertebral Disc in Alginate and Chitosan-Gelatin Scaffolds,” Advanced Biomedical Research 1 (2012): 81.

[151]

J. Xu, S. Liu, S. Wang, et al., “Decellularised Nucleus Pulposus as a Potential Biologic Scaffold for Disc Tissue Engineering,” Materials Science & Engineering. C, Materials for Biological Applications 99 (2019): 1213-1225.

[152]

J. D. Walters, S. S. Gill, and J. J. Mercuri, “Ethanol-Mediated Compaction and Cross-Linking Enhance Mechanical Properties and Degradation Resistance While Maintaining Cytocompatibility of a Nucleus Pulposus Scaffold,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 107, no. 9 (2019): 2488-2499.

[153]

C. Fernandez, A. Marionneaux, S. Gill, and J. Mercuri, “Biomimetic Nucleus Pulposus Scaffold Created From Bovine Caudal Intervertebral Disc Tissue Utilizing an Optimal Decellularization Procedure,” Journal of Biomedical Materials Research. Part A 104, no. 12 (2016): 3093-3106.

[154]

Z. Shan, X. Lin, S. Wang, et al., “An Injectable Nucleus Pulposus Cell-Modified Decellularized Scaffold: Biocompatible Material for Prevention of Disc Degeneration,” Oncotarget 8, no. 25 (2017): 40276-40288.

[155]

X. Zhou, J. Wang, X. Huang, et al., “Injectable Decellularized Nucleus Pulposus-Based Cell Delivery System for Differentiation of Adipose-Derived Stem Cells and Nucleus Pulposus Regeneration,” Acta Biomaterialia 81 (2018): 115-128.

[156]

D. H. Rosenzweig, E. Carelli, T. Steffen, P. Jarzem, and L. Haglund, “3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration,” International Journal of Molecular Sciences 16, no. 7 (2015): 15118-15135.

[157]

A. A. Hegewald, A. Enz, M. Endres, et al., “Engineering of Polymer-Based Grafts With Cells Derived From Human Nucleus Pulposus Tissue of the Lumbar Spine,” Journal of Tissue Engineering and Regenerative Medicine 5, no. 4 (2011): 275-282.

[158]

H. Y. Kim, H. N. Kim, S. J. Lee, et al., “Effect of Pore Sizes of PLGA Scaffolds on Mechanical Properties and Cell Behaviour for Nucleus Pulposus Regeneration In Vivo,” Journal of Tissue Engineering and Regenerative Medicine 11, no. 1 (2017): 44-57.

[159]

H. Xiang, Y. Lin, N. Shen, et al., “Construction and Assessment of Bio-Engineered Intervertebral Discs,” Experimental and Therapeutic Medicine 14, no. 3 (2017): 1929-1934.

[160]

D. K. Ruan, H. Xin, C. Zhang, et al., “Experimental Intervertebral Disc Regeneration With Tissue-Engineered Composite in a Canine Model,” Tissue Engineering. Part A 16, no. 7 (2010): 2381-2389.

[161]

Y. Gan, P. Li, L. Wang, et al., “An Interpenetrating Network-Strengthened and Toughened Hydrogel That Supports Cell-Based Nucleus Pulposus Regeneration,” Biomaterials 136 (2017): 12-28.

[162]

A. A. Thorpe, G. Dougill, L. Vickers, et al., “Thermally Triggered Hydrogel Injection Into Bovine Intervertebral Disc Tissue Explants Induces Differentiation of Mesenchymal Stem Cells and Restores Mechanical Function,” Acta Biomaterialia 54 (2017): 212-226.

[163]

G. Feng, Z. Zhang, X. Jin, et al., “Regenerating Nucleus Pulposus of the Intervertebral Disc Using Biodegradable Nanofibrous Polymer Scaffolds,” Tissue Engineering. Part A 18, no. 21-22 (2012): 2231-2238.

[164]

A. H. Chan, P. C. Boughton, A. J. Ruys, and M. L. Oyen, “An Interpenetrating Network Composite for a Regenerative Spinal Disc Application,” Journal of the Mechanical Behavior of Biomedical Materials 65 (2017): 842-848.

[165]

C. Woiciechowsky, A. Abbushi, M. L. Zenclussen, et al., “Regeneration of Nucleus Pulposus Tissue in an Ovine Intervertebral Disc Degeneration Model by Cell-Free Resorbable Polymer Scaffolds,” Journal of Tissue Engineering and Regenerative Medicine 8, no. 10 (2014): 811-820.

[166]

M. Endres, M. L. Zenclussen, P. A. Casalis, et al., “Augmentation and Repair Tissue Formation of the Nucleus Pulposus After Partial Nucleotomy in a Rabbit Model,” Tissue & Cell 46, no. 6 (2014): 505-513.

[167]

C. Malonzo, S. C. Chan, A. Kabiri, et al., “A Papain-Induced Disc Degeneration Model for the Assessment of Thermo-Reversible Hydrogel-Cells Therapeutic Approach,” Journal of Tissue Engineering and Regenerative Medicine 9, no. 12 (2015): E167-E176.

[168]

A. Hu, S. C. Chan, A. Kabiri, et al., “Thermosensitive Hydrogels Loaded With Human-Induced Pluripotent Stem Cells Overexpressing Growth Differentiation Factor-5 Ameliorate Intervertebral Disc Degeneration in Rats,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 108, no. 5 (2020): 2005-2016.

[169]

D. H. Rosenzweig, R. Fairag, A. P. Mathieu, et al., “Thermoreversible Hyaluronan-Hydrogel and Autologous Nucleus Pulposus Cell Delivery Regenerates Human Intervertebral Discs in an Ex Vivo, Physiological Organ Culture Model,” European Cells & Materials 36 (2018): 200-217.

[170]

N. A. Temofeew, K. R. Hixon, S. H. McBride-Gagyi, and S. A. Sell, “The Fabrication of Cryogel Scaffolds Incorporated With Poloxamer 407 for Potential Use in the Regeneration of the Nucleus Pulposus,” Journal of Materials Science. Materials in Medicine 28, no. 3 (2017): 36.

[171]

K. I. Lee, S. H. Moon, H. Kim, et al., “Tissue Engineering of the Intervertebral Disc With Cultured Nucleus Pulposus Cells Using Atelocollagen Scaffold and Growth Factors,” Spine 37, no. 6 (2012): 452-458.

[172]

R. Tsaryk, A. Gloria, T. Russo, et al., “Collagen-Low Molecular Weight Hyaluronic Acid Semi-Interpenetrating Network Loaded With Gelatin Microspheres for Cell and Growth Factor Delivery for Nucleus Pulposus Regeneration,” Acta Biomaterialia 20 (2015): 10-21.

[173]

H. Tao, Y. Zhang, C.-F. Wang, et al., “Biological Evaluation of Human Degenerated Nucleus Pulposus Cells in Functionalized Self-Assembling Peptide Nanofiber Hydrogel Scaffold,” Tissue Engineering. Part A 20, no. 11-12 (2014): 1621-1631.

[174]

G. Feng, Z. Zhang, M. Dang, et al., “Injectable Nanofibrous Spongy Microspheres for NR4A1 Plasmid DNA Transfection to Reverse Fibrotic Degeneration and Support Disc Regeneration,” Biomaterials 131 (2017): 86-97.

[175]

Y. Takeoka, T. Yurube, K. Morimoto, et al., “Reduced Nucleotomy-Induced Intervertebral Disc Disruption Through Spontaneous Spheroid Formation by the Low Adhesive Scaffold Collagen (LASCol),” Biomaterials 235 (2020): 119781.

[176]

F. Wang, L. P. Nan, S. F. Zhou, et al., “Injectable Hydrogel Combined With Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats,” Stem Cells International 2019 (2019): 8496025.

