IMPDH2's Central Role in Cellular Growth and Diseases: A Potential Therapeutic Target

Zheng Li , Yunpeng Zou , Jiayao Niu , Ying Zhang , Aohua Yang , Wenyu Lin , Jie Guo , Shuya Wang , Ronghan Liu

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e70031

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (6) : e70031 DOI: 10.1111/cpr.70031
LETTER TO THE EDITOR

IMPDH2's Central Role in Cellular Growth and Diseases: A Potential Therapeutic Target

Author information +
History +
PDF

Cite this article

Download citation ▾
Zheng Li, Yunpeng Zou, Jiayao Niu, Ying Zhang, Aohua Yang, Wenyu Lin, Jie Guo, Shuya Wang, Ronghan Liu. IMPDH2's Central Role in Cellular Growth and Diseases: A Potential Therapeutic Target. Cell Proliferation, 2025, 58(6): e70031 DOI:10.1111/cpr.70031

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. P. Shah, G. Purushothaman, V. Thiruvenkatam, S. Kirubakaran, K. Juvale, and P. S. Kharkar, “Design, Synthesis and Biological Evaluation of Helicobacter Pylori Inosine 5′-Monophosphate Dehydrogenase (HpIMPDH) Inhibitors. Further Optimization of Selectivity Towards HpIMPDH Over Human IMPDH2,” Bioorganic Chemistry 87 (2019): 753-764, https://doi.org/10.1016/j.bioorg.2019.04.001.

[2]

S. Rosignoli and A. Paiardini, “Boosting the Full Potential of PyMOL With Structural Biology Plugins,” Biomolecules 12, no. 12 (2022): 1764.

[3]

D. Glesne, F. Collart, T. Varkony, H. Drabkin, and E. Huberman, “Chromosomal Localization and Structure of the Human Type II IMP Dehydrogenase Gene (IMPDH2),” Genomics 16, no. 1 (1993): 274-277.

[4]

S. Duan, W. Huang, X. Liu, et al., “IMPDH2 Promotes Colorectal Cancer Progression Through Activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 Signaling Pathways,” Journal of Experimental & Clinical Cancer Research 37, no. 1 (2018): 304.

[5]

R. Zhang, G. Evans, F. J. Rotella, et al., “Characteristics and Crystal Structure of Bacterial Inosine-5′-Monophosphate Dehydrogenase,” Biochemistry 38, no. 15 (1999): 4691-4700.

[6]

L. Hedstrom, “IMP Dehydrogenase: Structure, Mechanism, and Inhibition,” Chemical Reviews 109, no. 7 (2009): 2903-2928.

[7]

L. Hedstrom and L. Gan, “IMP Dehydrogenase: Structural Schizophrenia and an Unusual Base,” Current Opinion in Chemical Biology 10, no. 5 (2006): 520-525.

[8]

R. M. Buey, R. Ledesma-Amaro, A. Velázquez-Campoy, et al., “Guanine Nucleotide Binding to the Bateman Domain Mediates the Allosteric Inhibition of Eukaryotic IMP Dehydrogenases,” Nature Communications 6 (2015): 8923.

[9]

D. Fernández-Justel, R. Núñez, J. Martín-Benito, et al., “A Nucleotide-Dependent Conformational Switch Controls the Polymerization of Human IMP Dehydrogenases to Modulate Their Catalytic Activity,” Journal of Molecular Biology 431, no. 5 (2019): 956-969.

[10]

D. Fernández-Justel, R. Peláez, J. L. Revuelta, and R. M. Buey, “The Bateman Domain of IMP Dehydrogenase Is a Binding Target for Dinucleoside Polyphosphates,” Journal of Biological Chemistry 294, no. 40 (2019): 14768-14775.

[11]

J. F. Cornuel, A. Moraillon, and M. Guéron, “Participation of Yeast Inosine 5′-Monophosphate Dehydrogenase in an In Vitro Complex With a Fragment of the C-Rich Telomeric Strand,” Biochimie 84, no. 4 (2002): 279-289.

