Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment

Wenting Qi , Hanghang Liu , Huaze Liu , Yuxuan Guo , Li Wu , Chongyun Bao , Xian Liu

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70041

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (10) : e70041 DOI: 10.1111/cpr.70041
ORIGINAL ARTICLE

Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment

Author information +
History +
PDF

Abstract

Surgical resection, radiotherapy and chemotherapy are the primary strategies of treating cancers globally. However, the current treatment methods bring new disease burdens to patients due to postoperative complications and multiple side effects, especially in surface tumours such as oral squamous cell carcinoma (OSCC). In this study, we developed a microwave cold atmospheric plasma (CAP) device in conjunction with tumour microenvironment-responsive nanohydroxyapatite (nHA) for the first time. The synergistic effects of CAP and nHA combined application on OSCC were evaluated in both in vitro and in vivo experiments. The synergistic effects of CAP and pH-responsive NH2-nHA on the apoptosis, intracellular reactive oxygen species (ROS) and calcium ion concentration of OSCC cells were investigated in vitro. The synergistic induction of CAP with NH2-nHA exhibited optimal tumour-specific inhibitory effects on OSCC. The results revealed that the combined application of CAP with NH2-nHA induced apoptosis of tumour cells in vitro and killed 84.0% of tumours in vivo. Mechanistically, CAP enhances extracellular ROS production, while NH2-nHA amplifies intracellular calcium ion (Ca2+) concentrations, synergistically increasing intracellular ROS levels to provoke oxidative stress in OSCC cells, ultimately triggering the mitochondrial apoptosis pathway. In conclusion, the combined utilisation of CAP and NH2-nHA presents a promising avenue as a novel, selective, and non-invasive strategy in the management of OSCC.

Keywords

apoptosis / calcium / cold atmospheric plasma / nanohydroxyapatite / oral squamous cell carcinoma / reactive oxygen species

Cite this article

Download citation ▾
Wenting Qi, Hanghang Liu, Huaze Liu, Yuxuan Guo, Li Wu, Chongyun Bao, Xian Liu. Synergistical Induction of Apoptosis via Cold Atmospheric Plasma and Nanohydroxyapatite for Selective Inhibition of Oral Squamous Cell Carcinoma in Tumour Microenvironment. Cell Proliferation, 2025, 58(10): e70041 DOI:10.1111/cpr.70041

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Sung, J. Ferlay, R. L. Siegel, et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 71 (2021): 209-249.

[2]

G. Sarode, N. Maniyar, S. C. Sarode, M. Jafer, S. Patil, and K. H. Awan, “Epidemiologic Aspects of Oral Cancer,” Disease-a-Month 66 (2020): 100988.

[3]

A. Chamoli, A. S. Gosavi, U. P. Shirwadkar, et al., “Overview of Oral Cavity Squamous Cell Carcinoma: Risk Factors, Mechanisms, and Diagnostics,” Oral Oncology 121 (2021): 105451.

[4]

N. Osazuwa-Peters, M. C. Simpson, L. Zhao, et al., “Suicide Risk Among Cancer Survivors: Head and Neck Versus Other Cancers,” Cancer 124 (2018): 4072-4079.

[5]

S. Huang and B. O Sullivan, “Oral Cancer: Current Role of Radiotherapy and Chemotherapy,” Medicina Oral 18 (2013): e233-e240.

[6]

P. Uruski, J. Matuszewska, A. Leśniewska, et al., “An Integrative Review of Nonobvious Puzzles of Cellular and Molecular Cardiooncology,” Cellular & Molecular Biology Letters 28 (2023): 44.

[7]

D. Alterio, G. Marvaso, A. Ferrari, S. Volpe, R. Orecchia, and B. A. Jereczek-Fossa, “Modern Radiotherapy for Head and Neck Cancer,” Seminars in Oncology 46 (2019): 233-245.

[8]

M. Negi, N. Kaushik, L. N. Nguyen, E. H. Choi, and N. K. Kaushik, “Argon Gas Plasma-Treated Physiological Solutions Stimulate Immunogenic Cell Death and Eradicates Immunosuppressive CD47 Protein in Lung Carcinoma,” Free Radical Biology & Medicine 201 (2023): 26-40.