[177]

X. Zhou, J. Wang, W. Fang, et al., “Genipin Cross-Linked Type II Collagen/Chondroitin Sulfate Composite Hydrogel-Like Cell Delivery System Induces Differentiation of Adipose-Derived Stem Cells and Regenerates Degenerated Nucleus Pulposus,” Acta Biomaterialia 71 (2018): 496-509.

[178]

I. L. Moss, L. Gordon, K. A. Woodhouse, C. M. Whyne, and A. J. M. Yee, “A Novel Thiol-Modified Hyaluronan and Elastin-Like Polypetide Composite Material for Tissue Engineering of the Nucleus Pulposus of the Intervertebral Disc,” Spine 36, no. 13 (2011): 1022-1029.

[179]

B. Huang, Y. Zhuang, C. Q. Li, L. T. Liu, and Y. Zhou, “Regeneration of the Intervertebral Disc With Nucleus Pulposus Cell-Seeded Collagen II/Hyaluronan/Chondroitin-6-Sulfate Tri-Copolymer Constructs in a Rabbit Disc Degeneration Model,” Spine 36, no. 26 (2011): 2252-2259.

[180]

R. A. Subhan, K. Puvanan, M. R. Murali, et al., “Fluoroscopy Assisted Minimally Invasive Transplantation of Allogenic Mesenchymal Stromal Cells Embedded in HyStem Reduces the Progression of Nucleus Pulposus Degeneration in the Damaged Ntervertebral [Corrected] Disc: A Preliminary Study in Rabbits,” ScientificWorldJournal 2014 (2014): 818502.

[181]

G. W. Omlor, J. Fischer, K. Kleinschmitt, et al., “Short-Term Follow-Up of Disc Cell Therapy in a Porcine Nucleotomy Model With an Albumin-Hyaluronan Hydrogel: In Vivo and In Vitro Results of Metabolic Disc Cell Activity and Implant Distribution,” European Spine Journal 23, no. 9 (2014): 1837-1847.

[182]

A. E. Leckie, M. K. Akens, K. A. Woodhouse, A. J. Yee, and C. M. Whyne, “Evaluation of Thiol-Modified Hyaluronan and Elastin-Like Polypeptide Composite Augmentation in Early-Stage Disc Degeneration: Comparing 2 Minimally Invasive Techniques,” Spine 37, no. 20 (2012): E1296-E1303.

[183]

S. E. Gullbrand, T. P. Schaer, P. Agarwal, et al., “Translation of an Injectable Triple-Interpenetrating-Network Hydrogel for Intervertebral Disc Regeneration in a Goat Model,” Acta Biomaterialia 60 (2017): 201-209.

[184]

H. J. Wilke, F. Heuer, C. Neidlinger-Wilke, and L. Claes, “Is a Collagen Scaffold for a Tissue Engineered Nucleus Replacement Capable of Restoring Disc Height and Stability in an Animal Model,” European Spine Journal 15, no. Suppl 3 (2006): S433-S438.

[185]

M. J. Kim, J. H. Lee, J. S. Kim, et al., “Intervertebral Disc Regeneration Using Stem Cell/Growth Factor-Loaded Porous Particles With a Leaf-Stacked Structure,” Biomacromolecules 21, no. 12 (2020): 4795-4805.

[186]

H. Xu, M. Sun, C. Wang, et al., “Growth Differentiation Factor-5-Gelatin Methacryloyl Injectable Microspheres Laden With Adipose-Derived Stem Cells for Repair of Disc Degeneration,” Biofabrication 13, no. 1 (2020): 015010.

[187]

T. Christiani, K. Mys, K. Dyer, J. Kadlowec, C. Iftode, and A. J. Vernengo, “Using Embedded Alginate Microparticles to Tune the Properties of In Situ Forming Poly(N-Isopropylacrylamide)-Graft-Chondroitin Sulfate Bioadhesive Hydrogels for Replacement and Repair of the Nucleus Pulposus of the Intervertebral Disc,” JOR Spine 4, no. 3 (2021): e1161.

[188]

C. Borrelli and C. T. Buckley, “Injectable Disc-Derived ECM Hydrogel Functionalised With Chondroitin Sulfate for Intervertebral Disc Regeneration,” Acta Biomaterialia 117 (2020): 142-155.

[189]

G. Feng, Z. Zhang, M. Dang, K. J. Rambhia, and P. X. Ma, “Nanofibrous Spongy Microspheres to Deliver Rabbit Mesenchymal Stem Cells and Anti-miR-199a to Regenerate Nucleus Pulposus and Prevent Calcification,” Biomaterials 256 (2020): 120213.

[190]

Z. Liao, W. Ke, H. Liu, et al., “Vasorin-Containing Small Extracellular Vesicles Retard Intervertebral Disc Degeneration Utilizing an Injectable Thermoresponsive Delivery System,” Journal of Nanobiotechnology 20, no. 1 (2022): 420.

[191]

M. Li, Y. Wu, H. Li, et al., “Nanofiber Reinforced Alginate Hydrogel for Leak-Proof Delivery and Higher Stress Loading in Nucleus Pulposus,” Carbohydrate Polymers 299 (2023): 120193.

[192]

D. Ukeba, H. Sudo, T. Tsujimoto, K. Ura, K. Yamada, and N. Iwasaki, “Bone Marrow Mesenchymal Stem Cells Combined With Ultra-Purified Alginate Gel as a Regenerative Therapeutic Strategy After Discectomy for Degenerated Intervertebral Discs,” eBioMedicine 53 (2020): 102698.

[193]

Y. Wang, Y. Zhang, K. Chen, et al., “Injectable Nanostructured Colloidal Gels Resembling Native Nucleus Pulposus as Carriers of Mesenchymal Stem Cells for the Repair of Degenerated Intervertebral Discs,” Materials Science & Engineering. C, Materials for Biological Applications 128 (2021): 112343.

[194]

M. Yuan, C. W. Yeung, Y. Y. Li, et al., “Effects of Nucleus Pulposus Cell-Derived Acellular Matrix on the Differentiation of Mesenchymal Stem Cells,” Biomaterials 34, no. 16 (2013): 3948-3961.

[195]

W. Guo, L. Douma, M. H. Hu, et al., “Hyaluronic Acid-Based Interpenetrating Network Hydrogel as a Cell Carrier for Nucleus Pulposus Repair,” Carbohydrate Polymers 277 (2022): 118828.

[196]

L. Yu, Y. Liu, J. Wu, et al., “Genipin Cross-Linked Decellularized Nucleus Pulposus Hydrogel-Like Cell Delivery System Induces Differentiation of ADSCs and Retards Intervertebral Disc Degeneration,” Frontiers in Bioengineering and Biotechnology 9 (2021): 807883.

[197]

J. Shen, A. Chen, Z. Cai, et al., “Exhausted Local Lactate Accumulation via Injectable Nanozyme-Functionalized Hydrogel Microsphere for Inflammation Relief and Tissue Regeneration,” Bioactive Materials 12 (2022): 153-168.

[198]

D. Ukeba, K. Yamada, T. Suyama, et al., “Combination of Ultra-Purified Stem Cells With an In Situ-Forming Bioresorbable Gel Enhances Intervertebral Disc Regeneration,” eBioMedicine 76 (2022): 103845.

[199]

U. Y. Choi, H. P. Joshi, S. Payne, et al., “An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined With Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair,” International Journal of Molecular Sciences 21, no. 19 (2020): 7391.

[200]

C. Ligorio, A. Vijayaraghavan, J. A. Hoyland, and A. Saiani, “Acidic and Basic Self-Assembling Peptide and Peptide-Graphene Oxide Hydrogels: Characterisation and Effect on Encapsulated Nucleus Pulposus Cells,” Acta Biomaterialia 143 (2022): 145-158.

[201]

F. Russo, L. Ambrosio, M. Peroglio, et al., “A Hyaluronan and Platelet-Rich Plasma Hydrogel for Mesenchymal Stem Cell Delivery in the Intervertebral Disc: An Organ Culture Study,” International Journal of Molecular Sciences 22, no. 6 (2021): 2963.