[12]

J. E. McLean, N. Hamaguchi, P. Belenky, S. E. Mortimer, M. Stanton, and L. Hedstrom, “Inosine 5′-Monophosphate Dehydrogenase Binds Nucleic Acids In Vitro and In Vivo,” Biochemical Journal 379, no. Pt 2 (2004): 243-251.

[13]

S. E. Mortimer, D. Xu, D. McGrew, et al., “IMP Dehydrogenase Type 1 Associates With Polyribosomes Translating Rhodopsin mRNA,” Journal of Biological Chemistry 283, no. 52 (2008): 36354-36360.

[14]

T. D. Colby, K. Vanderveen, M. D. Strickler, G. D. Markham, and B. M. Goldstein, “Crystal Structure of Human Type II Inosine Monophosphate Dehydrogenase: Implications for Ligand Binding and Drug Design,” Proceedings of the National Academy of Sciences of the United States of America 96, no. 7 (1999): 3531-3536.

[15]

Q. Zhang, X. Zhou, R. Z. Wu, et al., “The Role of IMP Dehydrogenase 2 in Inauhzin-Induced Ribosomal Stress,” eLife 3 (2014): 3.

[16]

N. J. Mullen and P. K. Singh, “Nucleotide Metabolism: A Pan-Cancer Metabolic Dependency,” Nature Reviews. Cancer 23, no. 5 (2023): 275-294.

[17]

L. X. Liao, X. M. Song, L. C. Wang, et al., “Highly Selective Inhibition of IMPDH2 Provides the Basis of Antineuroinflammation Therapy,” Proceedings of the National Academy of Sciences of the United States of America 114, no. 29 (2017): E5986-e5994.

[18]

J. W. Scott, S. A. Hawley, K. A. Green, et al., “CBS Domains Form Energy-Sensing Modules Whose Binding of Adenosine Ligands Is Disrupted by Disease Mutations,” Journal of Clinical Investigation 113, no. 2 (2004): 274-284.

[19]

E. C. Thomas, J. H. Gunter, J. A. Webster, et al., “Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms,” PLoS One 7, no. 12 (2012): e51096.

[20]

A. N. Lane and T. W. Fan, “Regulation of Mammalian Nucleotide Metabolism and Biosynthesis,” Nucleic Acids Research 43, no. 4 (2015): 2466-2485.

[21]

M. D. Sintchak, M. A. Fleming, O. Futer, et al., “Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex With the Immunosuppressant Mycophenolic Acid,” Cell 85, no. 6 (1996): 921-930.

[22]

A. C. Allison and E. M. Eugui, “Mycophenolate Mofetil and Its Mechanisms of Action,” Immunopharmacology 47, no. 2-3 (2000): 85-118.

[23]

K. H. Vousden and C. Prives, “Blinded by the Light: The Growing Complexity of p53,” Cell 137, no. 3 (2009): 413-431.

[24]

T. W. Li, A. D. Kenney, J. G. Park, et al., “SARS-CoV-2 Nsp14 Protein Associates With IMPDH2 and Activates NF-κB Signaling,” Frontiers in Immunology 13 (2022): 1007089.

[25]

A. G. O'Neill, A. L. Burrell, M. Zech, et al., “Point Mutations in IMPDH2 Which Cause Early-Onset Neurodevelopmental Disorders Disrupt Enzyme Regulation and Filament Structure,” bioRxiv (2023): 2023.03.15.532669, https://doi.org/10.1101/2023.03.15.532669.

[26]

A. G. O'Neill, A. L. Burrell, M. Zech, et al., “Neurodevelopmental Disorder Mutations in the Purine Biosynthetic Enzyme IMPDH2 Disrupt Its Allosteric Regulation,” Journal of Biological Chemistry 299, no. 8 (2023): 105012.

[27]

A. Kuukasjärvi, J. C. Landoni, J. Kaukonen, et al., “IMPDH2: A New Gene Associated With Dominant Juvenile-Onset Dystonia-Tremor Disorder,” European Journal of Human Genetics 29, no. 12 (2021): 1833-1837.

[28]

J. I. Lake, M. Avetisyan, A. G. Zimmermann, and R. O. Heuckeroth, “Neural Crest Requires Impdh2 for Development of the Enteric Nervous System, Great Vessels, and Craniofacial Skeleton,” Developmental Biology 409, no. 1 (2016): 152-165.

