Intelligent Manufacturing for Osteoarthritis Organoids

Xukun Lyu , Jian Wang , Jiacan Su

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70043

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70043 DOI: 10.1111/cpr.70043
REVIEW

Intelligent Manufacturing for Osteoarthritis Organoids

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is the most prevalent degenerative joint disease worldwide, imposing a substantial global disease burden. However, its pathogenesis remains incompletely understood, and effective treatment strategies are still lacking. Organoid technology, in which stem cells or progenitor cells self-organise into miniature tissue structures under three-dimensional (3D) culture conditions, provides a promising in vitro platform for simulating the pathological microenvironment of OA. This approach can be employed to investigate disease mechanisms, carry out high-throughput drug screening and facilitate personalised therapies. This review summarises joint structure, OA pathogenesis and pathological manifestations, thereby establishing the disease context for the application of organoid technology. It then examines the components of the arthrosis organoid system, specifically addressing cartilage, subchondral bone, synovium, skeletal muscle and ligament organoids. Furthermore, it details various strategies for constructing OA organoids, including considerations of cell selection, pathological classification and fabrication techniques. Notably, this review introduces the concept of intelligent manufacturing of OA organoids by incorporating emerging engineering technologies such as artificial intelligence (AI) into the organoid fabrication process, thereby forming an innovative software and hardware cluster. Lastly, this review discusses the challenges currently facing intelligent OA organoid manufacturing and highlights future directions for this rapidly evolving field. By offering a comprehensive overview of state-of-the-art methodologies and challenges, this review anticipates that intelligent, automated fabrication of OA organoids will expedite fundamental research, drug discovery and personalised translational applications in the orthopaedic field.

Keywords

arthrosis / artificial intelligence / cartilage / in vitro modelling / intelligent manufacturing / osteoarthritis organoids

Cite this article

Download citation ▾
Xukun Lyu, Jian Wang, Jiacan Su. Intelligent Manufacturing for Osteoarthritis Organoids. Cell Proliferation, 2025, 58(7): e70043 DOI:10.1111/cpr.70043

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. N. Katz, K. R. Arant, and R. F. Loeser, “Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review,” JAMA 325, no. 6 (2021): 568-578, https://doi.org/10.1001/jama.2020.22171.

[2]

S. Glyn-Jones, A. J. Palmer, R. Agricola, et al., “Osteoarthritis,” Lancet 386, no. 9991 (2015): 376-387, https://doi.org/10.1016/s0140-6736(14)60802-3.

[3]

GBD 2021 Osteoarthritis Collaborators, “Global, Regional, and National Burden of Osteoarthritis, 1990-2020 and Projections to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021,” Lancet Rheumatology 5, no. 9 (2023): e508-e522, https://doi.org/10.1016/s2665-9913(23)00163-7.

[4]

Z. Hao, Y. Wang, L. Wang, et al., “Burden Evaluation and Prediction of Osteoarthritis and Site-Specific Osteoarthritis Coupled With Attributable Risk Factors in China From 1990 to 2030,” Clinical Rheumatology 43, no. 6 (2024): 2061-2077, https://doi.org/10.1007/s10067-024-06985-6.

[5]

S. Castañeda, J. A. Roman-Blas, R. Largo, and G. Herrero-Beaumont, “Osteoarthritis: A Progressive Disease With Changing Phenotypes,” Rheumatology (Oxford, England) 53, no. 1 (2014): 1-3, https://doi.org/10.1093/rheumatology/ket247.

[6]

R. Barnett, “Osteoarthritis,” Lancet 391, no. 10134 (2018): 1985, https://doi.org/10.1016/s0140-6736(18)31064-x.

[7]

W. Kim, Y. Gwon, S. Park, H. Kim, and J. Kim, “Therapeutic Strategies of Three-Dimensional Stem Cell Spheroids and Organoids for Tissue Repair and Regeneration,” Bioactive Materials 19 (2023): 50-74, https://doi.org/10.1016/j.bioactmat.2022.03.039.

[8]

L. Bai, R. L. Reis, S. Chen, J. Su, and C. Liu, “Organoid Research: Advanced Models, Precision Medicine, and Translational Medicine,” OR 1, no. 1 (2025), https://doi.org/10.36922/or025060009.

[9]

M. Hofer and M. P. Lutolf, “Engineering Organoids,” Nature Reviews Materials 6, no. 5 (2021): 402-420, https://doi.org/10.1038/s41578-021-00279-y.

[10]

T. Zhang, S. Sheng, W. Cai, et al., “3-D Bioprinted Human-Derived Skin Organoids Accelerate Full-Thickness Skin Defects Repair,” Bioactive Materials 42 (2024): 257-269, https://doi.org/10.1016/j.bioactmat.2024.08.036.

[11]

T. Nakano, S. Ando, N. Takata, et al., “Self-Formation of Optic Cups and Storable Stratified Neural Retina From Human ESCs,” Cell Stem Cell 10, no. 6 (2012): 771-785, https://doi.org/10.1016/j.stem.2012.05.009.

[12]

T. Takebe, K. Sekine, M. Enomura, et al., “Vascularized and Functional Human Liver From an iPSC-Derived Organ Bud Transplant,” Nature 499, no. 7459 (2013): 481-484, https://doi.org/10.1038/nature12271.

[13]

M. Huch, C. Dorrell, S. F. Boj, et al., “In Vitro Expansion of Single Lgr5+ Liver Stem Cells Induced by Wnt-Driven Regeneration,” Nature 494, no. 7436 (2013): 247-250, https://doi.org/10.1038/nature11826.

[14]

M. Takasato, P. X. Er, H. S. Chiu, et al., “Kidney Organoids From Human iPS Cells Contain Multiple Lineages and Model Human Nephrogenesis,” Nature 526, no. 7574 (2015): 564-568, https://doi.org/10.1038/nature15695.

[15]

S. F. Boj, C. I. Hwang, L. A. Baker, et al., “Organoid Models of Human and Mouse Ductal Pancreatic Cancer,” Cell 160, no. 1-2 (2015): 324-338, https://doi.org/10.1016/j.cell.2014.12.021.

[16]

M. A. Lancaster, M. Renner, C. A. Martin, et al., “Cerebral Organoids Model Human Brain Development and Microcephaly,” Nature 501, no. 7467 (2013): 373-379, https://doi.org/10.1038/nature12517.

[17]

A. Dhawan, P. M. Kennedy, E. B. Rizk, and I. T. Ozbolat, “Three-Dimensional Bioprinting for Bone and Cartilage Restoration in Orthopaedic Surgery,” Journal of the American Academy of Orthopaedic Surgeons 27, no. 5 (2019): e215-e226, https://doi.org/10.5435/jaaos-d-17-00632.

[18]

S. Wu, X. Wu, X. Wang, and J. Su, “Hydrogels for Bone Organoid Construction: From a Materiobiological Perspective,” Journal of Materials Science and Technology 136 (2023): 21-31, https://doi.org/10.1016/j.jmst.2022.07.008.

[19]

M. Li and J. C. Izpisua Belmonte, “Organoids - Preclinical Models of Human Disease,” New England Journal of Medicine 380, no. 6 (2019): 569-579, https://doi.org/10.1056/NEJMra1806175.

[20]

S. Chen, X. Chen, Z. Geng, and J. Su, “The Horizon of Bone Organoid: A Perspective on Construction and Application,” Bioactive Materials 18 (2022): 15-25, https://doi.org/10.1016/j.bioactmat.2022.01.048.

[21]

X. Ren, X. Chen, Z. Geng, and J. Su, “Bone-Targeted Biomaterials: Strategies and Applications,” Chemical Engineering Journal 446 (2022): 137133, https://doi.org/10.1016/j.cej.2022.137133.

[22]

F. H. Netter, Atlas of Human Anatomy, Professional Edition E-Book: Including NetterReference.Com Access With Full Downloadable Image Bank (Elsevier Health Sciences, 2014).

[23]

S. Standring, Gray's Anatomy E-Book: Gray's Anatomy E-Book (Elsevier Health Sciences, 2021).

[24]

L. Bai, D. Zhou, G. Li, J. Liu, X. Chen, and J. Su, “Engineering Bone/Cartilage Organoids: Strategy, Progress, and Application,” Bone Research 12, no. 1 (2024): 66, https://doi.org/10.1038/s41413-024-00376-y.

[25]

Y. Kong, Y. Yang, Y. Hou, Y. Wang, W. Li, and Y. Song, “Advance in the Application of Organoids in Bone Diseases,” Frontiers in Cell and Development Biology 12 (2024): 1459891, https://doi.org/10.3389/fcell.2024.1459891.

[26]

B. Abramoff and F. E. Caldera, “Osteoarthritis: Pathology, Diagnosis, and Treatment Options,” Medical Clinics of North America 104, no. 2 (2020): 293-311, https://doi.org/10.1016/j.mcna.2019.10.007.

[27]

D. Chen, J. Shen, W. Zhao, et al., “Osteoarthritis: Toward a Comprehensive Understanding of Pathological Mechanism,” Bone Research 5 (2017): 16044, https://doi.org/10.1038/boneres.2016.44.

[28]

Y. Jiang, “Osteoarthritis Year in Review 2021: Biology,” Osteoarthritis and Cartilage 30, no. 2 (2022): 207-215, https://doi.org/10.1016/j.joca.2021.11.009.

[29]

M. C. Nevitt, Y. Zhang, M. K. Javaid, et al., “High Systemic Bone Mineral Density Increases the Risk of Incident Knee OA and Joint Space Narrowing, but Not Radiographic Progression of Existing Knee OA: The MOST Study,” Annals of the Rheumatic Diseases 69, no. 1 (2010): 163-168, https://doi.org/10.1136/ard.2008.099531.

[30]

D. T. Felson, A. Naimark, J. Anderson, L. Kazis, W. Castelli, and R. F. Meenan, “The Prevalence of Knee Osteoarthritis in the Elderly. The Framingham Osteoarthritis Study,” Arthritis and Rheumatology 30, no. 8 (1987): 914-918, https://doi.org/10.1002/art.1780300811.