[202]

H. Suzuki, K. Ura, D. Ukeba, et al., “Injection of Ultra-Purified Stem Cells With Sodium Alginate Reduces Discogenic Pain in a Rat Model,” Cells 12, no. 3 (2023): 505.

[203]

Z. Wang, H. Yang, X. Xu, et al., “Ion Elemental-Optimized Layered Double Hydroxide Nanoparticles Promote Chondrogenic Differentiation and Intervertebral Disc Regeneration of Mesenchymal Stem Cells Through Focal Adhesion Signaling Pathway,” Bioactive Materials 22 (2023): 75-90.

[204]

Y. W. Koo, C. S. Lim, A. Darai, et al., “Shape-Memory Collagen Scaffold Combined With Hyaluronic Acid for Repairing Intervertebral Disc,” Biomaterials Research 27, no. 1 (2023): 26.

[205]

C. Le Visage, S. H. Yang, L. Kadakia, et al., “Small Intestinal Submucosa as a Potential Bioscaffold for Intervertebral Disc Regeneration,” Spine 31, no. 21 (2006): 2423-2430.

[206]

J. E. Frith, A. R. Cameron, D. J. Menzies, et al., “An Injectable Hydrogel Incorporating Mesenchymal Precursor Cells and Pentosan Polysulphate for Intervertebral Disc Regeneration,” Biomaterials 34, no. 37 (2013): 9430-9440.

[207]

J. E. Frith, D. J. Menzies, A. R. Cameron, et al., “Effects of Bound Versus Soluble Pentosan Polysulphate in PEG/HA-Based Hydrogels Tailored for Intervertebral Disc Regeneration,” Biomaterials 35, no. 4 (2014): 1150-1162.

[208]

C. G. Jeong, A. T. Francisco, Z. Niu, et al., “Screening of Hyaluronic Acid-Poly(Ethylene Glycol) Composite Hydrogels to Support Intervertebral Disc Cell Biosynthesis Using Artificial Neural Network Analysis,” Acta Biomaterialia 10, no. 8 (2014): 3421-3430.

[209]

K. So, M. Takemoto, S. Fujibayashi, et al., “Antidegenerative Effects of Partial Disc Replacement in an Animal Surgery Model,” Spine 32, no. 15 (2007): 1586-1591.

[210]

K. D. Than, S. U. Rahman, L. Wang, et al., “Intradiscal Injection of Simvastatin Results in Radiologic, Histologic, and Genetic Evidence of Disc Regeneration in a Rat Model of Degenerative Disc Disease,” Spine Journal 14, no. 6 (2014): 1017-1028.

[211]

K. Benz, C. Stippich, C. Osswald, et al., “Rheological and Biological Properties of a Hydrogel Support for Cells Intended for Intervertebral Disc Repair,” BMC Musculoskeletal Disorders 13 (2012): 54.

[212]

S. E. Gullbrand, B. G. Ashinsky, E. D. Bonnevie, et al., “Long-Term Mechanical Function and Integration of an Implanted Tissue-Engineered Intervertebral Disc,” Science Translational Medicine 10, no. 468 (2018): eaau0670.

[213]

M. Endres, A. Abbushi, U. W. Thomale, et al., “Intervertebral Disc Regeneration After Implantation of a Cell-Free Bioresorbable Implant in a Rabbit Disc Degeneration Model,” Biomaterials 31, no. 22 (2010): 5836-5841.

[214]

A. Abbushi, M. Endres, M. Cabraja, et al., “Regeneration of Intervertebral Disc Tissue by Resorbable Cell-Free Polyglycolic Acid-Based Implants in a Rabbit Model of Disc Degeneration,” Spine 33, no. 14 (2008): 1527-1532.

[215]

H. B. Henriksson, M. Hagman, M. Horn, A. Lindahl, and H. Brisby, “Investigation of Different Cell Types and Gel Carriers for Cell-Based Intervertebral Disc Therapy, In Vitro and In Vivo Studies,” Journal of Tissue Engineering and Regenerative Medicine 6, no. 9 (2012): 738-747.

[216]

J. Zhu, K. Xia, W. Yu, et al., “Sustained Release of GDF5 From a Designed Coacervate Attenuates Disc Degeneration in a Rat Model,” Acta Biomaterialia 86 (2019): 300-311.

[217]

H. Ishiguro, T. Kaito, S. Yarimitsu, et al., “Intervertebral Disc Regeneration With an Adipose Mesenchymal Stem Cell-Derived Tissue-Engineered Construct in a Rat Nucleotomy Model,” Acta Biomaterialia 87 (2019): 118-129.

[218]

D. Oehme, P. Ghosh, S. Shimmon, et al., “Mesenchymal Progenitor Cells Combined With Pentosan Polysulfate Mediating Disc Regeneration at the Time of Microdiscectomy: A Preliminary Study in an Ovine Model,” Journal of Neurosurgery. Spine 20, no. 6 (2014): 657-669.

[219]

K. Xia, J. Zhu, J. Hua, et al., “Intradiscal Injection of Induced Pluripotent Stem Cell-Derived Nucleus Pulposus-Like Cell-Seeded Polymeric Microspheres Promotes Rat Disc Regeneration,” Stem Cells International 2019 (2019): 6806540.

[220]

B. Sun, M. Lian, Y. Han, et al., “A 3D-Bioprinted Dual Growth Factor-Releasing Intervertebral Disc Scaffold Induces Nucleus Pulposus and Annulus Fibrosus Reconstruction,” Bioactive Materials 6, no. 1 (2021): 179-190.

[221]

C. Cunha, C. Leite Pereira, J. R. Ferreira, et al., “Therapeutic Strategies for IVD Regeneration Through Hyaluronan/SDF-1-Based Hydrogel and Intravenous Administration of MSCs,” International Journal of Molecular Sciences 22, no. 17 (2021): 9609.

[222]

H. Zhang, S. Yu, X. Zhao, Z. Mao, and C. Gao, “Stromal Cell-Derived Factor-1α-Encapsulated Albumin/Heparin Nanoparticles for Induced Stem Cell Migration and Intervertebral Disc Regeneration In Vivo,” Acta Biomaterialia 72 (2018): 217-227.

[223]

S. Nakashima, Y. Matsuyama, K. Takahashi, et al., “Regeneration of Intervertebral Disc by the Intradiscal Application of Cross-Linked Hyaluronate Hydrogel and Cross-Linked Chondroitin Sulfate Hydrogel in a Rabbit Model of Intervertebral Disc Injury,” Bio-Medical Materials and Engineering 19, no. 6 (2009): 421-429.

[224]

K. Sawamura, T. Ikeda, M. Nagae, et al., “Characterization of In Vivo Effects of Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres on Degenerated Intervertebral Discs,” Tissue Engineering. Part A 15, no. 12 (2009): 3719-3727.

[225]

M. Nagae, T. Ikeda, Y. Mikami, et al., “Intervertebral Disc Regeneration Using Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres,” Tissue Engineering 13, no. 1 (2007): 147-158.

[226]

J. Ahn, E. M. Park, B. J. Kim, et al., “Transplantation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Highly Expressing TGFβ Receptors in a Rabbit Model of Disc Degeneration,” Stem Cell Research & Therapy 6 (2015): 190.

[227]

D. Sakai, J. Mochida, T. Iwashina, et al., “Regenerative Effects of Transplanting Mesenchymal Stem Cells Embedded in Atelocollagen to the Degenerated Intervertebral Disc,” Biomaterials 27, no. 3 (2006): 335-345.

[228]

D. Sakai, J. Mochida, Y. Yamamoto, et al., “Transplantation of Mesenchymal Stem Cells Embedded in Atelocollagen Gel to the Intervertebral Disc: A Potential Therapeutic Model for Disc Degeneration,” Biomaterials 24, no. 20 (2003): 3531-3541.