[29]

J. Kleine, U. Hohmann, T. Hohmann, et al., “Microglia-Dependent and Independent Brain Cytoprotective Effects of Mycophenolate Mofetil During Neuronal Damage,” Frontiers in Aging Neuroscience 14 (2022): 863598, https://doi.org/10.3389/fnagi.2022.863598.

[30]

X. Ruan, Y. Xiong, X. Li, E. Yang, and J. Wang, “Lower Ratio of IMPDH1 to IMPDH2 Sensitizes Gliomas to Chemotherapy,” Cancer Gene Therapy 31, no. 7 (2024): 1081-1089.

[31]

J. Liu, Y. Cheng, M. Li, Z. Zhang, T. Li, and X. J. Luo, “Genome-Wide Mendelian Randomization Identifies Actionable Novel Drug Targets for Psychiatric Disorders,” Neuropsychopharmacology 48, no. 2 (2023): 270-280.

[32]

C. Xu, Z. Wei, L. Lv, et al., “Impdh2 Deficiency Suppresses Osteoclastogenesis Through Mitochondrial Oxidative Phosphorylation and Alleviates Ovariectomy-Induced Osteoporosis,” Biochemical and Biophysical Research Communications 727 (2024): 150317.

[33]

B. G. Fürnrohr, B. Rhodes, L. E. Munoz, K. Weiß, T. J. Vyse, and G. Schett, “Osteoclast Differentiation Is Impaired in a Subgroup of SLE Patients and Correlates Inversely With Mycophenolate Mofetil Treatment,” International Journal of Molecular Sciences 16, no. 8 (2015): 18825-18835, https://doi.org/10.3390/ijms160818825.

[34]

M. Bie, Y. Tang, Y. Xia, et al., “HIF-1α Mediates Osteoclast-Induced Disuse Osteoporosis via Cytoophidia in the Femur of Mice,” Bone 168 (2023): 116648, https://doi.org/10.1016/j.bone.2022.116648.

[35]

S. Bremer, R. Mandla, N. T. Vethe, et al., “Expression of IMPDH1 and IMPDH2 After Transplantation and Initiation of Immunosuppression,” Transplantation 85, no. 1 (2008): 55-61.

[36]

A. Sugimoto, T. Watanabe, K. Matsuoka, et al., “Growth Transformation of B Cells by Epstein-Barr Virus Requires IMPDH2 Induction and Nucleolar Hypertrophy,” Microbiology Spectrum 11, no. 4 (2023): e0044023, https://doi.org/10.1128/spectrum.00440-23.

[37]

M. Molinaro, L. R. Chiarelli, L. Biancone, et al., “Monitoring of Inosine Monophosphate Dehydrogenase Activity and Expression During the Early Period of Mycophenolate Mofetil Therapy in de Novo Renal Transplant Patients,” Drug Metabolism and Pharmacokinetics 28, no. 2 (2013): 109-117.

[38]

H. X. Li, Q. P. Meng, W. Liu, et al., “IMPDH2 Mediate Radioresistance and Chemoresistance in Osteosarcoma Cells,” European Review for Medical and Pharmacological Sciences 18, no. 20 (2014): 3038-3044.

[39]

J. Fellenberg, P. Kunz, H. Sähr, and D. Depeweg, “Overexpression of Inosine 5′-Monophosphate Dehydrogenase Type II Mediates Chemoresistance to Human Osteosarcoma Cells,” PLoS One 5, no. 8 (2010): e12179.

[40]

P. Chaiyawat, A. Phanphaisarn, N. Sirikaew, et al., “IMPDH2 and HPRT Expression and a Prognostic Significance in Preoperative and Postoperative Patients With Osteosarcoma,” Scientific Reports 11, no. 1 (2021): 10887.

[41]

J. Fellenberg, L. Bernd, G. Delling, D. Witte, and A. Zahlten-Hinguranage, “Prognostic Significance of Drug-Regulated Genes in High-Grade Osteosarcoma,” Modern Pathology 20, no. 10 (2007): 1085-1094.