[9]

X. Dai, D. Cai, P. Wang, et al., “Cold Atmospheric Plasmas Target Breast Cancer Stemness via Modulating AQP3-19Y Mediated AQP3-5K and FOXO1 K48-Ubiquitination,” International Journal of Biological Sciences 18 (2022): 3544-3561.

[10]

T. Zimmermann, S. Staebler, R. V. Taudte, et al., “Cold Atmospheric Plasma Triggers Apoptosis via the Unfolded Protein Response in Melanoma Cells,” Cancers (Basel) 15 (2023): 1064.

[11]

D. Yan, Q. Wang, X. Yao, A. Malyavko, and M. Keidar, “Anti-Melanoma Capability of Contactless Cold Atmospheric Plasma Treatment,” International Journal of Molecular Sciences 22, no. 21 (2021): 11728, https://doi.org/10.3390/ijms222111728.

[12]

Y. Wang, X. Mang, X. Li, Z. Cai, and F. Tan, “Cold Atmospheric Plasma Induces Apoptosis in Human Colon and Lung Cancer Cells Through Modulating Mitochondrial Pathway,” Frontiers in Cell and Development Biology 10 (2022): 915785.

[13]

V. Vijayarangan, A. Delalande, S. Dozias, J.-M. Pouvesle, E. Robert, and C. Pichon, “New Insights on Molecular Internalization and Drug Delivery Following Plasma Jet Exposures,” International Journal of Pharmaceutics 589 (2020): 119874.

[14]

R. M. Walk, J. A. Snyder, P. Srinivasan, et al., “Cold Atmospheric Plasma for the Ablative Treatment of Neuroblastoma,” Journal of Pediatric Surgery 48 (2013): 67-73.

[15]

L. Brullé, M. Vandamme, D. Riès, et al., “Effects of a Non Thermal Plasma Treatment Alone or in Combination With Gemcitabine in a MIA PaCa2-Luc Orthotopic Pancreatic Carcinoma Model,” PLoS One 7 (2012): e52653.

[16]

R. Guerrero-Preston, T. Ogawa, M. Uemura, et al., “Cold Atmospheric Plasma Treatment Selectively Targets Head and Neck Squamous Cell Carcinoma Cells,” International Journal of Molecular Medicine 34 (2014): 941-946.

[17]

H. Jablonowski, J. Santos Sousa, K.-D. Weltmann, K. Wende, and S. Reuter, “Quantification of the Ozone and Singlet Delta Oxygen Produced in Gas and Liquid Phases by a Non-Thermal Atmospheric Plasma With Relevance for Medical Treatment,” Scientific Reports 8 (2018): 12195.

[18]

V. Perrotti, V. C. A. Caponio, L. L. Muzio, et al., “Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review,” International Journal of Molecular Sciences 23 (2022): 10238.

[19]

S. U. Kang, J. H. Cho, J. W. Chang, et al., “Nonthermal Plasma Induces Head and Neck Cancer Cell Death: The Potential Involvement of Mitogen-Activated Protein Kinase-Dependent Mitochondrial Reactive Oxygen Species,” Cell Death & Disease 5, no. 2 (2014): e1056, https://doi.org/10.1038/cddis.2014.33.

[20]

S.-Y. Kim, H.-J. Kim, S. U. Kang, et al., “Non-Thermal Plasma Induces AKT Degradation Through Turn-On the MUL1 E3 Ligase in Head and Neck Cancer,” Oncotarget 6 (2015): 33382-33396.

[21]

J.-H. Lee, J.-Y. Om, Y.-H. Kim, K.-M. Kim, E.-H. Choi, and K.-N. Kim, “Selective Killing Effects of Cold Atmospheric Pressure Plasma With NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma,” PLoS One 11 (2016): e0150279.