[229]

Z. Li, P. Lezuo, G. Pattappa, et al., “Development of an Ex Vivo Cavity Model to Study Repair Strategies in Loaded Intervertebral Discs,” European Spine Journal 25, no. 9 (2016): 2898-2908.

[230]

J. Ying, Z. Han, Y. Zeng, et al., “Evaluation of Intervertebral Disc Regeneration With Injection of Mesenchymal Stem Cells Encapsulated in PEGDA-Microcryogel Delivery System Using Quantitative T2 Mapping: A Study in Canines,” American Journal of Translational Research 11, no. 4 (2019): 2028-2041.

[231]

J. T. Martin, A. H. Milby, J. A. Chiaro, et al., “Translation of an Engineered Nanofibrous Disc-Like Angle-Ply Structure for Intervertebral Disc Replacement in a Small Animal Model,” Acta Biomaterialia 10, no. 6 (2014): 2473-2481.

[232]

S. H. Park, E. S. Gil, H. Cho, et al., “Intervertebral Disk Tissue Engineering Using Biphasic Silk Composite Scaffolds,” Tissue Engineering. Part A 18, no. 5-6 (2012): 447-458.

[233]

J. T. Martin, A. H. Milby, K. Ikuta, et al., “A Radiopaque Electrospun Scaffold for Engineering Fibrous Musculoskeletal Tissues: Scaffold Characterization and In Vivo Applications,” Acta Biomaterialia 26 (2015): 97-104.

[234]

J. T. Martin, S. E. Gullbrand, B. Mohanraj, et al., “Optimization of Preculture Conditions to Maximize the In Vivo Performance of Cell-Seeded Engineered Intervertebral Discs,” Tissue Engineering. Part A 23, no. 17-18 (2017): 923-934.

[235]

C. Wiltsey, T. Christiani, J. Williams, et al., “Thermogelling Bioadhesive Scaffolds for Intervertebral Disk Tissue Engineering: Preliminary In Vitro Comparison of Aldehyde-Based Versus Alginate Microparticle-Mediated Adhesion,” Acta Biomaterialia 16 (2015): 71-80.

[236]

S. M. Richardson, N. Hughes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland, “Human Mesenchymal Stem Cell Differentiation to NP-Like Cells in Chitosan-Glycerophosphate Hydrogels,” Biomaterials 29, no. 1 (2008): 85-93.

[237]

S. Murab, J. Samal, A. Shrivastava, A. R. Ray, A. Pandit, and S. Ghosh, “Glucosamine Loaded Injectable Silk-in-Silk Integrated System Modulate Mechanical Properties in Bovine Ex-Vivo Degenerated Intervertebral Disc Model,” Biomaterials 55 (2015): 64-83.

[238]

S. van Uden, J. Silva-Correia, V. M. Correlo, J. M. Oliveira, and R. L. Reis, “Custom-Tailored Tissue Engineered Polycaprolactone Scaffolds for Total Disc Replacement,” Biofabrication 7, no. 1 (2015): 015008.

[239]

J. Bai, Y. Zhang, Q. Fan, et al., “Reactive Oxygen Species-Scavenging Scaffold With Rapamycin for Treatment of Intervertebral Disk Degeneration,” Advanced Healthcare Materials 9, no. 3 (2020): e1901186.

[240]

C. Schmitt, F. Radetzki, A. Stirnweiss, et al., “Long-Term Pre-Clinical Evaluation of an Injectable Chitosan Nanocellulose Hydrogel With Encapsulated Adipose-Derived Stem Cells in an Ovine Model for IVD Regeneration,” Journal of Tissue Engineering and Regenerative Medicine 15, no. 7 (2021): 660-673.

[241]

A. Friedmann, A. Baertel, C. Schmitt, et al., “Intervertebral Disc Regeneration Injection of a Cell-Loaded Collagen Hydrogel in a Sheep Model,” International Journal of Molecular Sciences 22, no. 8 (2021): 4248.

[242]

Y. Peng, X. Qing, H. Lin, et al., “Decellularized Disc Hydrogels for hBMSCs Tissue-Specific Differentiation and Tissue Regeneration,” Bioactive Materials 6, no. 10 (2021): 3541-3556.

[243]

G. BaoLin and P. X. Ma, “Synthetic Biodegradable Functional Polymers for Tissue Engineering: A Brief Review,” Science China Chemistry 57, no. 4 (2014): 490-500.

[244]

P. Chocholata, V. Kulda, and V. Babuska, “Fabrication of Scaffolds for Bone-Tissue Regeneration,” Materials (Basel, Switzerland) 12, no. 4 (2019): 568.

[245]

L. Roseti, V. Parisi, M. Petretta, et al., “Scaffolds for Bone Tissue Engineering: State of the Art and New Perspectives,” Materials Science & Engineering. C, Materials for Biological Applications 78 (2017): 1246-1262.

[246]

R. Shi, D. Chen, Q. Liu, et al., “Recent Advances in Synthetic Bioelastomers,” International Journal of Molecular Sciences 10, no. 10 (2009): 4223-4256.

[247]

L. C. Rusu, L. C. Ardelean, A. A. Jitariu, C. A. Miu, and C. G. Streian, “An Insight Into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine,” Polymers 12, no. 5 (2020): 1197.

[248]

M. Yeganegi, R. A. Kandel, and J. P. Santerre, “Characterization of a Biodegradable Electrospun Polyurethane Nanofiber Scaffold: Mechanical Properties and Cytotoxicity,” Acta Biomaterialia 6, no. 10 (2010): 3847-3855.

[249]

K. R. St John, “The Use of Polyurethane Materials in the Surgery of the Spine: A Review,” Spine Journal 14, no. 12 (2014): 3038-3047.

[250]

F. Donnaloja, E. Jacchetti, M. Soncini, and M. T. Raimondi, “Natural and Synthetic Polymers for Bone Scaffolds Optimization,” Polymers 12, no. 4 (2020): 905.

[251]

S. Stratton, N. B. Shelke, K. Hoshino, S. Rudraiah, and S. G. Kumbar, “Bioactive Polymeric Scaffolds for Tissue Engineering,” Bioactive Materials 1, no. 2 (2016): 93-108.

[252]

Z. Ma and X. X. Zhu, “Copolymers Containing Carbohydrates and Other Biomolecules: Design, Synthesis and Applications,” Journal of Materials Chemistry B 7, no. 9 (2019): 1361-1378.

[253]

R. D. Bowles and L. A. Setton, “Biomaterials for Intervertebral Disc Regeneration and Repair,” Biomaterials 129 (2017): 54-67.

[254]

R. Dwivedi, S. Kumar, R. Pandey, et al., “Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature,” Journal of Oral Biology and Craniofacial Research 10, no. 1 (2020): 381-388.

[255]

X. Liu, J. M. Holzwarth, and P. X. Ma, “Functionalized Synthetic Biodegradable Polymer Scaffolds for Tissue Engineering,” Macromolecular Bioscience 12, no. 7 (2012): 911-919.

[256]

D. Essa, P. P. D. Kondiah, Y. E. Choonara, and V. Pillay, “The Design of Poly(Lactide-Co-Glycolide) Nanocarriers for Medical Applications,” Frontiers in Bioengineering and Biotechnology 8 (2020): 48.

[257]

T. Ponnusamy, H. Yu, V. T. John, R. S. Ayyala, and D. A. Blake, “A Novel Antiproliferative Drug Coating for Glaucoma Drainage Devices,” Journal of Glaucoma 23, no. 8 (2014): 526-534.

[258]

N. Leelakanok, S. Geary, and A. Salem, “Fabrication and Use of Poly(d,l-Lactide-co-Glycolide)-Based Formulations Designed for Modified Release of 5-Fluorouracil,” Journal of Pharmaceutical Sciences 107, no. 2 (2018): 513-528.

[259]

H. K. Makadia and S. J. Siegel, “Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier,” Polymers 3, no. 3 (2011): 1377-1397.