[31]

A. M. Valdes and T. D. Spector, “Genetic Epidemiology of Hip and Knee Osteoarthritis,” Nature Reviews Rheumatology 7, no. 1 (2011): 23-32, https://doi.org/10.1038/nrrheum.2010.191.

[32]

A. Tsezou, “Osteoarthritis Year in Review 2014: Genetics and Genomics,” Osteoarthritis and Cartilage 22, no. 12 (2014): 2017-2024, https://doi.org/10.1016/j.joca.2014.07.024.

[33]

S. G. Muthuri, D. F. McWilliams, M. Doherty, and W. Zhang, “History of Knee Injuries and Knee Osteoarthritis: A Meta-Analysis of Observational Studies,” Osteoarthritis and Cartilage 19, no. 11 (2011): 1286-1293, https://doi.org/10.1016/j.joca.2011.07.015.

[34]

J. Conde, M. Scotece, R. Gómez, V. Lopez, J. J. Gómez-Reino, and O. Gualillo, “Adipokines and Osteoarthritis: Novel Molecules Involved in the Pathogenesis and Progression of Disease,” Arthritis 2011 (2011): 203901, https://doi.org/10.1155/2011/203901.

[35]

J. Martel-Pelletier, A. J. Barr, F. M. Cicuttini, et al., “Osteoarthritis,” Nature Reviews. Disease Primers 2 (2016): 16072, https://doi.org/10.1038/nrdp.2016.72.

[36]

D. T. Felson, R. C. Lawrence, P. A. Dieppe, et al., “Osteoarthritis: New Insights. Part 1: The Disease and Its Risk Factors,” Annals of Internal Medicine 133, no. 8 (2000): 635-646, https://doi.org/10.7326/0003-4819-133-8-200010170-00016.

[37]

D. Heinegård and T. Saxne, “The Role of the Cartilage Matrix in Osteoarthritis,” Nature Reviews Rheumatology 7, no. 1 (2011): 50-56, https://doi.org/10.1038/nrrheum.2010.198.

[38]

L. Gossec, J. M. Jordan, S. A. Mazzuca, et al., “Comparative Evaluation of Three Semi-Quantitative Radiographic Grading Techniques for Knee Osteoarthritis in Terms of Validity and Reproducibility in 1759 X-Rays: Report of the OARSI-OMERACT Task Force,” Osteoarthritis and Cartilage 16, no. 7 (2008): 742-748, https://doi.org/10.1016/j.joca.2008.02.021.

[39]

J. H. Kellgren and J. S. Lawrence, “Radiological Assessment of Osteo-Arthrosis,” Annals of the Rheumatic Diseases 16, no. 4 (1957): 494-502, https://doi.org/10.1136/ard.16.4.494.

[40]

X. Houard, M. B. Goldring, and F. Berenbaum, “Homeostatic Mechanisms in Articular Cartilage and Role of Inflammation in Osteoarthritis,” Current Rheumatology Reports 15, no. 11 (2013): 375, https://doi.org/10.1007/s11926-013-0375-6.

[41]

T. M. Quinn, H. J. Häuselmann, N. Shintani, and E. B. Hunziker, “Cell and Matrix Morphology in Articular Cartilage From Adult Human Knee and Ankle Joints Suggests Depth-Associated Adaptations to Biomechanical and Anatomical Roles,” Osteoarthritis and Cartilage 21, no. 12 (2013): 1904-1912.

[42]

S. H. Chang, D. Mori, H. Kobayashi, et al., “Excessive Mechanical Loading Promotes Osteoarthritis Through the Gremlin-1-NF-κB Pathway,” Nature Communications 10, no. 1 (2019): 1442, https://doi.org/10.1038/s41467-019-09491-5.

[43]

L. S. Lohmander, T. Saxne, and D. K. Heinegård, “Release of Cartilage Oligomeric Matrix Protein (COMP) Into Joint Fluid After Knee Injury and in Osteoarthritis,” Annals of the Rheumatic Diseases 53, no. 1 (1994): 8-13, https://doi.org/10.1136/ard.53.1.8.

[44]

M. Wang, E. R. Sampson, H. Jin, et al., “MMP13 is a Critical Target Gene During the Progression of Osteoarthritis,” Arthritis Research & Therapy 15, no. 1 (2013): R5, https://doi.org/10.1186/ar4133.

[45]

A. J. Fosang and F. Beier, “Emerging Frontiers in Cartilage and Chondrocyte Biology,” Best Practice & Research. Clinical Rheumatology 25, no. 6 (2011): 751-766, https://doi.org/10.1016/j.berh.2011.11.010.

[46]

A. Burleigh, A. Chanalaris, M. D. Gardiner, et al., “Joint Immobilization Prevents Murine Osteoarthritis and Reveals the Highly Mechanosensitive Nature of Protease Expression In Vivo,” Arthritis and Rheumatism 64, no. 7 (2012): 2278-2288, https://doi.org/10.1002/art.34420.

[47]

M. B. Goldring, M. Otero, D. A. Plumb, et al., “Roles of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge Upon MMP-13 Regulation in Osteoarthritis,” European Cells & Materials 21 (2011): 202-220, https://doi.org/10.22203/ecm.v021a16.

[48]

L. J. Sandell, “Etiology of Osteoarthritis: Genetics and Synovial Joint Development,” Nature Reviews Rheumatology 8, no. 2 (2012): 77-89, https://doi.org/10.1038/nrrheum.2011.199.

[49]

D. A. Walsh, D. F. McWilliams, M. J. Turley, et al., “Angiogenesis and Nerve Growth Factor at the Osteochondral Junction in Rheumatoid Arthritis and Osteoarthritis,” Rheumatology (Oxford, England) 49, no. 10 (2010): 1852-1861, https://doi.org/10.1093/rheumatology/keq188.

[50]

S. Suri and D. A. Walsh, “Osteochondral Alterations in Osteoarthritis,” Bone 51, no. 2 (2012): 204-211, https://doi.org/10.1016/j.bone.2011.10.010.

[51]

D. B. Burr, “Anatomy and Physiology of the Mineralized Tissues: Role in the Pathogenesis of Osteoarthrosis,” Osteoarthritis and Cartilage 12, no. Suppl A (2004): S20-S30, https://doi.org/10.1016/j.joca.2003.09.016.

[52]

D. B. Burr and M. B. Schaffler, “The Involvement of Subchondral Mineralized Tissues in Osteoarthrosis: Quantitative Microscopic Evidence,” Microscopy Research and Technique 37, no. 4 (1997): 343-357, https://doi.org/10.1002/(sici)1097-0029(19970515)37:4<343::Aid-jemt9>3.0.Co;2-l.

[53]

Y. Hu, X. Chen, S. Wang, Y. Jing, and J. Su, “Subchondral Bone Microenvironment in Osteoarthritis and Pain,” Bone Research 9, no. 1 (2021): 20, https://doi.org/10.1038/s41413-021-00147-z.

[54]

W. Hu, Y. Chen, C. Dou, and S. Dong, “Microenvironment in Subchondral Bone: Predominant Regulator for the Treatment of Osteoarthritis,” Annals of the Rheumatic Diseases 80, no. 4 (2021): 413-422, https://doi.org/10.1136/annrheumdis-2020-218089.

[55]

J. S. Day, M. Ding, J. C. van der Linden, I. Hvid, D. R. Sumner, and H. Weinans, “A Decreased Subchondral Trabecular Bone Tissue Elastic Modulus is Associated With Pre-Arthritic Cartilage Damage,” Journal of Orthopaedic Research 19, no. 5 (2001): 914-918, https://doi.org/10.1016/s0736-0266(01)00012-2.

[56]

D. B. Burr and M. A. Gallant, “Bone Remodelling in Osteoarthritis,” Nature Reviews Rheumatology 8, no. 11 (2012): 665-673, https://doi.org/10.1038/nrrheum.2012.130.

[57]

H. Weinans, M. Siebelt, R. Agricola, S. M. Botter, T. M. Piscaer, and J. H. Waarsing, “Pathophysiology of Peri-Articular Bone Changes in Osteoarthritis,” Bone 51, no. 2 (2012): 190-196, https://doi.org/10.1016/j.bone.2012.02.002.

[58]

J. P. Raynauld, J. Martel-Pelletier, M. J. Berthiaume, et al., “Correlation Between Bone Lesion Changes and Cartilage Volume Loss in Patients With Osteoarthritis of the Knee as Assessed by Quantitative Magnetic Resonance Imaging Over a 24-Month Period,” Annals of the Rheumatic Diseases 67, no. 5 (2008): 683-688, https://doi.org/10.1136/ard.2007.073023.

[59]

M. S. Taljanovic, A. R. Graham, J. B. Benjamin, et al., “Bone Marrow Edema Pattern in Advanced Hip Osteoarthritis: Quantitative Assessment With Magnetic Resonance Imaging and Correlation With Clinical Examination, Radiographic Findings, and Histopathology,” Skeletal Radiology 37, no. 5 (2008): 423-431, https://doi.org/10.1007/s00256-008-0446-3.

[60]

Y. Hu, J. Cui, H. Liu, et al., “Single-Cell RNA-Sequencing Analysis Reveals the Molecular Mechanism of Subchondral Bone Cell Heterogeneity in the Development of Osteoarthritis,” RMD Open 8, no. 2 (2022): e002314, https://doi.org/10.1136/rmdopen-2022-002314.

[61]

H. Song, X. Li, Z. Zhao, et al., “Reversal of Osteoporotic Activity by Endothelial Cell-Secreted Bone Targeting and Biocompatible Exosomes,” Nano Letters 19, no. 5 (2019): 3040-3048, https://doi.org/10.1021/acs.nanolett.9b00287.

[62]

X. Chen, X. Zhi, J. Wang, and J. Su, “RANKL Signaling in Bone Marrow Mesenchymal Stem Cells Negatively Regulates Osteoblastic Bone Formation,” Bone Research 6 (2018): 34, https://doi.org/10.1038/s41413-018-0035-6.

[63]

G. Zhen and X. Cao, “Targeting TGFβ Signaling in Subchondral Bone and Articular Cartilage Homeostasis,” Trends in Pharmacological Sciences 35, no. 5 (2014): 227-236, https://doi.org/10.1016/j.tips.2014.03.005.