[22]

J. W. Chang, S. U. Kang, Y. S. Shin, et al., “Non-Thermal Atmospheric Pressure Plasma Induces Apoptosis in Oral Cavity Squamous Cell Carcinoma: Involvement of DNA-Damage-Triggering Sub-G(1) Arrest via the ATM/p53 Pathway,” Archives of Biochemistry and Biophysics 545 (2014): 133-140.

[23]

S. Hasse, C. Seebauer, K. Wende, et al., “Cold Argon Plasma as Adjuvant Tumour Therapy on Progressive Head and Neck Cancer: A Preclinical Study,” Applied Sciences 9, no. 10 (2019): 2061, https://doi.org/10.3390/app9102061.

[24]

X. Han, M. Klas, Y. Liu, M. Sharon Stack, and S. Ptasinska, “DNA Damage in Oral Cancer Cells Induced by Nitrogen Atmospheric Pressure Plasma Jets,” Applied Physics Letters 102 (2013): 233703.

[25]

K. Zhang, Y. Zhou, C. Xiao, et al., “Application of Hydroxyapatite Nanoparticles in Tumor-Associated Bone Segmental Defect,” Science Advances 5 (2019): eaax6946, https://doi.org/10.1126/sciadv.aax6946.

[26]

Z. Tang, X. Li, Y. Tan, H. Fan, and X. Zhang, “The Material and Biological Characteristics of Osteoinductive Calcium Phosphate Ceramics,” Regenerative Biomaterials 5 (2018): 43-59.

[27]

P. Sobierajska, A. Serwotka-Suszczak, S. Targonska, D. Szymanski, K. Marycz, and R. J. Wiglusz, “Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform—Physicochemical Properties and In Vitro Studies on Mastocytoma Cells,” International Journal of Molecular Sciences 23, no. 4 (2022): 1944, https://doi.org/10.3390/ijms23041944.

[28]

Z. Shi, X. Huang, Y. Cai, R. Tang, and D. Yang, “Size Effect of Hydroxyapatite Nanoparticles on Proliferation and Apoptosis of Osteoblast-Like Cells,” Acta Biomaterialia 5 (2009): 338-345.

[29]

B. Li, B. Guo, H. Fan, and X. Zhang, “Preparation of Nano-Hydroxyapatite Particles With Different Morphology and Their Response to Highly Malignant Melanoma Cells In Vitro,” Applied Surface Science 255 (2008): 357-360.

[30]

J. Huang, S. M. Best, W. Bonfield, et al., “In Vitro Assessment of the Biological Response to Nano-Sized Hydroxyapatite,” Journal of Materials Science: Materials in Medicine 15 (2004): 441-445.

[31]

J. Jin, G. Zuo, G. Xiong, et al., “The Inhibition of Lamellar Hydroxyapatite and Lamellar Magnetic Hydroxyapatite on the Migration and Adhesion of Breast Cancer Cells,” Journal of Materials Science: Materials in Medicine 25 (2014): 1025-1031.

[32]

R. Meena, K. K. Kesari, M. Rani, and R. Paulraj, “Effects of Hydroxyapatite Nanoparticles on Proliferation and Apoptosis of Human Breast Cancer Cells (MCF-7),” Journal of Nanoparticle Research 14 (2012): 712.

[33]

J. Li, Y. Yin, F. Yao, L. Zhang, and K. Yao, “Effect of Nano- and Micro-Hydroxyapatite/Chitosan-Gelatin Network Film on Human Gastric Cancer Cells,” Materials Letters 62, no. 17 (2008): 3220-3223, https://doi.org/10.1016/j.matlet.2008.02.072.

[34]

S. Zhang, X. Ma, D. Sha, J. Qian, Y. Yuan, and C. Liu, “A Novel Strategy for Tumor Therapy: Targeted, PAA-Functionalized Nano-Hydroxyapatite Nanomedicine,” Journal of Materials Chemistry B 8 (2020): 9589-9600.

[35]

S. Dey, M. Das, and V. K. Balla, “Effect of Hydroxyapatite Particle Size, Morphology and Crystallinity on Proliferation of Colon Cancer HCT116 Cells,” Materials Science and Engineering: C 39 (2014): 336-339.