[260]

O. Janoušková, “Synthetic Polymer Scaffolds for Soft Tissue Engineering,” Physiological Research 67, no. Suppl 2 (2018): S335-S348.

[261]

A. Hiyama, J. Mochida, and D. Sakai, “Stem Cell Applications in Intervertebral Disc Repair,” Cellular and Molecular Biology 54, no. 1 (2008): 24-32.

[262]

S. M. Richardson, R. V. Walker, S. Parker, et al., “Intervertebral Disc Cell-Mediated Mesenchymal Stem Cell Differentiation,” Stem Cells 24, no. 3 (2006): 707-716.

[263]

D. Sakai and G. B. Andersson, “Stem Cell Therapy for Intervertebral Disc Regeneration: Obstacles and Solutions,” Nature Reviews Rheumatology 11, no. 4 (2015): 243-256.

[264]

K. Wuertz, K. Godburn, C. Neidlinger-Wilke, J. Urban, and J. C. Iatridis, “Behavior of Mesenchymal Stem Cells in the Chemical Microenvironment of the Intervertebral Disc,” Spine 33, no. 17 (2008): 1843-1849.

[265]

R. Tang, L. Jing, V. P. Willard, et al., “Differentiation of Human Induced Pluripotent Stem Cells Into Nucleus Pulposus-Like Cells,” Stem Cell Research & Therapy 9, no. 1 (2018): 61.

[266]

J. Chen, E. J. Lee, L. Jing, N. Christoforou, K. W. Leong, and L. A. Setton, “Differentiation of Mouse Induced Pluripotent Stem Cells (iPSCs) Into Nucleus Pulposus-Like Cells In Vitro,” PLoS One 8, no. 9 (2013): e75548.

[267]

Y. Liu, M. N. Rahaman, and B. S. Bal, “Modulating Notochordal Differentiation of Human Induced Pluripotent Stem Cells Using Natural Nucleus Pulposus Tissue Matrix,” PLoS One 9, no. 7 (2014): e100885.

[268]

Y. Liu, S. Fu, M. N. Rahaman, J. J. Mao, and B. S. Bal, “Native Nucleus Pulposus Tissue Matrix Promotes Notochordal Differentiation of Human Induced Pluripotent Stem Cells With Potential for Treating Intervertebral Disc Degeneration,” Journal of Biomedical Materials Research. Part A 103, no. 3 (2015): 1053-1059.

[269]

B. Gantenbein-Ritter, L. M. Benneker, M. Alini, and S. Grad, “Differential Response of Human Bone Marrow Stromal Cells to Either TGF-β(1) or rhGDF-5,” European Spine Journal 20, no. 6 (2011): 962-971.

[270]

P. Colombier, J. Clouet, C. Boyer, et al., “TGF-β1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells Toward Nucleus Pulposus-Like Cells,” Stem Cells 34, no. 3 (2016): 653-667.

[271]

L. E. Clarke, J. C. McConnell, M. J. Sherratt, B. Derby, S. M. Richardson, and J. A. Hoyland, “Growth Differentiation Factor 6 and Transforming Growth Factor-Beta Differentially Mediate Mesenchymal Stem Cell Differentiation, Composition, and Micromechanical Properties of Nucleus Pulposus Constructs,” Arthritis Research & Therapy 16, no. 2 (2014): R67.

[272]

D. Yuan, Z. Chen, Y. Zhou, et al., “Regenerative Intervertebral Disc Endplate Based on Biomimetic Three-Dimensional Scaffolds,” Spine 42, no. 5 (2017): E260-E266.

[273]

C. Y. Ho, C. C. Wang, T. C. Wu, et al., “Peptide-Functionalized Double Network Hydrogel With Compressible Shape Memory Effect for Intervertebral Disc Regeneration,” Bioengineering & Translational Medicine 8, no. 2 (2023): e10447.

[274]

X. Li, Y. Liu, L. Li, et al., “Tissue-Mimetic Hybrid Bioadhesives for Intervertebral Disc Repair,” Materials Horizons 10, no. 5 (2023): 1705-1718.

[275]

Z. Liu, H. Wang, Z. Yuan, et al., “High-Resolution 3D Printing of Angle-Ply Annulus Fibrosus Scaffolds for Intervertebral Disc Regeneration,” Biofabrication 15, no. 1 (2022).

[276]

C. Ligorio, M. Zhou, J. K. Wychowaniec, et al., “Graphene Oxide Containing Self-Assembling Peptide Hybrid Hydrogels as a Potential 3D Injectable Cell Delivery Platform for Intervertebral Disc Repair Applications,” Acta Biomaterialia 92 (2019): 92-103.

[277]

Y. Alinejad, A. Adoungotchodo, M. P. Grant, et al., “Injectable Chitosan Hydrogels With Enhanced Mechanical Properties for Nucleus Pulposus Regeneration,” Tissue Engineering. Part A 25, no. 5-6 (2019): 303-313.

[278]

D. M. Varma, M. S. DiNicolas, and S. B. Nicoll, “Injectable, Redox-Polymerized Carboxymethylcellulose Hydrogels Promote Nucleus Pulposus-Like Extracellular Matrix Elaboration by Human MSCs in a Cell Density-Dependent Manner,” Journal of Biomaterials Applications 33, no. 4 (2018): 576-589.

[279]

J. Gansau and C. T. Buckley, “Incorporation of Collagen and Hyaluronic Acid to Enhance the Bioactivity of Fibrin-Based Hydrogels for Nucleus Pulposus Regeneration,” Journal of Functional Biomaterials 9, no. 3 (2018): 43.

[280]

M. Ghorbani, J. Ai, M. R. Nourani, et al., “Injectable Natural Polymer Compound for Tissue Engineering of Intervertebral Disc: In Vitro Study,” Materials Science & Engineering. C, Materials for Biological Applications 80 (2017): 502-508.

[281]

J. Wang, Y. Tao, X. Zhou, et al., “The Potential of Chondrogenic Pre-Differentiation of Adipose-Derived Mesenchymal Stem Cells for Regeneration in Harsh Nucleus Pulposus Microenvironment,” Experimental Biology and Medicine 241, no. 18 (2016): 2104-2111.

[282]

S. Wan, S. Borland, S. M. Richardson, C. L. R. Merry, A. Saiani, and J. E. Gough, “Self-Assembling Peptide Hydrogel for Intervertebral Disc Tissue Engineering,” Acta Biomaterialia 46 (2016): 29-40.

[283]

D. N. Paglia, H. Singh, T. Karukonda, H. Drissi, and I. L. Moss, “PDGF-BB Delays Degeneration of the Intervertebral Discs in a Rabbit Preclinical Model,” Spine 41, no. 8 (2016): E449-E458.

[284]

G. Q. Teixeira, A. Boldt, I. Nagl, et al., “A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An Ex Vivo Model for Anti-Inflammatory Drug and Cell Therapy,” Tissue Engineering. Part C, Methods 22, no. 1 (2016): 8-19.

[285]

M. Peeters, S. E. Detiger, L. S. Karfeld-Sulzer, et al., “BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration,” Bioresearch Open Access 4, no. 1 (2015): 398-406.

[286]

C. Zeng, Q. Yang, M. Zhu, et al., “Silk Fibroin Porous Scaffolds for Nucleus Pulposus Tissue Engineering,” Materials Science & Engineering. C, Materials for Biological Applications 37 (2014): 232-240.

[287]

J. Mercuri, C. Addington, R. Pascal, S. Gill, and D. Simionescu, “Development and Initial Characterization of a Chemically Stabilized Elastin-Glycosaminoglycan-Collagen Composite Shape-Memory Hydrogel for Nucleus Pulposus Regeneration,” Journal of Biomedical Materials Research. Part A 102, no. 12 (2014): 4380-4393.