[64]

C. Sanchez, L. Pesesse, O. Gabay, et al., “Regulation of Subchondral Bone Osteoblast Metabolism by Cyclic Compression,” Arthritis and Rheumatism 64, no. 4 (2012): 1193-1203, https://doi.org/10.1002/art.33445.

[65]

M. D. Crema, F. W. Roemer, Y. Zhu, et al., “Subchondral Cystlike Lesions Develop Longitudinally in Areas of Bone Marrow Edema-Like Lesions in Patients With or at Risk for Knee Osteoarthritis: Detection With MR Imaging—The MOST Study,” Radiology 256, no. 3 (2010): 855-862, https://doi.org/10.1148/radiol.10091467.

[66]

P. M. van der Kraan and W. B. van den Berg, “Osteophytes: Relevance and Biology,” Osteoarthritis and Cartilage 15, no. 3 (2007): 237-244, https://doi.org/10.1016/j.joca.2006.11.006.

[67]

L. A. Pottenger, F. M. Phillips, and L. F. Draganich, “The Effect of Marginal Osteophytes on Reduction of Varus-Valgus Instability in Osteoarthritic Knees,” Arthritis and Rheumatism 33, no. 6 (1990): 853-858, https://doi.org/10.1002/art.1780330612.

[68]

E. L. Radin and R. M. Rose, “Role of Subchondral Bone in the Initiation and Progression of Cartilage Damage,” Clinical Orthopaedics and Related Research 213 (1986): 34-40.

[69]

J. S. Day, J. C. Van Der Linden, R. A. Bank, et al., “Adaptation of Subchondral Bone in Osteoarthritis,” Biorheology 41, no. 3-4 (2004): 359-368.

[70]

Y. Gu, Y. Hu, H. Zhang, S. Wang, K. Xu, and J. Su, “Single-Cell RNA Sequencing in Osteoarthritis,” Cell Proliferation 56, no. 12 (2023): e13517, https://doi.org/10.1111/cpr.13517.

[71]

E. Sanchez-Lopez, R. Coras, A. Torres, N. E. Lane, and M. Guma, “Synovial Inflammation in Osteoarthritis Progression,” Nature Reviews Rheumatology 18, no. 5 (2022): 258-275, https://doi.org/10.1038/s41584-022-00749-9.

[72]

C. Manferdini, F. Paolella, E. Gabusi, et al., “From Osteoarthritic Synovium to Synovial-Derived Cells Characterization: Synovial Macrophages Are Key Effector Cells,” Arthritis Research & Therapy 18 (2016): 83, https://doi.org/10.1186/s13075-016-0983-4.

[73]

A. Damerau, E. Rosenow, D. Alkhoury, F. Buttgereit, and T. Gaber, “Fibrotic Pathways and Fibroblast-Like Synoviocyte Phenotypes in Osteoarthritis. Review,” Frontiers in Immunology 15 (2024): 1385006, https://doi.org/10.3389/fimmu.2024.1385006.

[74]

Z. Zou, H. Li, K. Yu, et al., “The Potential Role of Synovial Cells in the Progression and Treatment of Osteoarthritis,” Exploration (Beijing) 3, no. 5 (2023): 20220132, https://doi.org/10.1002/exp.20220132.

[75]

J. Wang, X. Chen, R. Li, et al., “Standardization and Consensus in the Development and Application of Bone Organoids,” Theranostics 15, no. 2 (2025): 682-706, https://doi.org/10.7150/thno.105840.

[76]

J. Huang, A. Li, R. Liang, et al., “Future Perspectives: Advances in Bone/Cartilage Organoid Technology and Clinical Potential,” Biomaterials Translational 5, no. 4 (2024): 425-443, https://doi.org/10.12336/biomatertransl.2024.04.007.

[77]

C. Zhang, Y. Jing, J. Wang, et al., “Skeletal Organoids,” Biomaterials Translational 5, no. 4 (2024): 390-410, https://doi.org/10.12336/biomatertransl.2024.04.005.

[78]

L. Foltz, T. Levy, A. Possemato, and M. Grimes, “Craniofacial Cartilage Organoids From Human Embryonic Stem Cells via a Neural Crest Cell Intermediate,” bioRxiv Preprints 2021 (2021), https://doi.org/10.1101/2021.05.31.446459.

[79]

Z. A. Li, J. Shang, S. Xiang, et al., “Articular Tissue-Mimicking Organoids Derived From Mesenchymal Stem Cells and Induced Pluripotent Stem Cells,” Organ 1, no. 2 (2022): 135-148.

[80]

L. Bian, D. Y. Zhai, E. Tous, R. Rai, R. L. Mauck, and J. A. Burdick, “Enhanced MSC Chondrogenesis Following Delivery of TGF-β3 From Alginate Microspheres Within Hyaluronic Acid Hydrogels In Vitro and In Vivo,” Biomaterials 32, no. 27 (2011): 6425-6434, https://doi.org/10.1016/j.biomaterials.2011.05.033.

[81]

G. Nilsson Hall, L. F. Mendes, C. Gklava, L. Geris, F. P. Luyten, and I. Papantoniou, “Developmentally Engineered Callus Organoid Bioassemblies Exhibit Predictive In Vivo Long Bone Healing,” Advanced Science 7, no. 2 (2020): 1902295, https://doi.org/10.1002/advs.201902295.

[82]

X. Xu and J. Song, “Segmental Long Bone Regeneration Guided by Degradable Synthetic Polymeric Scaffolds,” Biomaterials Translational 1, no. 1 (2020): 33-45, https://doi.org/10.3877/cma.j.issn.2096-112X.2020.01.004.

[83]

W. Lin, M. Wang, L. Xu, M. Tortorella, and G. Li, “Cartilage Organoids for Cartilage Development and Cartilage-Associated Disease Modeling,” Frontiers in Cell and Development Biology 11 (2023): 1125405, https://doi.org/10.3389/fcell.2023.1125405.

[84]

J. Zhu, W. Lun, Q. Feng, X. Cao, and Q. Li, “Mesenchymal Stromal Cells Modulate YAP by Verteporfin to Mimic Cartilage Development and Construct Cartilage Organoids Based on Decellularized Matrix Scaffolds,” Journal of Materials Chemistry B 11, no. 31 (2023): 7442-7453, https://doi.org/10.1039/d3tb01114c.

[85]

N. Vapniarsky, L. Moncada, C. Garrity, et al., “Tissue Engineering of Canine Cartilage From Surgically Debrided Osteochondritis Dissecans Fragments,” Annals of Biomedical Engineering 50, no. 1 (2022): 56-77, https://doi.org/10.1007/s10439-021-02897-7.

[86]

Y. Zhang, G. Li, J. Wang, F. Zhou, X. Ren, and J. Su, “Small Joint Organoids 3D Bioprinting: Construction Strategy and Application,” Small 20, no. 8 (2024): e2302506, https://doi.org/10.1002/smll.202302506.

[87]

C. Xie, R. Liang, J. Ye, et al., “High-Efficient Engineering of Osteo-Callus Organoids for Rapid Bone Regeneration Within One Month,” Biomaterials 288 (2022): 121741, https://doi.org/10.1016/j.biomaterials.2022.121741.

[88]

J. Wu, L. Fu, Z. Yan, et al., “Hierarchical Porous ECM Scaffolds Incorporating GDF-5 Fabricated by Cryogenic 3D Printing to Promote Articular Cartilage Regeneration,” Biomaterials Research 27, no. 1 (2023): 7, https://doi.org/10.1186/s40824-023-00349-y.

[89]

R. Li, J. Wang, Q. Lin, et al., “Mechano-Responsive Biomaterials for Bone Organoid Construction,” Advanced Healthcare Materials 14 (2024): e2404345, https://doi.org/10.1002/adhm.202404345.

[90]

N. Kohli, K. T. Wright, R. L. Sammons, L. Jeys, M. Snow, and W. E. Johnson, “An In Vitro Comparison of the Incorporation, Growth, and Chondrogenic Potential of Human Bone Marrow Versus Adipose Tissue Mesenchymal Stem Cells in Clinically Relevant Cell Scaffolds Used for Cartilage Repair,” Cartilage 6, no. 4 (2015): 252-263, https://doi.org/10.1177/1947603515589650.

[91]

Z. Zhou, P. Song, Y. Wu, et al., “Dual-Network DNA-Silk Fibroin Hydrogels With Controllable Surface Rigidity for Regulating Chondrogenic Differentiation,” Materials Horizons 11, no. 6 (2024): 1465-1483, https://doi.org/10.1039/d3mh01581e.

[92]

C. Shen, J. Wang, G. Li, et al., “Boosting Cartilage Repair With Silk Fibroin-DNA Hydrogel-Based Cartilage Organoid Precursor,” Bioactive Materials 35 (2024): 429-444, https://doi.org/10.1016/j.bioactmat.2024.02.016.

[93]

L. Dönges, A. Damle, A. Mainardi, et al., “Engineered Human Osteoarthritic Cartilage Organoids,” Biomaterials 308 (2024): 122549, https://doi.org/10.1016/j.biomaterials.2024.122549.

[94]

M. van Hoolwerff, A. Rodríguez Ruiz, M. Bouma, et al., “High-Impact FN1 Mutation Decreases Chondrogenic Potential and Affects Cartilage Deposition via Decreased Binding to Collagen Type II,” Science Advances 7, no. 45 (2021): eabg8583, https://doi.org/10.1126/sciadv.abg8583.

[95]

J. Huang, L. Zhang, A. Lu, and C. Liang, “Organoids as Innovative Models for Bone and Joint Diseases,” Cells 12, no. 12 (2023): 1590, https://doi.org/10.3390/cells12121590.

[96]

A. Iordachescu, E. A. B. Hughes, S. Joseph, E. J. Hill, L. M. Grover, and A. D. Metcalfe, “Trabecular Bone Organoids: A Micron-Scale ‘Humanised’ Prototype Designed to Study the Effects of Microgravity and Degeneration,” npj Microgravity 7, no. 1 (2021): 17, https://doi.org/10.1038/s41526-021-00146-8.