[36]

I. W. Bauer, S.-P. Li, Y.-C. Han, L. Yuan, and M.-Z. Yin, “Internalization of Hydroxyapatite Nanoparticles in Liver Cancer Cells,” Journal of Materials Science: Materials in Medicine 19 (2008): 1091-1095.

[37]

L. Wang, G. Zhou, H. Liu, et al., “Nano-Hydroxyapatite Particles Induce Apoptosis on MC3T3-E1 Cells and Tissue Cells in SD Rats,” Nanoscale 4 (2012): 2894-2899.

[38]

X. Dong, C. Zang, Y. Sun, S. Zhang, C. Liu, and J. Qian, “Hydroxyapatite Nanoparticles Induced Calcium Overload-Initiated Cancer Cell-Specific Apoptosis Through Inhibition of PMCA and Activation of Calpain,” Journal of Materials Chemistry B 11 (2023): 7609-7622.

[39]

M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324 (2009): 1029-1033.

[40]

O. Volotskova, T. S. Hawley, M. A. Stepp, and M. Keidar, “Targeting the Cancer Cell Cycle by Cold Atmospheric Plasma,” Science Reports 2 (2012): 636, https://doi.org/10.1038/srep00636.

[41]

D. B. Graves, “The Emerging Role of Reactive Oxygen and Nitrogen Species in Redox Biology and Some Implications for Plasma Applications to Medicine and Biology,” Journal of Physics D: Applied Physics 45 (2012): 263001.

[42]

H. M. Roomy, N. Yasoob A, and H. H. Murbat, “Evaluate the Argon Plasma Jet Parameters by Optical Emission Spectroscopy,” Kuwait Journal of Science 50, no. 2 (2023): 163-167, https://doi.org/10.1016/j.kjs.2023.03.001.

[43]

V. Soni, M. Adhikari, H. Simonyan, et al., “In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma by Non-Invasive Application of Cold Atmospheric Plasma,” Cancers 13, no. 17 (2021): 4485, https://doi.org/10.3390/cancers13174485.

[44]

G. R. Buettner, “The Spin Trapping of Superoxide and Hydroxyl Free Radicals With DMPO (5,5-Dimethylpyrroline-N-Oxide): More About Iron,” Free Radical Research Communications 19 (1993): s79-s87.

[45]

E. Gjika, S. Pal-Ghosh, A. Tang, et al., “Adaptation of Operational Parameters of Cold Atmospheric Plasma for In Vitro Treatment of Cancer Cells,” ACS Applied Materials & Interfaces 10, no. 11 (2018): 9269-9279, https://doi.org/10.1021/acsami.7b18653.

[46]

B. Stratmann, T.-C. Costea, C. Nolte, et al., “Effect of Cold Atmospheric Plasma Therapy vs Standard Therapy Placebo on Wound Healing in Patients With Diabetic Foot Ulcers,” JAMA Network Open 3 (2020): e2010411.

[47]

M. D. Subramaniam, J. S. Bae, J. Son, et al., “Floating Electrode-Dielectric Barrier Discharge-Based Plasma Promotes Skin Regeneration in a Full-Thickness Skin Defect Mouse Model,” Biomedical Engineering Letters 14 (2024): 605-616.

[48]

S. Povea-Cabello, M. Oropesa-Ávila, P. De la Cruz-Ojeda, et al., “Dynamic Reorganization of the Cytoskeleton During Apoptosis: The Two Coffins Hypothesis,” International Journal of Molecular Sciences 18 (2017): 2393.

[49]

A. Saraste and K. Pulkki, “Morphologic and Biochemical Hallmarks of Apoptosis,” Cardiovascular Research 45 (2000): 528-537.

[50]

T. G. Phan and P. I. Croucher, “The Dormant Cancer Cell Life Cycle,” Nature Reviews. Cancer 20 (2020): 398-411.

[51]

A. Montagnoli, J. Moll, and F. Colotta, “Targeting Cell Division Cycle 7 Kinase: A New Approach for Cancer Therapy,” Clinical Cancer Research 16 (2010): 4503-4508.