[288]

L. J. Smith, D. J. Gorth, B. L. Showalter, et al., “In Vitro Characterization of a Stem-Cell-Seeded Triple-Interpenetrating-Network Hydrogel for Functional Regeneration of the Nucleus Pulposus,” Tissue Engineering. Part A 20, no. 13-14 (2014): 1841-1849.

[289]

S. K. Leckie, G. A. Sowa, B. P. Bechara, et al., “Injection of Human Umbilical Tissue-Derived Cells Into the Nucleus Pulposus Alters the Course of Intervertebral Disc Degeneration In Vivo,” Spine Journal 13, no. 3 (2013): 263-272.

[290]

Y. C. Chen, W.-Y. Su, S.-H. Yang, A. Gefen, and F.-H. Lin, “In Situ Forming Hydrogels Composed of Oxidized High Molecular Weight Hyaluronic Acid and Gelatin for Nucleus Pulposus Regeneration,” Acta Biomaterialia 9, no. 2 (2013): 5181-5193.

[291]

B. Wang, Y. Wu, Z. Shao, et al., “Functionalized Self-Assembling Peptide Nanofiber Hydrogel as a Scaffold for Rabbit Nucleus Pulposus Cells,” Journal of Biomedical Materials Research. Part A 100, no. 3 (2012): 646-653.

[292]

A. Bertolo, M. Mehr, N. Aebli, et al., “Influence of Different Commercial Scaffolds on the In Vitro Differentiation of Human Mesenchymal Stem Cells to Nucleus Pulposus-Like Cells,” European Spine Journal 21, no. Suppl 6 (2012): S826-S838.

[293]

E. C. Collin, S. Grad, D. I. Zeugolis, et al., “An Injectable Vehicle for Nucleus Pulposus Cell-Based Therapy,” Biomaterials 32, no. 11 (2011): 2862-2870.

[294]

Y. H. Cheng, S. H. Yang, and F. H. Lin, “Thermosensitive Chitosan-Gelatin-Glycerol Phosphate Hydrogel as a Controlled Release System of Ferulic Acid for Nucleus Pulposus Regeneration,” Biomaterials 32, no. 29 (2011): 6953-6961.

[295]

S. H. Park, H. Cho, E. S. Gil, B. B. Mandal, B.-H. Min, and D. L. Kaplan, “Silk-Fibrin/Hyaluronic Acid Composite Gels for Nucleus Pulposus Tissue Regeneration,” Tissue Engineering. Part A 17, no. 23-24 (2011): 2999-3009.

[296]

J. J. Mercuri, S. S. Gill, and D. T. Simionescu, “Novel Tissue-Derived Biomimetic Scaffold for Regenerating the Human Nucleus Pulposus,” Journal of Biomedical Materials Research. Part A 96, no. 2 (2011): 422-435.

[297]

J. L. Bron, G. H. Koenderink, V. Everts, and T. H. Smit, “Rheological Characterization of the Nucleus Pulposus and Dense Collagen Scaffolds Intended for Functional Replacement,” Journal of Orthopaedic Research 27, no. 5 (2009): 620-626.

[298]

A. I. Chou and S. B. Nicoll, “Characterization of Photocrosslinked Alginate Hydrogels for Nucleus Pulposus Cell Encapsulation,” Journal of Biomedical Materials Research. Part A 91, no. 1 (2009): 187-194.

[299]

D. O. Halloran, S. Grad, M. Stoddart, P. Dockery, M. Alini, and A. S. Pandit, “An Injectable Cross-Linked Scaffold for Nucleus Pulposus Regeneration,” Biomaterials 29, no. 4 (2008): 438-447.

[300]

S. H. Yang, P. Q. Chen, Y. F. Chen, and F. H. Lin, “Gelatin/Chondroitin-6-Sulfate Copolymer Scaffold for Culturing Human Nucleus Pulposus Cells In Vitro With Production of Extracellular Matrix,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 74, no. 1 (2005): 488-494.

[301]

S. H. Yang, P. Q. Chen, Y. F. Chen, and F. H. Lin, “An In-Vitro Study on Regeneration of Human Nucleus Pulposus by Using Gelatin/Chondroitin-6-Sulfate/Hyaluronan Tri-Copolymer Scaffold,” Artificial Organs 29, no. 10 (2005): 806-814.

[302]

G. Feng, L. Li, H. Liu, et al., “Hypoxia Differentially Regulates Human Nucleus Pulposus and Annulus Fibrosus Cell Extracellular Matrix Production in 3D Scaffolds,” Osteoarthritis and Cartilage 21, no. 4 (2013): 582-588.

[303]

C. Liang, H. Li, C. Li, et al., “Fabrication of a Layered Microstructured Polymeric Microspheres as a Cell Carrier for Nucleus Pulposus Regeneration,” Journal of Biomaterials Science. Polymer Edition 23, no. 18 (2012): 2287-2302.

[304]

C. Z. Liang, H. Li, Y. Q. Tao, et al., “Dual Delivery for Stem Cell Differentiation Using Dexamethasone and bFGF in/on Polymeric Microspheres as a Cell Carrier for Nucleus Pulposus Regeneration,” Journal of Materials Science. Materials in Medicine 23, no. 4 (2012): 1097-1107.

[305]

S. A. Abbah, C. X. F. Lam, K. A. Ramruttun, J. C. H. Goh, and H.-K. Wong, “Autogenous Bone Marrow Stromal Cell Sheets-Loaded mPCL/TCP Scaffolds Induced Osteogenesis in a Porcine Model of Spinal Interbody Fusion,” Tissue Engineering. Part A 17, no. 5-6 (2011): 809-817.

[306]

A. Gloria, T. Russo, U. D'Amora, M. Santin, R. De Santis, and L. Ambrosio, “Customised Multiphasic Nucleus/Annulus Scaffold for Intervertebral Disc Repair/Regeneration,” Connective Tissue Research 61, no. 2 (2020): 152-162.

[307]

J. Hu, Y. Lu, L. Cai, et al., “Functional Compressive Mechanics and Tissue Biocompatibility of an Injectable SF/PU Hydrogel for Nucleus Pulposus Replacement,” Scientific Reports 7, no. 1 (2017): 2347.

[308]

C. Wiltsey, P. Kubinski, T. Christiani, et al., “Characterization of Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)-g-Chondroitin Sulfate With Adhesive Properties for Nucleus Pulposus Tissue Engineering,” Journal of Materials Science. Materials in Medicine 24, no. 4 (2013): 837-847.

[309]

J. Silva-Correia, V. Miranda-Gonçalves, A. J. Salgado, et al., “Angiogenic Potential of Gellan-Gum-Based Hydrogels for Application in Nucleus Pulposus Regeneration: In Vivo Study,” Tissue Engineering. Part A 18, no. 11-12 (2012): 1203-1212.

[310]

J. Silva-Correia, J. M. Oliveira, S. G. Caridade, et al., “Gellan Gum-Based Hydrogels for Intervertebral Disc Tissue-Engineering Applications,” Journal of Tissue Engineering and Regenerative Medicine 5, no. 6 (2011): e97-e107.

[311]

C. Mauth, E. Bono, S. Haas, et al., “Cell-Seeded Polyurethane-Fibrin Structures—A Possible System for Intervertebral Disc Regeneration,” European Cells & Materials 18 (2009): 27-38.

[312]

Y. K. Sung and S. W. Kim, “Recent Advances in Polymeric Drug Delivery Systems,” Biomaterials Research 24 (2020): 12.

[313]

S. Raveendran, B. Dhandayuthapani, Y. Nagaoka, Y. Yoshida, T. Maekawa, and D. Sakthi Kumar, “Biocompatible Nanofibers Based on Extremophilic Bacterial Polysaccharide, Mauran From Halomonas maura,” Carbohydrate Polymers 92, no. 2 (2013): 1225-1233.

[314]

S. M. Nasr, N. Rabiee, S. Hajebi, et al., “Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine,” International Journal of Nanomedicine 15 (2020): 4205-4224.