[97]

A. Akiva, J. Melke, S. Ansari, et al., “An Organoid for Woven Bone,” Advanced Functional Materials 31, no. 17 (2021): 2010524, https://doi.org/10.1002/adfm.202010524.

[98]

S. Frenz-Wiessner, S. D. Fairley, M. Buser, et al., “Generation of Complex Bone Marrow Organoids From Human Induced Pluripotent Stem Cells,” Nature Methods 21, no. 5 (2024): 868-881, https://doi.org/10.1038/s41592-024-02172-2.

[99]

J. Wang, Y. Wu, G. Li, et al., “Engineering Large-Scale Self-Mineralizing Bone Organoids With Bone Matrix-Inspired Hydroxyapatite Hybrid Bioinks,” Advanced Materials 36, no. 30 (2024): e2309875, https://doi.org/10.1002/adma.202309875.

[100]

M. Zhu, H. Zhang, Q. Zhou, et al., “Dynamic GelMA/DNA Dual-Network Hydrogels Promote Woven Bone Organoid Formation and Enhance Bone Regeneration,” Advanced Materials (2025): e2501254, https://doi.org/10.1002/adma.202501254.

[101]

H. Zhang, L. Wang, J. Cui, et al., “Maintaining Hypoxia Environment of Subchondral Bone Alleviates Osteoarthritis Progression,” Science Advances 9, no. 14 (2023): eabo7868, https://doi.org/10.1126/sciadv.abo7868.

[102]

C. R. Scanzello and S. R. Goldring, “The Role of Synovitis in Osteoarthritis Pathogenesis,” Bone 51, no. 2 (2012): 249-257, https://doi.org/10.1016/j.bone.2012.02.012.

[103]

T. Zimmermann, E. Kunisch, R. Pfeiffer, et al., “Isolation and Characterization of Rheumatoid Arthritis Synovial Fibroblasts From Primary Culture—Primary Culture Cells Markedly Differ From Fourth-Passage Cells,” Arthritis Research 3, no. 1 (2001): 72-76, https://doi.org/10.1186/ar142.

[104]

Y. Sun, Y. You, Q. Wu, R. Hu, and K. Dai, “Genetically Inspired Organoids Prevent Joint Degeneration and Alleviate Chondrocyte Senescence via Col11a1-HIF1α-Mediated Glycolysis-OXPHOS Metabolism Shift,” Clinical and Translational Medicine 14, no. 2 (2024): e1574, https://doi.org/10.1002/ctm2.1574.

[105]

C. L. Thompson, T. Hopkins, C. Bevan, H. R. C. Screen, K. T. Wright, and M. M. Knight, “Human Vascularised Synovium-On-a-Chip: A Mechanically Stimulated, Microfluidic Model to Investigate Synovial Inflammation and Monocyte Recruitment,” Biomedical Materials 18, no. 6 (2023): 065013, https://doi.org/10.1088/1748-605X/acf976.

[106]

V. P. Bykerk, “Clinical Implications of Synovial Tissue Phenotypes in Rheumatoid Arthritis. Review,” Frontiers in Medicine 10 (2024): 10, https://doi.org/10.3389/fmed.2023.1093348.

[107]

B. Palmieri, T. Conrozier, M. vadalà, and C. Laurino, “Synoviology: A New Chapter Entitled to Joints Care,” Asian Journal of Medical Sciences 8 (2017): 1-10, https://doi.org/10.3126/ajms.v8i3.16188.

[108]

X. Lin, T. Lin, X. Wang, et al., “Sesamol Serves as a p53 Stabilizer to Relieve Rheumatoid Arthritis Progression and Inhibits the Growth of Synovial Organoids,” Phytomedicine 121 (2023): 155109, https://doi.org/10.1016/j.phymed.2023.155109.

[109]

U. Kindler, H. Zaehres, and L. Mavrommatis, “Generation of Skeletal Muscle Organoids From Human Pluripotent Stem Cells,” Bio-Protocol 14, no. 9 (2024): e4984, https://doi.org/10.21769/BioProtoc.4984.

[110]

M. K. Shin, J. S. Bang, J. E. Lee, et al., “Generation of Skeletal Muscle Organoids From Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration,” International Journal of Molecular Sciences 23, no. 9 (2022): 5108, https://doi.org/10.3390/ijms23095108.

[111]

A. Otto, C. Schmidt, G. Luke, et al., “Canonical Wnt Signalling Induces Satellite-Cell Proliferation During Adult Skeletal Muscle Regeneration,” Journal of Cell Science 121, no. Pt 17 (2008): 2939-2950, https://doi.org/10.1242/jcs.026534.

[112]

T. Osaki, S. G. M. Uzel, and R. D. Kamm, “Microphysiological 3D Model of Amyotrophic Lateral Sclerosis (ALS) From Human iPS-Derived Muscle Cells and Optogenetic Motor Neurons,” Science Advances 4, no. 10 (2018): eaat5847, https://doi.org/10.1126/sciadv.aat5847.

[113]

C. Bombieri, A. Corsi, E. Trabetti, et al., “Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids,” International Journal of Molecular Sciences 25, no. 2 (2024): 1014, https://doi.org/10.3390/ijms25021014.

[114]

H. Vandenburgh, M. Del Tatto, J. Shansky, et al., “Tissue-Engineered Skeletal Muscle Organoids for Reversible Gene Therapy,” Human Gene Therapy 7, no. 17 (1996): 2195-2200, https://doi.org/10.1089/hum.1996.7.17-2195.

[115]

Y. J. No, M. Castilho, Y. Ramaswamy, and H. Zreiqat, “Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration,” Advanced Materials 32, no. 18 (2020): e1904511, https://doi.org/10.1002/adma.201904511.

[116]

M. S. Hsieh, M. Y. Chen, Y. S. Chang, et al., “Targeting the Neuropilin-1 Receptor With Ovatodiolide and Progress in Using Periodontal Ligament Organoids for COVID-19 Research and Therapy,” Life Sciences 351 (2024): 122764, https://doi.org/10.1016/j.lfs.2024.122764.

[117]

Z. Yan, H. Yin, C. Brochhausen, C. G. Pfeifer, V. Alt, and D. Docheva, “Aged Tendon Stem/Progenitor Cells Are Less Competent to Form 3D Tendon Organoids due to Cell Autonomous and Matrix Production Deficits,” Frontiers in Bioengineering and Biotechnology 8 (2020): 406, https://doi.org/10.3389/fbioe.2020.00406.

[118]

I. Donderwinkel, R. S. Tuan, N. R. Cameron, and J. E. Frith, “Tendon Tissue Engineering: Current Progress Towards an Optimized Tenogenic Differentiation Protocol for Human Stem Cells,” Acta Biomaterialia 145 (2022): 25-42, https://doi.org/10.1016/j.actbio.2022.04.028.

[119]

Y. Wang, Y. Chen, and Y. Wei, “Osteoarthritis Animal Models for Biomaterial-Assisted Osteochondral Regeneration,” Biomaterials Translational 3, no. 4 (2022): 264-279, https://doi.org/10.12336/biomatertransl.2022.04.006.

[120]

J. Hao, A. Ma, L. Wang, et al., “General Requirements for Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12926, https://doi.org/10.1111/cpr.12926.

[121]

M. Takasato, P. X. Er, H. S. Chiu, and M. H. Little, “Generation of Kidney Organoids From Human Pluripotent Stem Cells,” Nature Protocols 11, no. 9 (2016): 1681-1692, https://doi.org/10.1038/nprot.2016.098.

[122]

X. Chen, J. Huang, J. Wu, et al., “Human Mesenchymal Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13141, https://doi.org/10.1111/cpr.13141.

[123]

P. W. Andrews, “Human Pluripotent Stem Cells: Tools for Regenerative Medicine,” Biomaterials Translational 2, no. 4 (2021): 294-300, https://doi.org/10.12336/biomatertransl.2021.04.004.

[124]

J. Hao, J. Cao, L. Wang, et al., “Requirements for Human Embryonic Stem Cells,” Cell Proliferation 53, no. 12 (2020): e12925, https://doi.org/10.1111/cpr.12925.

[125]

J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., “Embryonic Stem Cell Lines Derived From Human Blastocysts,” Science 282, no. 5391 (1998): 1145-1147, https://doi.org/10.1126/science.282.5391.1145.

[126]

D. Ávila-González, M. Gidi-Grenat, G. García-López, et al., “Pluripotent Stem Cells as a Model for Human Embryogenesis,” Cells 12, no. 8 (2023): 1192, https://doi.org/10.3390/cells12081192.

[127]

M. A. Lancaster and J. A. Knoblich, “Generation of Cerebral Organoids From Human Pluripotent Stem Cells,” Nature Protocols 9, no. 10 (2014): 2329-2340, https://doi.org/10.1038/nprot.2014.158.

[128]

F. Wu, D. Wu, Y. Ren, et al., “Generation of Hepatobiliary Organoids From Human Induced Pluripotent Stem Cells,” Journal of Hepatology 70, no. 6 (2019): 1145-1158, https://doi.org/10.1016/j.jhep.2018.12.028.

[129]

L. Drakhlis, S. B. Devadas, and R. Zweigerdt, “Generation of Heart-Forming Organoids From Human Pluripotent Stem Cells,” Nature Protocols 16, no. 12 (2021): 5652-5672, https://doi.org/10.1038/s41596-021-00629-8.

[130]

A. Y. Ibrahim, M. Q. Mehdi, A. O. Abbas, A. Alashkar, and K. H. Haider, “Induced Pluripotent Stem Cells: Next Generation Cells for Tissue Regeneration,” Journal of Biomedical Science and Engineering 9, no. 4 (2016): 226-244, https://doi.org/10.4236/jbise.2016.94017.

[131]

K. Takahashi and S. Yamanaka, “Induction of Pluripotent Stem Cells From Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors,” Cell 126, no. 4 (2006): 663-676, https://doi.org/10.1016/j.cell.2006.07.024.

[132]

Y. Zhang, J. Wei, J. Cao, et al., “Requirements for Human-Induced Pluripotent Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13182, https://doi.org/10.1111/cpr.13182.