[42]

Y. He, Z. Mou, W. Li, et al., “Identification of IMPDH2 as a Tumor-Associated Antigen in Colorectal Cancer Using Immunoproteomics Analysis,” International Journal of Colorectal Disease 24, no. 11 (2009): 1271-1279.

[43]

X. J. Ding, X.-M. Cai, Q.-Q. Wang, et al., “Vitexicarpin Suppresses Malignant Progression of Colorectal Cancer Through Affecting c-Myc Ubiquitination by Targeting IMPDH2,” Phytomedicine 132 (2024): 155833, https://doi.org/10.1016/j.phymed.2024.155833.

[44]

Y. Li, B. Wang, W. Yang, et al., “Longitudinal Plasma Proteome Profiling Reveals the Diversity of Biomarkers for Diagnosis and Cetuximab Therapy Response of Colorectal Cancer,” Nature Communications 15, no. 1 (2024): 980.

[45]

Y. Huang, S. Chan, S. Chen, et al., “Wnt/β-Catenin Signalling Activates IMPDH2-Mediated Purine Metabolism to Facilitate Oxaliplatin Resistance by Inhibiting Caspase-Dependent Apoptosis in Colorectal Cancer,” Journal of Translational Medicine 22, no. 1 (2024): 133.

[46]

X. He, J. Cui, H. Ma, et al., “Berberrubine Is a Novel and Selective IMPDH2 Inhibitor That Impairs the Growth of Colorectal Cancer,” Biochemical Pharmacology 218 (2023): 115868.

[47]

S. He, C. Zhao, H. Tao, et al., “A Recombinant scFv Antibody-Based Fusion Protein That Targets EGFR Associated With IMPDH2 Downregulation and Its Drug Conjugate Show Therapeutic Efficacy Against Esophageal Cancer,” Drug Delivery 29, no. 1 (2022): 1243-1256.

[48]

L. Hong, T. Qiao, Y. Han, et al., “ZNRD1 Mediates Resistance of Gastric Cancer Cells to Methotrexate by Regulation of IMPDH2 and Bcl-2,” Biochemistry and Cell Biology 84, no. 2 (2006): 199-206.

[49]

Y. He, Z. Zheng, Y. Xu, et al., “Over-Expression of IMPDH2 Is Associated With Tumor Progression and Poor Prognosis in Hepatocellular Carcinoma,” American Journal of Cancer Research 8, no. 8 (2018): 1604-1614.

[50]

L. Yuan, L. Zeng, F. Ye, K. Chen, Z. Chen, and L. Li, “IMPDH2 Positively Impacts the Proliferation Potential of Hepatoblastoma Cells by Activating JunB Signaling Pathway,” Current Molecular Pharmacology 17, no. 1 (2024): e18761429257350.

[51]

C. Ni, W. Liu, K. Zheng, et al., “PI3K/ c-Myc/AFF4 Axis Promotes Pancreatic Tumorigenesis Through Fueling Nucleotide Metabolism,” International Journal of Biological Sciences 19, no. 6 (2023): 1968-1982.

[52]

F. Huang, M. Ni, M. D. Chalishazar, et al., “Inosine Monophosphate Dehydrogenase Dependence in a Subset of Small Cell Lung Cancers,” Cell Metabolism 28, no. 3 (2018): 369-382.e5.

[53]

H. Xu, H. Ma, L. Zha, et al., “IMPDH2 Promotes Cell Proliferation and Epithelial-Mesenchymal Transition of Non-Small Cell Lung Cancer by Activating the Wnt/β-Catenin Signaling Pathway,” Oncology Letters 20, no. 5 (2020): 219.

[54]

H. Xu, H. Ma, L. Zha, Q. Li, H. Pan, and L. Zhang, “Genistein Promotes Apoptosis of Lung Cancer Cells Through the IMPDH2/AKT1 Pathway,” American Journal of Translational Research 14, no. 10 (2022): 7040-7051.

[55]

P. Zheng and L. Li, “FANCI Cooperates With IMPDH2 to Promote Lung Adenocarcinoma Tumor Growth via a MEK/ERK/MMPs Pathway,” Oncotargets and Therapy 13 (2020): 451-463.

[56]

J. Zou, Z. Han, L. Zhou, et al., “Elevated Expression of IMPDH2 Is Associated With Progression of Kidney and Bladder Cancer,” Medical Oncology 32, no. 1 (2015): 373.

