Extrachromosomal Circular DNA in Cancer: Mechanisms and Clinical Applications

Jiajia Li , Peng Luo , Zhengrui Li , Qi Wang , Xufeng Huang , Keliang Wang , Ruo Wang , Runzhi Chen

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e70040

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e70040 DOI: 10.1111/cpr.70040
LETTER TO THE EDITOR

Extrachromosomal Circular DNA in Cancer: Mechanisms and Clinical Applications

Author information +
History +
PDF

Abstract

Extrachromosomal circular DNA (eccDNA) has emerged as a critical area of cancer research due to its ubiquitous presence in tumour cells and significant role in tumorigenesis, progression and drug resistance. Recent studies demonstrate that eccDNA promotes cancer progression by influencing genomic instability, amplifying oncogenes, regulating gene expression and enhancing tumour cell adaptability to adverse conditions. While the precise mechanisms underlying eccDNA formation and its biological functions remain unclear, its potential applications in cancer diagnosis, prognosis and targeted therapy are gaining increasing recognition. This review summarises the latest advancements in eccDNA research, highlighting its potential as both a biomarker and a therapeutic target. Additionally, it emphasises the translational potential of eccDNA in clinical diagnostics and personalised treatment strategies, offering new perspectives for future cancer research and innovative therapies.

Keywords

biomarkers / drug resistance / eccDNA / extrachromosomal circular DNA / therapeutic targets / tumour

Cite this article

Download citation ▾
Jiajia Li, Peng Luo, Zhengrui Li, Qi Wang, Xufeng Huang, Keliang Wang, Ruo Wang, Runzhi Chen. Extrachromosomal Circular DNA in Cancer: Mechanisms and Clinical Applications. Cell Proliferation, 2025, 58(6): e70040 DOI:10.1111/cpr.70040

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Yang, R. Jia, T. Ge, et al., “Extrachromosomal Circular DNA: Biogenesis, Structure, Functions and Diseases,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 342, https://doi.org/10.1038/s41392-022-01176-8.

[2]

R. Li, Y. Wang, J. Li, and X. Zhou, “Extrachromosomal Circular DNA (eccDNA): An Emerging Star in Cancer,” Biomarker Research 10, no. 1 (2022): 53, https://doi.org/10.1186/s40364-022-00399-9.

[3]

J. B. Noer, O. K. Hørsdal, X. Xiang, Y. Luo, and B. Regenberg, “Extrachromosomal Circular DNA in Cancer: History, Current Knowledge, and Methods,” Trends in Genetics 38, no. 7 (2022): 766-781, https://doi.org/10.1016/j.tig.2022.02.007.

[4]

J. Guo, Z. Zhang, Q. Li, X. Chang, and X. Liu, “TeCD: The eccDNA Collection Database for Extrachromosomal Circular DNA,” BMC Genomics 24, no. 1 (2023): 47, https://doi.org/10.1186/s12864-023-09135-5.

[5]

P. Wu, Y. Liu, R. Zhou, et al., “Extrachromosomal Circular DNA: A New Target in Cancer,” Frontiers in Oncology 12 (2022): 814504, https://doi.org/10.3389/fonc.2022.814504.

[6]

Y. Ouyang, W. Lu, Y. Wang, et al., “Integrated Analysis of mRNA and Extrachromosomal Circular DNA Profiles to Identify the Potential mRNA Biomarkers in Breast Cancer,” Gene 857 (2023): 147174, https://doi.org/10.1016/j.gene.2023.147174.

[7]

E. Deng and X. Fan, “Categorizing Extrachromosomal Circular DNA as Biomarkers in Serum of Cancer,” Biomolecules 14, no. 4 (2024): 488, https://doi.org/10.3390/biom14040488.