[133]

S. Moradi, H. Mahdizadeh, T. Šarić, et al., “Research and Therapy With Induced Pluripotent Stem Cells (iPSCs): Social, Legal, and Ethical Considerations,” Stem Cell Research & Therapy 10, no. 1 (2019): 341, https://doi.org/10.1186/s13287-019-1455-y.

[134]

R. A. Wimmer, A. Leopoldi, M. Aichinger, D. Kerjaschki, and J. M. Penninger, “Generation of Blood Vessel Organoids From Human Pluripotent Stem Cells,” Nature Protocols 14, no. 11 (2019): 3082-3100, https://doi.org/10.1038/s41596-019-0213-z.

[135]

A. J. Miller, B. R. Dye, D. Ferrer-Torres, et al., “Generation of Lung Organoids From Human Pluripotent Stem Cells In Vitro,” Nature Protocols 14, no. 2 (2019): 518-540, https://doi.org/10.1038/s41596-018-0104-8.

[136]

K. W. McCracken, J. C. Howell, J. M. Wells, and J. R. Spence, “Generating Human Intestinal Tissue From Pluripotent Stem Cells In Vitro,” Nature Protocols 6, no. 12 (2011): 1920-1928, https://doi.org/10.1038/nprot.2011.410.

[137]

S. R. Lamandé, E. S. Ng, T. L. Cameron, et al., “Modeling Human Skeletal Development Using Human Pluripotent Stem Cells,” Proceedings of the National Academy of Sciences of the United States of America 120, no. 19 (2023): e2211510120, https://doi.org/10.1073/pnas.2211510120.

[138]

S. K. O'Connor, D. B. Katz, S. J. Oswald, L. Groneck, and F. Guilak, “Formation of Osteochondral Organoids From Murine Induced Pluripotent Stem Cells,” Tissue Engineering. Part A 27, no. 15-16 (2021): 1099-1109, https://doi.org/10.1089/ten.TEA.2020.0273.

[139]

G. N. Hall, W. L. Tam, K. S. Andrikopoulos, et al., “Patterned, Organoid-Based Cartilaginous Implants Exhibit Zone Specific Functionality Forming Osteochondral-Like Tissues In Vivo,” Biomaterials 273 (2021): 120820, https://doi.org/10.1016/j.biomaterials.2021.120820.

[140]

A. O. Khan, A. Rodriguez-Romera, J. S. Reyat, et al., “Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies,” Cancer Discovery 13, no. 2 (2023): 364-385, https://doi.org/10.1158/2159-8290.Cd-22-0199.

[141]

Y. Nam, Y. A. Rim, S. M. Jung, and J. H. Ju, “Cord Blood Cell-Derived iPSCs as a New Candidate for Chondrogenic Differentiation and Cartilage Regeneration,” Stem Cell Research & Therapy 8, no. 1 (2017): 16, https://doi.org/10.1186/s13287-017-0477-6.

[142]

Y. Zhu, X. Wu, Y. Liang, et al., “Repair of Cartilage Defects in Osteoarthritis Rats With Induced Pluripotent Stem Cell Derived Chondrocytes,” BMC Biotechnology 16, no. 1 (2016): 78, https://doi.org/10.1186/s12896-016-0306-5.

[143]

I. Grafe, S. Alexander, J. R. Peterson, et al., “TGF-β Family Signaling in Mesenchymal Differentiation,” Cold Spring Harbor Perspectives in Biology 10, no. 5 (2018), https://doi.org/10.1101/cshperspect.a022202.

[144]

Z. Zhao, J. Liu, M. D. Weir, et al., “Periodontal Ligament Stem Cell-Based Bioactive Constructs for Bone Tissue Engineering. Review,” Frontiers in Bioengineering and Biotechnology 10 (2022): 10, https://doi.org/10.3389/fbioe.2022.1071472.

[145]

M. Kulus, R. Sibiak, K. Stefańska, et al., “Mesenchymal Stem/Stromal Cells Derived From Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials,” Cells 10, no. 12 (2021): 3278, https://doi.org/10.3390/cells10123278.

[146]

M. Fakhry, E. Hamade, B. Badran, R. Buchet, and D. Magne, “Molecular Mechanisms of Mesenchymal Stem Cell Differentiation Towards Osteoblasts,” World Journal of Stem Cells 5, no. 4 (2013): 136-148, https://doi.org/10.4252/wjsc.v5.i4.136.

[147]

S. Bhumiratana and G. Vunjak-Novakovic, “Engineering Physiologically Stiff and Stratified Human Cartilage by Fusing Condensed Mesenchymal Stem Cells,” Methods 84 (2015): 109-114, https://doi.org/10.1016/j.ymeth.2015.03.016.

[148]

O. M. Ismail, U. N. Said, and O. M. El-Omar, “Adult Stem Cells for Cartilage Regeneration,” Cureus 14, no. 12 (2022): e32280, https://doi.org/10.7759/cureus.32280.

[149]

A. Oryan, A. Kamali, A. Moshiri, and E. M. Baghaban, “Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What is the Evidence?,” Cells, Tissues, Organs 204, no. 2 (2017): 59-83, https://doi.org/10.1159/000469704.

[150]

Q. Vallmajo-Martin, N. Broguiere, C. Millan, M. Zenobi-Wong, and M. Ehrbar, “PEG/HA Hybrid Hydrogels for Biologically and Mechanically Tailorable Bone Marrow Organoids,” Advanced Functional Materials 30, no. 48 (2020): 1910282, https://doi.org/10.1002/adfm.201910282.

[151]

L. Bacakova, J. Zarubova, M. Travnickova, et al., “Stem Cells: Their Source, Potency and Use in Regenerative Therapies With Focus on Adipose-Derived Stem Cells - A Review,” Biotechnology Advances 36, no. 4 (2018): 1111-1126, https://doi.org/10.1016/j.biotechadv.2018.03.011.

[152]

A. I. Caplan, “Mesenchymal Stem Cells: The Past, the Present, the Future,” Cartilage 1, no. 1 (2010): 6-9, https://doi.org/10.1177/1947603509354992.

[153]

F. Liu, J. Xiao, L. H. Chen, et al., “Self-Assembly of Differentiated Dental Pulp Stem Cells Facilitates Spheroid Human Dental Organoid Formation and Prevascularization,” World Journal of Stem Cells 16, no. 3 (2024): 287-304, https://doi.org/10.4252/wjsc.v16.i3.287.

[154]

A. C. Wilkinson and H. Nakauchi, “Stabilizing Hematopoietic Stem Cells In Vitro,” Current Opinion in Genetics & Development 64 (2020): 1-5, https://doi.org/10.1016/j.gde.2020.05.035.

[155]

X. Nan, B. Zhang, J. Hao, et al., “Requirements for Human Haematopoietic Stem/Progenitor Cells,” Cell Proliferation 55, no. 4 (2022): e13152, https://doi.org/10.1111/cpr.13152.

[156]

A. C. Wilkinson and S. Yamazaki, “The Hematopoietic Stem Cell Diet,” International Journal of Hematology 107, no. 6 (2018): 634-641, https://doi.org/10.1007/s12185-018-2451-1.

[157]

E. W. Martin, J. Krietsch, R. E. Reggiardo, R. Sousae, D. H. Kim, and E. C. Forsberg, “Chromatin Accessibility Maps Provide Evidence of Multilineage Gene Priming in Hematopoietic Stem Cells,” Epigenetics & Chromatin 14, no. 1 (2021): 2, https://doi.org/10.1186/s13072-020-00377-1.

[158]

L. Lange, M. Morgan, and A. Schambach, “The Hemogenic Endothelium: A Critical Source for the Generation of PSC-Derived Hematopoietic Stem and Progenitor Cells,” Cellular and Molecular Life Sciences 78, no. 9 (2021): 4143-4160, https://doi.org/10.1007/s00018-021-03777-y.

[159]

S. J. Morrison and D. T. Scadden, “The Bone Marrow Niche for Haematopoietic Stem Cells,” Nature 505, no. 7483 (2014): 327-334, https://doi.org/10.1038/nature12984.

[160]

A. Y. Khakoo and T. Finkel, “Endothelial Progenitor Cells,” Annual Review of Medicine 56 (2005): 79-101, https://doi.org/10.1146/annurev.med.56.090203.104149.

[161]

C. L. Barber and M. L. Iruela-Arispe, “The Ever-Elusive Endothelial Progenitor Cell: Identities, Functions and Clinical Implications,” Pediatric Research 59, no. 4 Pt 2 (2006): 26r-32r, https://doi.org/10.1203/01.pdr.0000203553.46471.18.

[162]

A. Shafiee, J. Patel, D. W. Hutmacher, N. M. Fisk, and K. Khosrotehrani, “Meso-Endothelial Bipotent Progenitors From Human Placenta Display Distinct Molecular and Cellular Identity,” Stem Cell Reports 10, no. 3 (2018): 890-904, https://doi.org/10.1016/j.stemcr.2018.01.011.

[163]

G. Jacob, K. Shimomura, and N. Nakamura, “Osteochondral Injury, Management and Tissue Engineering Approaches. Review,” Frontiers in Cell and Developmental Biology 8 (2020): 580868, https://doi.org/10.3389/fcell.2020.580868.

[164]

D. P. Bhattarai, L. E. Aguilar, C. H. Park, and C. S. Kim, “A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering,” Membranes (Basel) 8, no. 3 (2018): 62, https://doi.org/10.3390/membranes8030062.

[165]

M. Tanaka, M. Izumiya, H. Haniu, et al., “Current Methods in the Study of Nanomaterials for Bone Regeneration,” Nanomaterials (Basel) 12, no. 7 (2022): 1195, https://doi.org/10.3390/nano12071195.

[166]

W. Chen, Q. Wang, H. Tao, et al., “Subchondral Osteoclasts and Osteoarthritis: New Insights and Potential Therapeutic Avenues,” Acta Biochimica et Biophysica Sinica 56, no. 4 (2024): 499-512, https://doi.org/10.3724/abbs.2024017.

[167]

J. Fuller, K. S. Lefferts, P. Shah, and J. A. Cottrell, “Methodology and Characterization of a 3D Bone Organoid Model Derived From Murine Cells,” International Journal of Molecular Sciences 25, no. 8 (2024): 4225, https://doi.org/10.3390/ijms25084225.