[57]

S. Wang, F. Chao, C. Zhang, D. Han, G. Xu, and G. Chen, “Circular RNA circPFKP Promotes Cell Proliferation by Activating IMPDH2 in Prostate Cancer,” Cancer Letters 524 (2022): 109-120.

[58]

N. A. Wahab, H. D. Dardar, R. Yunus, Z. M. Zainudin, and N. M. Mokhtar, “Silencing of Hepsin and Inosine 5-Monophosphate Dehydrogenase 2 by siRNA Reduces Prostate Cancer Cells Proliferation,” Malaysian Journal of Pathology 44, no. 1 (2022): 29-38.

[59]

P. Wieczorek, M. Bałut-Wieczorek, M. Jasinski, W. Szabłoński, and A. Antczak, “Inosine Monophosphate Dehydrogenase 2 as a Marker of Aggressive and Advanced Prostate Cancer,” Central European Journal of Urology 71, no. 4 (2018): 399-403.

[60]

S. J. Barfeld, L. Fazli, M. Persson, et al., “Myc-Dependent Purine Biosynthesis Affects Nucleolar Stress and Therapy Response in Prostate Cancer,” Oncotarget 6, no. 14 (2015): 12587-12602.

[61]

L. Zhou, D. Xia, J. Zhu, et al., “Enhanced Expression of IMPDH2 Promotes Metastasis and Advanced Tumor Progression in Patients With Prostate Cancer,” Clinical & Translational Oncology 16, no. 10 (2014): 906-913.

[62]

S. S. Liu, J. S. Li, M. Xue, W. J. Wu, X. Li, and W. Chen, “LncRNA UCA1 Participates in De Novo Synthesis of Guanine Nucleotides in Bladder Cancer by Recruiting TWIST1 to Increase IMPDH1/2,” International Journal of Biological Sciences 19, no. 8 (2023): 2599-2612.

[63]

W. Wang, Y. Wu, S. Chen, et al., “Shikonin Is a Novel and Selective IMPDH2 Inhibitor That Target Triple-Negative Breast Cancer,” Phytotherapy Research 35, no. 1 (2021): 463-476.

[64]

Y. Zhao, Y. Yang, J. Dai, D. Xing, and Y. Dong, “RETRACTED ARTICLE: IMPDH2 Is Highly Expressed in Breast Cancer and Predicts Unfavorable Prognosis,” Biomarkers 26, no. 1 (2021): i-vi.

[65]

Y. Xu, Z. Zheng, Y. Gao, et al., “High Expression of IMPDH2 Is Associated With Aggressive Features and Poor Prognosis of Primary Nasopharyngeal Carcinoma,” Scientific Reports 7, no. 1 (2017): 745.

[66]

Y. Tian, J. Zhang, L. Chen, and X. Zhang, “The Expression and Prognostic Role of IMPDH2 in Ovarian Cancer,” Annals of Diagnostic Pathology 46 (2020): 151511.

[67]

M. Li, B. S. Su, L. H. Chang, et al., “Oxymatrine Induces Apoptosis in Human Cervical Cancer Cells Through Guanine Nucleotide Depletion,” Anti-Cancer Drugs 25, no. 2 (2014): 161-173.

[68]

X. Liu, N. Sato, T. Yabushita, et al., “IMPDH Inhibition Activates TLR-VCAM1 Pathway and Suppresses the Development of MLL-Fusion Leukemia,” EMBO Molecular Medicine 15, no. 1 (2023): e15631.

[69]

K. Felczak, R. Vince, and K. W. Pankiewicz, “NAD-Based Inhibitors With Anticancer Potential,” Bioorganic & Medicinal Chemistry Letters 24, no. 1 (2014): 332-336.

[70]

G. D. Keppeke, D. Barcelos, M. Fernandes, et al., “IMP Dehydrogenase Rod/Ring Structures in Acral Melanomas,” Pigment Cell & Melanoma Research 33, no. 3 (2020): 490-497.