[315]

B. K. Weiner, M. Vilendecic, D. Ledic, et al., “Endplate Changes Following Discectomy: Natural History and Associations Between Imaging and Clinical Data,” European Spine Journal 24, no. 11 (2015): 2449-2457.

[316]

A. M. Woods, E. J. Rodenberg, M. C. Hiles, and F. M. Pavalko, “Improved Biocompatibility of Small Intestinal Submucosa (SIS) Following Conditioning by Human Endothelial Cells,” Biomaterials 25, no. 3 (2004): 515-525.

[317]

T. Zantop, T. W. Gilbert, M. C. Yoder, and S. F. Badylak, “Extracellular Matrix Scaffolds Are Repopulated by Bone Marrow-Derived Cells in a Mouse Model of Achilles Tendon Reconstruction,” Journal of Orthopaedic Research 24, no. 6 (2006): 1299-1309.

[318]

S. F. Badylak, R. Record, K. Lindberg, J. Hodde, and K. Park, “Small Intestinal Submucosa: A Substrate for In Vitro Cell Growth,” Journal of Biomaterials Science. Polymer Edition 9, no. 8 (1998): 863-878.

[319]

G. Y. Lee, S. J. Kang, S. J. Lee, et al., “Effects of Small Intestinal Submucosa Content on the Adhesion and Proliferation of Retinal Pigment Epithelial Cells on SIS-PLGA Films,” Journal of Tissue Engineering and Regenerative Medicine 11, no. 1 (2017): 99-108.

[320]

S. Gumina, A. M. Patti, A. Vulcano, C. Della Rocca, and F. Postacchini, “Culture of Human Rotator Cuff Cells on Orthobiologic Support (Porcine Small Intestinal Submucosa),” La Chirurgia Degli Organi di Movimento 93, no. Suppl 1 (2009): S65-S70.

[321]

P. M. Crapo, T. W. Gilbert, and S. F. Badylak, “An Overview of Tissue and Whole Organ Decellularization Processes,” Biomaterials 32, no. 12 (2011): 3233-3243.

[322]

T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of Tissues and Organs,” Biomaterials 27, no. 19 (2006): 3675-3683.

[323]

H. Lu, T. Hoshiba, N. Kawazoe, and G. Chen, “Comparison of Decellularization Techniques for Preparation of Extracellular Matrix Scaffolds Derived From Three-Dimensional Cell Culture,” Journal of Biomedical Materials Research. Part A 100, no. 9 (2012): 2507-2516.

[324]

M. Fiordalisi, A. J. Silva, M. Barbosa, R. Gonçalves, and J. Caldeira, “Decellularized Scaffolds for Intervertebral Disc Regeneration,” Trends in Biotechnology 38, no. 9 (2020): 947-951.

[325]

T. J. Keane, I. T. Swinehart, and S. F. Badylak, “Methods of Tissue Decellularization Used for Preparation of Biologic Scaffolds and In Vivo Relevance,” Methods 84 (2015): 25-34.

[326]

Pulver, A. Shevtsov, B. Leybovich, I. Artyuhov, Y. Maleev, and A. Peregudov, “Production of Organ Extracellular Matrix Using a Freeze-Thaw Cycle Employing Extracellular Cryoprotectants,” Cryo Letters 35, no. 5 (2014): 400-406.

[327]

S. Badylak, S. Arnoczky, P. Plouhar, et al., “Naturally Occurring Extracellular Matrix as a Scaffold for Musculoskeletal Repair,” Clinical Orthopaedics and Related Research, no. suppl 367 (1999): S333-S343.

[328]

L. M. Dejardin, S. P. Arnoczky, B. J. Ewers, R. C. Haut, and R. B. Clarke, “Tissue-Engineered Rotator Cuff Tendon Using Porcine Small Intestine Submucosa. Histologic and Mechanical Evaluation in Dogs,” American Journal of Sports Medicine 29, no. 2 (2001): 175-184.

[329]

E. N. Liatsikos, C. Z. Dinlenc, R. Kapoor, et al., “Ureteral Reconstruction: Small Intestine Submucosa for the Management of Strictures and Defects of the Upper Third of the Ureter,” Journal of Urology 165, no. 5 (2001): 1719-1723.

[330]

E. N. Liatsikos, C. Z. Dinlenc, R. Kapoor, et al., “Laparoscopic Ureteral Reconstruction With Small Intestinal Submucosa,” Journal of Endourology 15, no. 2 (2001): 217-220.

[331]

T. Huynh, G. Abraham, J. Murray, K. Brockbank, P. O. Hagen, and S. Sullivan, “Remodeling of an Acellular Collagen Graft Into a Physiologically Responsive Neovessel,” Nature Biotechnology 17, no. 11 (1999): 1083-1086.

[332]

S. P. Arnoczky, “Building a Meniscus. Biologic Considerations,” Clinical Orthopaedics and Related Research, no. suppl 367 (1999): S244-S253.

[333]

E. H. Ledet, A. L. Carl, D. J. DiRisio, et al., “A Pilot Study to Evaluate the Effectiveness of Small Intestinal Submucosa Used to Repair Spinal Ligaments in the Goat,” Spine Journal 2, no. 3 (2002): 188-196.

[334]

B. W. Cunningham, S. H. Berven, N. Hu, H. J. Beatson, P. G. De Deyne, and P. C. McAfee, “Regeneration of a Spinal Ligament After Total Lumbar Disk Arthroplasty in Primates,” Cells, Tissues, Organs 190, no. 6 (2009): 347-355.

[335]

M. C. Barsotti, F. Felice, A. Balbarini, and R. Di Stefano, “Fibrin as a Scaffold for Cardiac Tissue Engineering,” Biotechnology and Applied Biochemistry 58, no. 5 (2011): 301-310.

[336]

C. Dong and Y. Lv, “Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives,” Polymers 8, no. 2 (2016): 42.

[337]

Y. Li, H. Meng, Y. Liu, and B. P. Lee, “Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering,” ScientificWorldJournal 2015 (2015): 685690.

[338]

Y. L. Lin, C. P. Chen, C. M. Lo, and H. S. Wang, “Stiffness-Controlled Three-Dimensional Collagen Scaffolds for Differentiation of Human Wharton's Jelly Mesenchymal Stem Cells Into Cardiac Progenitor Cells,” Journal of Biomedical Materials Research. Part A 104, no. 9 (2016): 2234-2242.

[339]

J. K. Suh and H. W. Matthew, “Application of Chitosan-Based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review,” Biomaterials 21, no. 24 (2000): 2589-2598.

[340]

J. Sun and H. Tan, “Alginate-Based Biomaterials for Regenerative Medicine Applications,” Materials (Basel, Switzerland) 6, no. 4 (2013): 1285-1309.

[341]

E. Ruvinov and S. Cohen, “Alginate Biomaterial for the Treatment of Myocardial Infarction: Progress, Translational Strategies, and Clinical Outlook: From Ocean Algae to Patient Bedside,” Advanced Drug Delivery Reviews 96 (2016): 54-76.

[342]

R. Dorati, A. DeTrizio, T. Modena, et al., “Biodegradable Scaffolds for Bone Regeneration Combined With Drug-Delivery Systems in Osteomyelitis Therapy,” Pharmaceuticals (Basel) 10, no. 4 (2017): 96.

[343]

T. Hodgkinson, J. Z. Stening, L. J. White, K. M. Shakesheff, J. A. Hoyland, and S. M. Richardson, “Microparticles for Controlled Growth Differentiation Factor 6 Delivery to Direct Adipose Stem Cell-Based Nucleus Pulposus Regeneration,” Journal of Tissue Engineering and Regenerative Medicine 13, no. 8 (2019): 1406-1417.

[344]

A. Wei, L. A. Williams, D. Bhargav, et al., “BMP13 Prevents the Effects of Annular Injury in an Ovine Model,” International Journal of Biological Sciences 5, no. 5 (2009): 388-396.