[8]

Q. Li, R. X. Zhang, J. J. Yang, H. B. Huang, G. Feng, and G. R. Li, “Characterization of Extrachromosomal Circular DNAs in Plasma of Patients With Clear Cell Renal Cell Carcinoma,” World Journal of Urology 42, no. 1 (2024): 328, https://doi.org/10.1007/s00345-024-05031-z.

[9]

J. Xie, Z. Zheng, L. Tuo, et al., “Recent Advances in Exosome-Based Immunotherapy Applied to Cancer,” Frontiers in Immunology 14 (2023): 1296857, https://doi.org/10.3389/fimmu.2023.1296857.

[10]

S. Zou, S. Chen, G. Rao, et al., “Extrachromosomal Circular MiR-17-92 Amplicon Promotes HCC,” Hepatology 79, no. 1 (2024): 79-95, https://doi.org/10.1097/hep.0000000000000435.

[11]

L. Peng, N. Zhou, C. Y. Zhang, G. C. Li, and X. Q. Yuan, “eccDNAdb: A Database of Extrachromosomal Circular DNA Profiles in Human Cancers,” Oncogene 41, no. 19 (2022): 2696-2705, https://doi.org/10.1038/s41388-022-02286-x.

[12]

F. Li, W. Ming, W. Lu, Y. Wang, X. Dong, and Y. Bai, “Bioinformatics Advances in eccDNA Identification and Analysis,” Oncogene 43, no. 41 (2024): 3021-3036, https://doi.org/10.1038/s41388-024-03138-6.

[13]

J. Zhuang, Y. Zhang, C. Zhou, et al., “Dynamics of Extrachromosomal Circular DNA in Rice,” Nature Communications 15, no. 1 (2024): 2413, https://doi.org/10.1038/s41467-024-46691-0.

[14]

Z. Liao, W. Jiang, L. Ye, T. Li, X. Yu, and L. Liu, “Classification of Extrachromosomal Circular DNA With a Focus on the Role of Extrachromosomal DNA (ecDNA) in Tumor Heterogeneity and Progression,” Biochimica Et Biophysica Acta. Reviews on Cancer 1874, no. 1 (2020): 188392, https://doi.org/10.1016/j.bbcan.2020.188392.

[15]

S. Zuo, Y. Yi, C. Wang, et al., “Extrachromosomal Circular DNA (eccDNA): From Chaos to Function,” Frontiers in Cell and Development Biology 9 (2021): 792555, https://doi.org/10.3389/fcell.2021.792555.

[16]

Z. Sun, N. Ji, R. Zhao, J. Liang, J. Jiang, and H. Tian, “Extrachromosomal Circular DNAs Are Common and Functional in Esophageal Squamous Cell Carcinoma,” Annals of Translational Medicine 9, no. 18 (2021): 1464, https://doi.org/10.21037/atm-21-4372.

[17]

Y. Bao, X. Sui, X. Wang, et al., “Extrachromosomal Circular DNA Landscape of Breast Cancer With Lymph Node Metastasis,” International Journal of Cancer 155, no. 4 (2024): 756-765, https://doi.org/10.1002/ijc.34985.

[18]

J. Ye, P. Huang, K. Ma, et al., “Genome-Wide Extrachromosomal Circular DNA Profiling of Paired Hepatocellular Carcinoma and Adjacent Liver Tissues,” Cancers (Basel) 15, no. 22 (2023): 5309, https://doi.org/10.3390/cancers15225309.

[19]

S. Zheng, Y. Li, L. Wang, et al., “Extrachromosomal Circular DNA and Their Roles in Cancer Progression,” Genes and Diseases 12, no. 1 (2025): 101202, https://doi.org/10.1016/j.gendis.2023.101202.

[20]

A. Subramanian, N. Nemat-Gorgani, T. J. Ellis-Caleo, et al., “Sarcoma Microenvironment Cell States and Ecosystems Are Associated With Prognosis and Predict Response to Immunotherapy,” Nature Cancer 5, no. 4 (2024): 642-658, https://doi.org/10.1038/s43018-024-00743-y.