[168]

L. F. Bonewald, “The Amazing Osteocyte,” Journal of Bone and Mineral Research 26, no. 2 (2011): 229-238, https://doi.org/10.1002/jbmr.320.

[169]

J. Delgado-Calle and J. A. Riancho, “The Role of DNA Methylation in Common Skeletal Disorders,” Biology (Basel) 1, no. 3 (2012): 698-713, https://doi.org/10.3390/biology1030698.

[170]

X. Zhou, K. von der Mark, S. Henry, W. Norton, H. Adams, and B. de Crombrugghe, “Chondrocytes Transdifferentiate Into Osteoblasts in Endochondral Bone During Development, Postnatal Growth and Fracture Healing in Mice,” PLoS Genetics 10, no. 12 (2014): e1004820, https://doi.org/10.1371/journal.pgen.1004820.

[171]

M. T. Rodrigues, A. I. Gonçalves, P. S. Babo, M. Gomez-Florit, R. L. Reis, and M. E. Gomes, “Chapter 3 - Bioinspired Materials and Tissue Engineering Approaches Applied to the Regeneration of Musculoskeletal Tissues,” in Engineering Strategies for Regenerative Medicine, ed. T. G. Fernandes, M. M. Diogo, and J. M. S. Cabral (Academic Press, 2020), 73-105.

[172]

D. H. Rosenzweig, T. M. Quinn, and L. Haglund, “Low-Frequency High-Magnitude Mechanical Strain of Articular Chondrocytes Activates p38 MAPK and Induces Phenotypic Changes Associated With Osteoarthritis and Pain,” International Journal of Molecular Sciences 15, no. 8 (2014): 14427-14441, https://doi.org/10.3390/ijms150814427.

[173]

M. Cutolo, R. Campitiello, E. Gotelli, and S. Soldano, “The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis,” Frontiers in Immunology 13 (2022): 867260, https://doi.org/10.3389/fimmu.2022.867260.

[174]

K. S. Nandakumar, Q. Fang, I. Wingbro Ågren, and Z. F. Bejmo, “Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis,” International Journal of Molecular Sciences 24, no. 21 (2023): 15883, https://doi.org/10.3390/ijms242115883.

[175]

S. Tardito, G. Martinelli, S. Soldano, et al., “Macrophage M1/M2 Polarization and Rheumatoid Arthritis: A Systematic Review,” Autoimmunity Reviews 18, no. 11 (2019): 102397, https://doi.org/10.1016/j.autrev.2019.102397.

[176]

J. Nicolas, S. Magli, L. Rabbachin, S. Sampaolesi, F. Nicotra, and L. Russo, “3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate,” Biomacromolecules 21, no. 6 (2020): 1968-1994, https://doi.org/10.1021/acs.biomac.0c00045.

[177]

J. Zhu and R. E. Marchant, “Design Properties of Hydrogel Tissue-Engineering Scaffolds,” Expert Review of Medical Devices 8, no. 5 (2011): 607-626, https://doi.org/10.1586/erd.11.27.

[178]

C. Xue, L. Chen, N. Wang, et al., “Stimuli-Responsive Hydrogels for Bone Tissue Engineering,” Biomaterials Translational 5, no. 3 (2024): 257-273, https://doi.org/10.12336/biomatertransl.2024.03.004.

[179]

S. Liu, J. M. Yu, Y. C. Gan, et al., “Biomimetic Natural Biomaterials for Tissue Engineering and Regenerative Medicine: New Biosynthesis Methods, Recent Advances, and Emerging Applications,” Military Medical Research 10, no. 1 (2023): 16, https://doi.org/10.1186/s40779-023-00448-w.

[180]

Z. Yang, B. Wang, W. Liu, et al., “In Situ Self-Assembled Organoid for Osteochondral Tissue Regeneration With Dual Functional Units,” Bioactive Materials 27 (2023): 200-215, https://doi.org/10.1016/j.bioactmat.2023.04.002.

[181]

C. H. Lin, J. R. Srioudom, W. Sun, et al., “The Use of Hydrogel Microspheres as Cell and Drug Delivery Carriers for Bone, Cartilage, and Soft Tissue Regeneration,” Biomaterials Translational 5, no. 3 (2024): 236-256, https://doi.org/10.12336/biomatertransl.2024.03.003.

[182]

P. Zhang, Q. Qin, X. Cao, et al., “Hydrogel Microspheres for Bone Regeneration Through Regulation of the Regenerative Microenvironment,” Biomaterials Translational 5, no. 3 (2024): 205-235, https://doi.org/10.12336/biomatertransl.2024.03.002.

[183]

C. Shen, Z. Zhou, R. Li, et al., “Silk Fibroin-Based Hydrogels for Cartilage Organoids in Osteoarthritis Treatment. Review,” Theranostics 15, no. 2 (2025): 560-584, https://doi.org/10.7150/thno.103491.

[184]

A. J. Sutherland, G. L. Converse, R. A. Hopkins, and M. S. Detamore, “The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration,” Advanced Healthcare Materials 4, no. 1 (2015): 29-39, https://doi.org/10.1002/adhm.201400165.

[185]

J. Ding, C. Wei, Y. Xu, W. Dai, and R. Chen, “3D Printing of Ceffe-Infused Scaffolds for Tailored Nipple-Like Cartilage Development,” BMC Biotechnology 24, no. 1 (2024): 25, https://doi.org/10.1186/s12896-024-00848-3.

[186]

A. Kamatar, G. Gunay, and H. Acar, “Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids,” Polymers (Basel) 12, no. 11 (2020): 2506, https://doi.org/10.3390/polym12112506.

[187]

T. Fu, P. Liang, J. Song, et al., “Matrigel Scaffolding Enhances BMP9-Induced Bone Formation in Dental Follicle Stem/Precursor Cells,” International Journal of Medical Sciences 16, no. 4 (2019): 567-575, https://doi.org/10.7150/ijms.30801.

[188]

A. Passaniti, H. K. Kleinman, and G. R. Martin, “Matrigel: History/Background, Uses, and Future Applications,” Journal of Cell Communication and Signaling 16, no. 4 (2022): 621-626, https://doi.org/10.1007/s12079-021-00643-1.

[189]

Y. H. Kim, J. I. Dawson, R. O. C. Oreffo, et al., “Gelatin Methacryloyl Hydrogels for Musculoskeletal Tissue Regeneration,” Bioengineering (Basel) 9, no. 7 (2022): 332, https://doi.org/10.3390/bioengineering9070332.

[190]

S. Li, Q. Yu, H. Li, M. Chen, Y. Jin, and D. Liu, “Self-Assembled Peptide Hydrogels in Regenerative Medicine,” Gels 9, no. 8 (2023): 653, https://doi.org/10.3390/gels9080653.

[191]

T. Gai, H. Zhang, Y. Hu, et al., “Sequential Construction of Vascularized and Mineralized Bone Organoids Using Engineered ECM-DNA-CPO-Based Bionic Matrix for Efficient Bone Regeneration,” Bioactive Materials 49 (2025): 362-377, https://doi.org/10.1016/j.bioactmat.2025.02.033.

[192]

Z. Liu, W. Xin, J. Ji, et al., “3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Review,” Frontiers in Bioengineering and Biotechnology 10 (2022): 10, https://doi.org/10.3389/fbioe.2022.845342.

[193]

B. Long, L. Mengmeng, and S. Jiacan, “432A Perspective on Light-Based Bioprinting of DNA Hydrogels for Advanced Bone Regeneration: Implication for Bone Organoids,” International Journal of Bioprinting 9, no. 2 (2023): 688, https://doi.org/10.18063/ijb.688.

[194]

Y. J. Lee, K. C. Kim, J. M. Lee, J. M. Lim, and S. T. Lee, “Development of Polyethylene Glycol-Based Hydrogels Optimized for In Vitro 3D Culture of HepG2 Hepatocarcinoma Cells,” Anticancer Research 43, no. 10 (2023): 4373-4377, https://doi.org/10.21873/anticanres.16633.

[195]

G. M. Williams, E. F. Chan, M. M. Temple-Wong, et al., “Shape, Loading, and Motion in the Bioengineering Design, Fabrication, and Testing of Personalized Synovial Joints,” Journal of Biomechanics 43, no. 1 (2010): 156-165, https://doi.org/10.1016/j.jbiomech.2009.09.021.

[196]

P. Li, L. Fu, Z. Liao, et al., “Chitosan Hydrogel/3D-Printed Poly(ε-Caprolactone) Hybrid Scaffold Containing Synovial Mesenchymal Stem Cells for Cartilage Regeneration Based on Tetrahedral Framework Nucleic Acid Recruitment,” Biomaterials 278 (2021): 121131, https://doi.org/10.1016/j.biomaterials.2021.121131.

[197]

Y. Sun, Y. You, Q. Wu, R. Hu, and K. Dai, “Senescence-Targeted MicroRNA/Organoid Composite Hydrogel Repair Cartilage Defect and Prevention Joint Degeneration via Improved Chondrocyte Homeostasis,” Bioactive Materials 39 (2024): 427-442, https://doi.org/10.1016/j.bioactmat.2024.05.036.

[198]

M. Rothbauer, G. Höll, C. Eilenberger, et al., “Monitoring Tissue-Level Remodelling During Inflammatory Arthritis Using a Three-Dimensional Synovium-On-a-Chip With Non-Invasive Light Scattering Biosensing,” Lab on a Chip 20, no. 8 (2020): 1461-1471, https://doi.org/10.1039/c9lc01097a.

[199]

X. Wei, J. Qiu, R. Lai, et al., “A Human Organoid Drug Screen Identifies α2-Adrenergic Receptor Signaling as a Therapeutic Target for Cartilage Regeneration,” Cell Stem Cell 31, no. 12 (2024): 1813-1830, https://doi.org/10.1016/j.stem.2024.09.001.

[200]

D. Petta, D. D'Arrigo, S. Salehi, et al., “A Personalized Osteoarthritic Joint-On-a-Chip as a Screening Platform for Biological Treatments,” Materials Today Bio 26 (2024): 101072, https://doi.org/10.1016/j.mtbio.2024.101072.