[52]

S. Blackert, B. Haertel, K. Wende, T. von Woedtke, and U. Lindequist, “Influence of Non-Thermal Atmospheric Pressure Plasma on Cellular Structures and Processes in Human Keratinocytes (HaCaT),” Journal of Dermatological Science 70 (2013): 173-181.

[53]

M. Dodson, R. Castro-Portuguez, and D. D. Zhang, “NRF2 Plays a Critical Role in Mitigating Lipid Peroxidation and Ferroptosis,” Redox Biology 23 (2019): 101107.

[54]

M. L. Semmler, S. Bekeschus, M. Schäfer, et al., “Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment,” Cancers (Basel) 12, no. 2 (2020): 269, https://doi.org/10.3390/cancers12020269.

[55]

M. G. Bottone, G. Santin, F. Aredia, G. Bernocchi, C. Pellicciari, and A. I. Scovassi, “Morphological Features of Organelles During Apoptosis: An Overview,” Cells 2, no. 2 (2013): 294-305, https://doi.org/10.3390/cells2020294.

[56]

A. Görlach, K. Bertram, S. Hudecova, and O. Krizanova, “Calcium and ROS: A Mutual Interplay,” Redox Biology 6 (2015): 260-271.

[57]

L. K. Seidlmayer, V. V. Juettner, S. Kettlewell, E. V. Pavlov, L. A. Blatter, and E. N. Dedkova, “Distinct mPTP Activation Mechanisms in Ischaemia-Reperfusion: Contributions of Ca2+, ROS, pH, and Inorganic Polyphosphate,” Cardiovascular Research 106 (2015): 237-248.

[58]

G. Kroemer, P. Petit, N. Zamzami, J. L. Vayssière, and B. Mignotte, “The Biochemistry of Programmed Cell Death,” FASEB Journal 9, no. 13 (1995): 1277-1287, https://doi.org/10.1096/fasebj.9.13.7557017.

[59]

A. Raturi and T. Simmen, “Where the Endoplasmic Reticulum and the Mitochondrion Tie the Knot: The Mitochondria-Associated Membrane (MAM),” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833, no. 1 (2013): 213-224, https://doi.org/10.1016/j.bbamcr.2012.04.013.

[60]

T.-I. Peng and M.-J. Jou, “Oxidative Stress Caused by Mitochondrial Calcium Overload,” Annals of the New York Academy of Sciences 1201 (2010): 183-188.

[61]

C. Wang, P. Zhao, G. Yang, et al., “Reconstructing the Intracellular pH Microenvironment for Enhancing Photodynamic Therapy,” Materials Horizons 7, no. 4 (2020): 1180-1185, https://doi.org/10.1039/C9MH01824G.

[62]

E. Palcevskis, A. Dindune, Y. Dekhtyar, N. Polyaka, D. Veljović, and R. L. Sammons, “The Influence of Surface Treatment by Hydrogenation on the Biocompatibility of Different Hydroxyapatite Materials,” IOP Conference Series: Materials Science and Engineering 23 (2011): 012032.

[63]

Y. Dekhtyar, M. V. Dvornichenko, A. V. Karlov, et al., World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (Springer, 2009), 245-248.

[64]

D. R. Green and G. Kroemer, “The Pathophysiology of Mitochondrial Cell Death,” Science 305 (2004): 626-629.

[65]

Y. Yuan, C. Liu, J. Qian, J. Wang, and Y. Zhang, “Size-Mediated Cytotoxicity and Apoptosis of Hydroxyapatite Nanoparticles in Human Hepatoma HepG2 Cells,” Biomaterials 31 (2010): 730-740.

[66]

B. A. Carneiro and W. S. El-Deiry, “Targeting Apoptosis in Cancer Therapy,” Nature Reviews. Clinical Oncology 17 (2020): 395-417.

[67]

M. JayakiranJ, “Apoptosis-Biochemistry: A Mini Review,” Journal of Clinical and Experimental Pathology 5 (2015): 205, https://doi.org/10.4172/2161-0681.1000205.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/