[21]

Y. Zhao, L. Yu, S. Zhang, X. Su, and X. Zhou, “Extrachromosomal Circular DNA: Current Status and Future Prospects,” eLife 11 (2022): e81412, https://doi.org/10.7554/eLife.81412.

[22]

N. Wu, L. Wei, Z. Zhu, et al., “Innovative Insights Into Extrachromosomal Circular DNAs in Gynecologic Tumors and Reproduction,” Protein and Cell 15, no. 1 (2024): 6-20, https://doi.org/10.1093/procel/pwad032.

[23]

J. Luo, Y. Li, T. Zhang, et al., “Extrachromosomal Circular DNA in Cancer Drug Resistance and Its Potential Clinical Implications,” Frontiers in Oncology 12 (2022): 1092705, https://doi.org/10.3389/fonc.2022.1092705.

[24]

Z. Li and D. Qian, “Extrachromosomal Circular DNA (eccDNA): From Carcinogenesis to Drug Resistance,” Clinical and Experimental Medicine 24, no. 1 (2024): 83, https://doi.org/10.1007/s10238-024-01348-6.

[25]

S. Wu, K. M. Turner, N. Nguyen, et al., “Circular ecDNA Promotes Accessible Chromatin and High Oncogene Expression,” Nature 575, no. 7784 (2019): 699-703, https://doi.org/10.1038/s41586-019-1763-5.

[26]

T. Li, S. Li, Y. Kang, J. Zhou, and M. Yi, “Harnessing the Evolving CRISPR/Cas9 for Precision Oncology,” Journal of Translational Medicine 22, no. 1 (2024): 749, https://doi.org/10.1186/s12967-024-05570-4.

[27]

C. Lin, Y. Chen, F. Zhang, B. Liu, C. Xie, and Y. Song, “Encoding Gene RAB3B Exists in Linear Chromosomal and Circular Extrachromosomal DNA and Contributes to Cisplatin Resistance of Hypopharyngeal Squamous Cell Carcinoma via Inducing Autophagy,” Cell Death and Disease 13, no. 2 (2022): 171, https://doi.org/10.1038/s41419-022-04627-w.

[28]

R. Y. Gadgil, S. D. Rider, R. Shrestha, V. Alhawach, D. C. Hitch, and M. Leffak, “Microsatellite Break-Induced Replication Generates Highly Mutagenized Extrachromosomal Circular DNAs,” NAR Cancer 6, no. 2 (2024): zcae027, https://doi.org/10.1093/narcan/zcae027.

[29]

J. Xie, X. Lin, X. Deng, et al., “Cancer-Associated Fibroblast-Derived Extracellular Vesicles: Regulators and Therapeutic Targets in the Tumor Microenvironment,” Cancer Drug Resistance (Alhambra, Calif.) 8, no. 2 (2025), https://doi.org/10.20517/cdr.2024.152.

[30]

J. Wang, P. Huang, F. Hou, D. Hao, W. Li, and H. Jin, “Predicting Gestational Diabetes Mellitus Risk at 11-13 Weeks' Gestation: The Role of Extrachromosomal Circular DNA,” Cardiovascular Diabetology 23, no. 1 (2024): 289, https://doi.org/10.1186/s12933-024-02381-1.

[31]

F. Pourrajab and M. R. Zare-Khormizi, “Extrachromosomal Circular DNAs, Amplified Oncogenes, and CRISPR-Cas9 System,” Molecular Pharmacology 102, no. 4 (2022): 209-215, https://doi.org/10.1124/molpharm.122.000553.

[32]

H. Sun, X. Lu, and L. Zou, “EccBase: A High-Quality Database for Exploration and Characterization of Extrachromosomal Circular DNAs in Cancer,” Computational and Structural Biotechnology Journal 21 (2023): 2591-2601, https://doi.org/10.1016/j.csbj.2023.04.012.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/