[345]

A. Mietsch, C. Neidlinger-Wilke, H. Schrezenmeier, et al., “Evaluation of Platelet-Rich Plasma and Hydrostatic Pressure Regarding Cell Differentiation in Nucleus Pulposus Tissue Engineering,” Journal of Tissue Engineering and Regenerative Medicine 7, no. 3 (2013): 244-252.

[346]

S. A. de Vries, E. Potier, M. van Doeselaar, et al., “Conditioned Medium Derived From Notochordal Cell-Rich Nucleus Pulposus Tissue Stimulates Matrix Production by Canine Nucleus Pulposus Cells and Bone Marrow-Derived Stromal Cells,” Tissue Engineering. Part A 21, no. 5-6 (2015): 1077-1084.

[347]

F. C. Bach, A. Miranda-Bedate, F. W. van Heel, et al., “Bone Morphogenetic Protein-2, but Not Mesenchymal Stromal Cells, Exert Regenerative Effects on Canine and Human Nucleus Pulposus Cells,” Tissue Engineering. Part A 23, no. 5-6 (2017): 233-242.

[348]

P. Ghosh, J. Wu, S. Shimmon, A. C. W. Zannettino, S. Gronthos, and S. Itescu, “Pentosan Polysulfate Promotes Proliferation and Chondrogenic Differentiation of Adult Human Bone Marrow-Derived Mesenchymal Precursor Cells,” Arthritis Research & Therapy 12, no. 1 (2010): R28.

[349]

Z. F. Xiao, G. Y. Su, Y. Hou, et al., “Mechanics and Biology Interact in Intervertebral Disc Degeneration: A Novel Composite Mouse Model,” Calcified Tissue International 106, no. 4 (2020): 401-414.

[350]

Q. Liu, X. Wang, Y. Hua, et al., “Estrogen Deficiency Exacerbates Intervertebral Disc Degeneration Induced by Spinal Instability in Rats,” Spine 44, no. 9 (2019): E510-E519.

[351]

C. H. Chen, W. C. Chen, C. Y. Lin, Y. H. Tsuang, and Y. J. Kuo, “Sintered Dicalcium Pyrophosphate Treatment Attenuates Estrogen Deficiency-Associated Disc Degeneration in Ovariectomized Rats,” Drug Design, Development and Therapy 12 (2018): 3033-3041.

[352]

Z. F. Xiao, J. B. He, G. Y. Su, et al., “Osteoporosis of the Vertebra and Osteochondral Remodeling of the Endplate Causes Intervertebral Disc Degeneration in Ovariectomized Mice,” Arthritis Research & Therapy 20, no. 1 (2018): 207.

[353]

Y. Song, S. Li, W. Geng, et al., “Sirtuin 3-Dependent Mitochondrial Redox Homeostasis Protects Against AGEs-Induced Intervertebral Disc Degeneration,” Redox Biology 19 (2018): 339-353.

[354]

Z. Liao, R. Luo, G. Li, et al., “Exosomes From Mesenchymal Stem Cells Modulate Endoplasmic Reticulum Stress to Protect Against Nucleus Pulposus Cell Death and Ameliorate Intervertebral Disc Degeneration In Vivo,” Theranostics 9, no. 14 (2019): 4084-4100.

[355]

R. Luo, Y. Song, Z. Liao, et al., “Impaired Calcium Homeostasis via Advanced Glycation End Products Promotes Apoptosis Through Endoplasmic Reticulum Stress in Human Nucleus Pulposus Cells and Exacerbates Intervertebral Disc Degeneration in Rats,” FEBS Journal 286, no. 21 (2019): 4356-4373.

[356]

T. Miyamoto, T. Muneta, T. Tabuchi, et al., “Intradiscal Transplantation of Synovial Mesenchymal Stem Cells Prevents Intervertebral Disc Degeneration Through Suppression of Matrix Metalloproteinase-Related Genes in Nucleus Pulposus Cells in Rabbits,” Arthritis Research & Therapy 12, no. 6 (2010): R206.

[357]

K. Z. Lim, C. D. Daly, P. Ghosh, et al., “Ovine Lumbar Intervertebral Disc Degeneration Model Utilizing a Lateral Retroperitoneal Drill Bit Injury,” Journal of Visualized Experiments 123 (2017): 55753.

[358]

C. D. Daly, P. Ghosh, T. Badal, et al., “A Comparison of Two Ovine Lumbar Intervertebral Disc Injury Models for the Evaluation and Development of Novel Regenerative Therapies,” Global Spine Journal 8, no. 8 (2018): 847-859.

[359]

S. Schwan, C. Ludtka, A. Friedmann, et al., “Long-Term Pathology of Ovine Lumbar Spine Degeneration Following Injury via Percutaneous Minimally Invasive Partial Nucleotomy,” Journal of Orthopaedic Research 37, no. 11 (2019): 2376-2388.

[360]

S. Schwan, C. Ludtka, I. Wiesner, A. Baerthel, A. Friedmann, and F. Göhre, “Percutaneous Posterolateral Approach for the Simulation of a Far-Lateral Disc Herniation in an Ovine Model,” European Spine Journal 27, no. 1 (2018): 222-230.

[361]

M. C. Deml, L. M. Benneker, T. Schmid, et al., “Ventral Surgical Approach for an Intervertebral Disc Degeneration and Regeneration Model in Sheep Cervical Spine: Anatomic Technical Description, Strengths and Limitations,” Veterinary and Comparative Orthopaedics and Traumatology 32, no. 5 (2019): 389-393.

[362]

S. E. Gullbrand, N. R. Malhotra, T. P. Schaer, et al., “A Large Animal Model That Recapitulates the Spectrum of Human Intervertebral Disc Degeneration,” Osteoarthritis and Cartilage 25, no. 1 (2017): 146-156.

[363]

F. C. Bach, A. R. Tellegen, M. Beukers, et al., “Biologic Canine and Human Intervertebral Disc Repair by Notochordal Cell-Derived Matrix: From Bench Towards Bedside,” Oncotarget 9, no. 41 (2018): 26507-26526.

[364]

K. Serigano, D. Sakai, A. Hiyama, F. Tamura, M. Tanaka, and J. Mochida, “Effect of Cell Number on Mesenchymal Stem Cell Transplantation in a Canine Disc Degeneration Model,” Journal of Orthopaedic Research 28, no. 10 (2010): 1267-1275.

[365]

A. Hiyama, J. Mochida, T. Iwashina, et al., “Transplantation of Mesenchymal Stem Cells in a Canine Disc Degeneration Model,” Journal of Orthopaedic Research 26, no. 5 (2008): 589-600.

[366]

L. A. Monaco, S. J. DeWitte-Orr, and D. E. Gregory, “A Comparison Between Porcine, Ovine, and Bovine Intervertebral Disc Anatomy and Single Lamella Annulus Fibrosus Tensile Properties,” Journal of Morphology 277, no. 2 (2016): 244-251.

[367]

N. Newell, D. Carpanen, J. H. Evans, M. J. Pearcy, and S. D. Masouros, “Mechanical Function of the Nucleus Pulposus of the Intervertebral Disc Under High Rates of Loading,” Spine 44, no. 15 (2019): 1035-1041.

[368]

D. J. Nuckley, P. A. Kramer, A. Del Rosario, N. Fabro, S. Baran, and R. P. Ching, “Intervertebral Disc Degeneration in a Naturally Occurring Primate Model: Radiographic and Biomechanical Evidence,” Journal of Orthopaedic Research 26, no. 9 (2008): 1283-1288.

[369]

G. E. Mosley, R. C. Hoy, P. Nasser, et al., “Sex Differences in Rat Intervertebral Disc Structure and Function Following Annular Puncture Injury,” Spine 44, no. 18 (2019): 1257-1269.

[370]

J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, and B. Guo, “Antibacterial Adhesive Injectable Hydrogels With Rapid Self-Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing,” Biomaterials 183 (2018): 185-199.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/