[201]

R. D. Sandler and L. Dunkley, “Osteoarthritis and the Inflammatory Arthritides,” Surgery (Oxford) 36, no. 1 (2018): 21-26, https://doi.org/10.1016/j.mpsur.2017.10.004.

[202]

Y. Wei, K. Wang, S. Luo, et al., “Programmable DNA Hydrogels as Artificial Extracellular Matrix,” Small 18, no. 36 (2022): e2107640, https://doi.org/10.1002/smll.202107640.

[203]

S. J. Bryant and F. J. Vernerey, “Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering,” Advanced Healthcare Materials 7, no. 1 (2018): 1700605, https://doi.org/10.1002/adhm.201700605.

[204]

H. Tsuchiya, M. Ota, H. Takahashi, et al., “Epigenetic Targets of Janus Kinase Inhibitors Are Linked to Genetic Risks of Rheumatoid Arthritis,” Inflammation and Regeneration 44, no. 1 (2024): 29, https://doi.org/10.1186/s41232-024-00337-2.

[205]

E. Gracey, A. Burssens, I. Cambré, et al., “Tendon and Ligament Mechanical Loading in the Pathogenesis of Inflammatory Arthritis,” Nature Reviews Rheumatology 16, no. 4 (2020): 193-207.

[206]

J. A. Buckwalter, D. D. Anderson, T. D. Brown, Y. Tochigi, and J. A. Martin, “The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis: Implications for Treatment of Joint Injuries,” Cartilage 4, no. 4 (2013): 286-294.

[207]

S. Du, C. Liang, Y. Sun, B. Ma, W. Gao, and W. Geng, “The Attenuating Effect of Low-Intensity Pulsed Ultrasound on Hypoxia-Induced Rat Chondrocyte Damage in TMJ Osteoarthritis Based on TMT Labeling Quantitative Proteomic Analysis,” Frontiers in Pharmacology 12 (2021): 752734, https://doi.org/10.3389/fphar.2021.752734.

[208]

T. D. Spector and A. J. MacGregor, “Risk Factors for Osteoarthritis: Genetics,” Osteoarthritis and Cartilage 12 (2004): 39-44, https://doi.org/10.1016/j.joca.2003.09.005.

[209]

F. Ponchel, A. Burska, E. Hensor, et al., “Changes in Peripheral Blood Immune Cell Composition in Osteoarthritis,” Osteoarthritis and Cartilage 23, no. 11 (2015): 1870-1878.

[210]

L. Zhao, J. Huang, Y. Fan, et al., “Exploration of CRISPR/Cas9-Based Gene Editing as Therapy for Osteoarthritis,” Annals of the Rheumatic Diseases 78, no. 5 (2019): 676-682, https://doi.org/10.1136/annrheumdis-2018-214724.

[211]

Q. Ding, S. N. Regan, Y. Xia, L. A. Oostrom, C. A. Cowan, and K. Musunuru, “Enhanced Efficiency of Human Pluripotent Stem Cell Genome Editing Through Replacing TALENs With CRISPRs,” Cell Stem Cell 12, no. 4 (2013): 393-394, https://doi.org/10.1016/j.stem.2013.03.006.

[212]

W. Ma, H. Lu, Y. Xiao, and C. Wu, “Advancing Organoid Development With 3D Bioprinting,” OR 1, no. 1 (2025), https://doi.org/10.36922/or025040004.

[213]

S. Shen, M. Chen, W. Guo, et al., “Three Dimensional Printing-Based Strategies for Functional Cartilage Regeneration,” Tissue Engineering. Part B, Reviews 25, no. 3 (2019): 187-201, https://doi.org/10.1089/ten.TEB.2018.0248.

[214]

X. Zhao, N. Li, Z. Zhang, et al., “Beyond Hype: Unveiling the Real Challenges in Clinical Translation of 3D Printed Bone Scaffolds and the Fresh Prospects of Bioprinted Organoids,” Journal of Nanobiotechnology 22, no. 1 (2024): 500, https://doi.org/10.1186/s12951-024-02759-z.

[215]

H. W. Kang, S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala, “A 3D Bioprinting System to Produce Human-Scale Tissue Constructs With Structural Integrity,” Nature Biotechnology 34, no. 3 (2016): 312-319, https://doi.org/10.1038/nbt.3413.

[216]

D. Kilian, T. Ahlfeld, A. R. Akkineni, A. Bernhardt, M. Gelinsky, and A. Lode, “3D Bioprinting of Osteochondral Tissue Substitutes - In Vitro-Chondrogenesis in Multi-Layered Mineralized Constructs,” Scientific Reports 10, no. 1 (2020): 8277, https://doi.org/10.1038/s41598-020-65050-9.

[217]

S. Abbasalizadeh, S. Babaee, R. Kowsari-Esfahan, et al., “Continuous Production of Highly Functional Vascularized Hepatobiliary Organoids From Human Pluripotent Stem Cells Using a Scalable Microfluidic Platform,” Advanced Functional Materials 33, no. 49 (2023): 2210233, https://doi.org/10.1002/adfm.202210233.

[218]

F. Edalat, I. Sheu, S. Manoucheri, and A. Khademhosseini, “Material Strategies for Creating Artificial Cell-Instructive Niches,” Current Opinion in Biotechnology 23, no. 5 (2012): 820-825, https://doi.org/10.1016/j.copbio.2012.05.007.

[219]

A. R. Perestrelo, A. C. Águas, A. Rainer, and G. Forte, “Microfluidic Organ/Body-On-a-Chip Devices at the Convergence of Biology and Microengineering,” Sensors (Basel) 15, no. 12 (2015): 31142-31170, https://doi.org/10.3390/s151229848.

[220]

Y. S. Zhang, J. Aleman, S. R. Shin, et al., “Multisensor-Integrated Organs-on-Chips Platform for Automated and Continual In Situ Monitoring of Organoid Behaviors,” National Academy of Sciences of the United States of America 114, no. 12 (2017): E2293-E2302, https://doi.org/10.1073/pnas.1612906114.

[221]

W. L. Tam, L. Freitas Mendes, X. Chen, et al., “Human Pluripotent Stem Cell-Derived Cartilaginous Organoids Promote Scaffold-Free Healing of Critical Size Long Bone Defects,” Stem Cell Research & Therapy 12, no. 1 (2021): 513, https://doi.org/10.1186/s13287-021-02580-7.

[222]

J. F. Stoltz, D. Bensoussan, N. De Isla, et al., “Stem Cells and Vascular Regenerative Medicine: A Mini Review,” Clinical Hemorheology and Microcirculation 64, no. 4 (2016): 613-633, https://doi.org/10.3233/ch-168036.

[223]

P. Chen, S. Güven, O. B. Usta, M. L. Yarmush, and U. Demirci, “Biotunable Acoustic Node Assembly of Organoids,” Advanced Healthcare Materials 4, no. 13 (2015): 1937-1943, https://doi.org/10.1002/adhm.201500279.

[224]

Z. Zhang, Y. Liu, X. Tao, et al., “Engineering Cell Microenvironment Using Nanopattern-Derived Multicellular Spheroids and Photo-Crosslinked Gelatin/Hyaluronan Hydrogels,” Polymers (Basel) 15, no. 8 (2023): 1925, https://doi.org/10.3390/polym15081925.

[225]

C. Lu, C. Gao, H. Qiao, et al., “Spheroid Construction Strategies and Application in 3D Bioprinting,” Bio-Design and Manufacturing 7, no. 5 (2024): 800-818, https://doi.org/10.1007/s42242-024-00273-7.

[226]

C. Jorgensen and M. Simon, “In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies,” Cells 10, no. 3 (2021): 596, https://doi.org/10.3390/cells10030596.

[227]

M. Bach Cuadra, J. Favre, and P. Omoumi, “Quantification in Musculoskeletal Imaging Using Computational Analysis and Machine Learning: Segmentation and Radiomics,” Seminars in Musculoskeletal Radiology 24, no. 1 (2020): 50-64, https://doi.org/10.1055/s-0039-3400268.

[228]

E. Bernotiene, E. Bagdonas, G. Kirdaite, et al., “Emerging Technologies and Platforms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Research and Therapy. Review,” Frontiers in Medicine 7 (2020): 572977, https://doi.org/10.3389/fmed.2020.572977.

[229]

T. M. Griffin and F. Guilak, “The Role of Mechanical Loading in the Onset and Progression of Osteoarthritis,” Exercise and Sport Sciences Reviews 33, no. 4 (2005): 195-200.

[230]

N. Rosa, R. Simoes, F. D. Magalhães, and A. T. Marques, “From Mechanical Stimulus to Bone Formation: A Review,” Medical Engineering & Physics 37, no. 8 (2015): 719-728, https://doi.org/10.1016/j.medengphy.2015.05.015.

[231]

P. Hamet and J. Tremblay, “Artificial Intelligence in Medicine,” Metabolism 69 (2017): S36-S40, https://doi.org/10.1016/j.metabol.2017.01.011.

[232]

L. Bai, Y. Wu, G. Li, W. Zhang, H. Zhang, and J. Su, “AI-Enabled Organoids: Construction, Analysis, and Application,” Bioactive Materials 31 (2024): 525-548, https://doi.org/10.1016/j.bioactmat.2023.09.005.

[233]

G. Rossi, A. Manfrin, and M. P. Lutolf, “Progress and Potential in Organoid Research,” Nature Reviews. Genetics 19, no. 11 (2018): 671-687, https://doi.org/10.1038/s41576-018-0051-9.

[234]

X. Du, Z. Chen, Q. Li, et al., “Organoids Revealed: Morphological Analysis of the Profound Next Generation In-Vitro Model With Artificial Intelligence,” Bio-Design and Manufacturing 6, no. 3 (2023): 319-339, https://doi.org/10.1007/s42242-022-00226-y.

[235]

A. Schumacher, T. Rujan, and J. Hoefkens, “A Collaborative Approach to Develop a Multi-Omics Data Analytics Platform for Translational Research,” Applied & Translational Genomics 3, no. 4 (2014): 105-108, https://doi.org/10.1016/j.atg.2014.09.010.

[236]

D. Dutta, I. Heo, and H. Clevers, “Disease Modeling in Stem Cell-Derived 3D Organoid Systems,” Trends in Molecular Medicine 23, no. 5 (2017): 393-410, https://doi.org/10.1016/j.molmed.2017.02.007.

[237]

Z. Gan, X. Qin, H. Liu, J. Liu, and J. Qin, “Recent Advances in Defined Hydrogels in Organoid Research,” Bioactive Materials 28 (2023): 386-401, https://doi.org/10.1016/j.bioactmat.2023.06.004.

[238]

Y. Zhu, R. Huang, Z. Wu, S. Song, L. Cheng, and R. Zhu, “Deep Learning-Based Predictive Identification of Neural Stem Cell Differentiation,” Nature Communications 12, no. 1 (2021): 2614, https://doi.org/10.1038/s41467-021-22758-0.

[239]

G. N. Kanda, T. Tsuzuki, M. Terada, et al., “Robotic Search for Optimal Cell Culture in Regenerative Medicine,” eLife 11 (2022): e77007, https://doi.org/10.7554/eLife.77007.

[240]

X. Tang, F. Zhou, S. Wang, G. Wang, L. Bai, and J. Su, “Bioinspired Injectable Hydrogels for Bone Regeneration,” Journal of Advanced Research (2024), https://doi.org/10.1016/j.jare.2024.10.032.

[241]

M. A. M. Vis, K. Ito, and S. Hofmann, “Impact of Culture Medium on Cellular Interactions in In Vitro Co-Culture Systems. Mini-Review,” Frontiers in Bioengineering and Biotechnology 8 (2020): 911, https://doi.org/10.3389/fbioe.2020.00911.

[242]

P. S. Q. Yeoh, K. W. Lai, S. L. Goh, K. Hasikin, X. Wu, and P. Li, “Transfer Learning-Assisted 3D Deep Learning Models for Knee Osteoarthritis Detection: Data From the Osteoarthritis Initiative,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1164655, https://doi.org/10.3389/fbioe.2023.1164655.

[243]

Y. Hu, X. Zhao, G. Qing, K. Xie, C. Liu, and L. Zhang, “CT-Based Subchondral Bone Microstructural Analysis in Knee Osteoarthritis via MR-Guided Distillation Learning,” arXiv Preprints abs/2307.04390 (2023): e2307.0439.

[244]

J. B. Schiratti, R. Dubois, P. Herent, et al., “A Deep Learning Method for Predicting Knee Osteoarthritis Radiographic Progression From MRI,” Arthritis Research & Therapy 23, no. 1 (2021): 262, https://doi.org/10.1186/s13075-021-02634-4.

[245]

H. Zunair and H. A. Ben, “Sharp U-Net: Depthwise Convolutional Network for Biomedical Image Segmentation,” Computers in Biology and Medicine 136 (2021): 104699, https://doi.org/10.1016/j.compbiomed.2021.104699.

[246]

P. Chen, L. Gao, X. Shi, K. Allen, and L. Yang, “Fully Automatic Knee Osteoarthritis Severity Grading Using Deep Neural Networks With a Novel Ordinal Loss,” Computerized Medical Imaging and Graphics 75 (2019): 84-92, https://doi.org/10.1016/j.compmedimag.2019.06.002.

[247]

Q. Li, J. Wang, and C. Zhao, “From Genomics to Metabolomics: Molecular Insights Into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches,” Biomedicine 12, no. 10 (2024): 2389, https://doi.org/10.3390/biomedicines12102389.

[248]

J. S. Rockel, D. Sharma, O. Espin-Garcia, et al., “Deep Learning-Based Multimodal Clustering Model for Endotyping and Post-Arthroplasty Response Classification Using Knee Osteoarthritis Subject-Matched Multi-Omic Data,” medRxiv (2024): 2024.06.13.24308857, https://doi.org/10.1101/2024.06.13.24308857.

[249]

T. Wang, W. Shao, Z. Huang, et al., “MOGONET Integrates Multi-Omics Data Using Graph Convolutional Networks Allowing Patient Classification and Biomarker Identification,” Nature Communications 12, no. 1 (2021): 3445, https://doi.org/10.1038/s41467-021-23774-w.

[250]

J. WeiKoh, T.-S. Tan, Z. EnChuah, S. S. Soh, M. A. Arif, and K. M. Leong, “Genetic Algorithm Optimized Back Propagation Neural Network for Knee Osteoarthritis Classification,” Research Journal of Applied Sciences, Engineering and Technology 8 (2014): 1787-1793.

[251]

R. Wang, V. Bashyam, Z. Yang, et al., “Applications of Generative Adversarial Networks in Neuroimaging and Clinical Neuroscience,” NeuroImage 269 (2023): 119898, https://doi.org/10.1016/j.neuroimage.2023.119898.

[252]

A. Castrignanò, R. Bardini, A. Savino, and S. Di Carlo, “A Methodology Combining Reinforcement Learning and Simulation to Optimize the In Silico Culture of Epithelial Sheets,” Journal of Computational Science 76 (2024): 102226, https://doi.org/10.1016/j.jocs.2024.102226.

[253]

M. Tuerlings, I. Boone, H. Eslami Amirabadi, et al., “Capturing Essential Physiological Aspects of Interacting Cartilage and Bone Tissue With Osteoarthritis Pathophysiology: A Human Osteochondral Unit-On-a-Chip Model,” Advanced Materials Technologies 7, no. 8 (2022): 2101310, https://doi.org/10.1002/admt.202101310.

[254]

S. Piluso, Y. Li, F. Abinzano, et al., “Mimicking the Articular Joint With In Vitro Models,” Trends in Biotechnology 37, no. 10 (2019): 1063-1077, https://doi.org/10.1016/j.tibtech.2019.03.003.

[255]

H. Chen, Z. Luo, X. Lin, Y. Zhu, and Y. Zhao, “Sensors-Integrated Organ-On-a-Chip for Biomedical Applications,” Nano Research 26 (2023): 1-28, https://doi.org/10.1007/s12274-023-5651-9.

[256]

L. Herbst, F. Groten, M. Murphy, G. Shaw, B. Nießing, and R. H. Schmitt, “Automated Production at Scale of Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells, Chondrocytes and Extracellular Vehicles: Towards Real-Time Release,” Processes 11, no. 10 (2023): 2938.

[257]

I. Decoene, G. Nasello, R. F. Madeiro de Costa, et al., “Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications,” Stem Cells Translational Medicine 13, no. 3 (2024): 278-292, https://doi.org/10.1093/stcltm/szad091.

[258]

F. Kong, L. Yuan, Y. F. Zheng, and W. Chen, “Automatic Liquid Handling for Life Science: A Critical Review of the Current State of the Art,” Journal of Laboratory Automation 17, no. 3 (2012): 169-185, https://doi.org/10.1177/2211068211435302.

[259]

X. Zhang, R. Su, H. Wang, et al., “The Promise of Synovial Joint-On-a-Chip in Rheumatoid Arthritis. Review,” Frontiers in Immunology 15 (2024): 1408501, https://doi.org/10.3389/fimmu.2024.1408501.

[260]

L. Di Costanzo and B. Panunzi, “Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials,” Molecules 26, no. 10 (2021): 2952, https://doi.org/10.3390/molecules26102952.

[261]

J. Wiest, M. Brischwein, J. Ressler, A. Otto, H. Grothe, and B. Wolf, “Cellular Assays With Multiparametric Bioelectronic Sensor Chips,” Chimia International Journal for Chemistry 59 (2005): 243-246, https://doi.org/10.2533/000942905777676623.

[262]

H. Wang, X. Li, P. Shi, X. You, and G. Zhao, “Establishment and Evaluation of On-Chip Intestinal Barrier Biosystems Based on Microfluidic Techniques,” Materials Today Bio 26 (2024): 101079, https://doi.org/10.1016/j.mtbio.2024.101079.

[263]

T. Hasegawa and M. Ishii, “Visualizing Bone Tissue in Homeostatic and Pathological Conditions,” Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 96, no. 2 (2020): 43-49, https://doi.org/10.2183/pjab.96.004.

[264]

E. Hirsinger and B. Steventon, “A Versatile Mounting Method for Long Term Imaging of Zebrafish Development,” Journal of Visualized Experiments 119 (2017): e55210, https://doi.org/10.3791/55210.

[265]

T. Zheng, A. R. Liversage, K. F. Tehrani, J. A. Call, P. A. Kner, and L. J. Mortensen, “Imaging Mitochondria Through Bone in Live Mice Using Two-Photon Fluorescence Microscopy With Adaptive Optics,” Frontiers in Neuroimaging 2 (2023): 959601, https://doi.org/10.3389/fnimg.2023.959601.

[266]

D. J. Huey, J. C. Hu, and K. A. Athanasiou, “Unlike Bone, Cartilage Regeneration Remains Elusive,” Science 338, no. 6109 (2012): 917-921, https://doi.org/10.1126/science.1222454.

[267]

O. Gabay, D. J. Hall, F. Berenbaum, Y. Henrotin, and C. Sanchez, “Osteoarthritis and Obesity: Experimental Models,” Joint, Bone, Spine 75, no. 6 (2008): 675-679, https://doi.org/10.1016/j.jbspin.2008.07.011.

[268]

J. Zhou, J. Dong, H. Hou, L. Huang, and J. Li, “High-Throughput Microfluidic Systems Accelerated by Artificial Intelligence for Biomedical Applications,” Lab on a Chip 24, no. 5 (2024): 1307-1326, https://doi.org/10.1039/d3lc01012k.

[269]

A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI),” IEEE Access 6 (2018): 52138-52160, https://doi.org/10.1109/ACCESS.2018.2870052.

[270]

A. Singh, M. Nikkhah, and N. Annabi, “Biomaterials, Cells, and Patho-Physiology: Building Better Organoids and On-Chip Technologies,” Biomaterials 198 (2019): 1-2, https://doi.org/10.1016/j.biomaterials.2019.02.011.

[271]

Z. Li, D. Yu, C. Zhou, et al., “Engineering Vascularised Organoid-On-a-Chip: Strategies, Advances and Future Perspectives,” Biomaterials Translational 5, no. 1 (2024): 21-32, https://doi.org/10.12336/biomatertransl.2024.01.003.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/