[71]

G. Gao, Q. Xue, J. He, et al., “Corrigendum to ‘Single-Cell RNA Sequencing in Double-Hit Lymphoma: IMPDH2 Induces the Progression of Lymphoma by Activating the PI3K/AKT/mTOR Signaling Pathway’,” International Immunopharmacology 125, no. 1 (2023): 111125 (Int Immunopharmacol, 2024. 126: 111292).

[72]

G. Gao, Q. Xue, J. He, et al., “Single-Cell RNA Sequencing in Double-Hit Lymphoma: IMPDH2 Induces the Progression of Lymphoma by Activating the PI3K/AKT/mTOR Signaling Pathway,” International Immunopharmacology 125, no. 1 (2023): 111125.

[73]

S. Kofuji, A. Hirayama, A. O. Eberhardt, et al., “IMP Dehydrogenase-2 Drives Aberrant Nucleolar Activity and Promotes Tumorigenesis in Glioblastoma,” Nature Cell Biology 21, no. 8 (2019): 1003-1014.

[74]

J. M. Shireman, F. Atashi, G. Lee, et al., “De Novo Purine Biosynthesis Is a Major Driver of Chemoresistance in Glioblastoma,” Brain 144, no. 4 (2021): 1230-1246.

[75]

S. Zhou, X. Yin, M. Mayr, M. Noor, P. J. Hylands, and Q. Xu, “Proteomic Landscape of TGF-β1-Induced Fibrogenesis in Renal Fibroblasts,” Scientific Reports 10, no. 1 (2020): 19054.

[76]

X. Wang, M. Xiong, Y. Zeng, X. Sun, T. Gong, and Z. Zhang, “Mechanistic Studies of a Novel Mycophenolic Acid-Glucosamine Conjugate That Attenuates Renal Ischemia/Reperfusion Injury in Rat,” Molecular Pharmaceutics 11, no. 10 (2014): 3503-3514.

[77]

H. Su, J. H. Gunter, M. de Vries, et al., “Inhibition of Inosine Monophosphate Dehydrogenase Reduces Adipogenesis and Diet-Induced Obesity,” Biochemical and Biophysical Research Communications 386, no. 2 (2009): 351-355.

[78]

J. Hu, S. Zheng, M. Hua, M. Ding, Z. Hu, and H. Jiang, “Deletion of Impdh2 in Adipocyte Precursors Limits the Expansion of White Adipose Tissue and Enhances Metabolic Health With Overnutrition,” Biochemical and Biophysical Research Communications 716 (2024): 149998.

[79]

E. T. Walters, R. J. Crook, G. G. Neely, T. J. Price, and E. S. J. Smith, “Persistent Nociceptor Hyperactivity as a Painful Evolutionary Adaptation,” Trends in Neurosciences 46, no. 3 (2023): 211-227.

[80]

F. Mesquida-Veny, J. A. Del Río, and A. Hervera, “Macrophagic and Microglial Complexity After Neuronal Injury,” Progress in Neurobiology 200 (2021): 101970.

[81]

L. Yao, M. Hatami, W. Ma, and T. Skutella, “Vaccine-Based Immunotherapy and Related Preclinical Models for Glioma,” Trends in Molecular Medicine 30, no. 10 (2024): 965-981.

[82]

T. M. Manzia, B. Antonelli, A. Carraro, et al., “Immunosuppression in Adult Liver Transplant Recipients: A 2024 Update From the Italian Liver Transplant Working Group,” Hepatology International 18, no. 5 (2024): 1416-1430.

[83]

S. B. Braun-Sand and M. Peetz, “Inosine Monophosphate Dehydrogenase as a Target for Antiviral, Anticancer, Antimicrobial and Immunosuppressive Therapeutics,” Future Medicinal Chemistry 2, no. 1 (2010): 81-92.

[84]

M. L. Urban, L. Manenti, and A. Vaglio, “Fibrosis - A Common Pathway to Organ Injury and Failure,” New England Journal of Medicine 373, no. 1 (2015): 95-96.

[85]

T. Nakanishi, T. Morokata, T. Noto, et al., “Effect of the Inosine 5′-Monophosphate Dehydrogenase Inhibitor BMS-566419 on Renal Fibrosis in Unilateral Ureteral Obstruction in Rats,” International Immunopharmacology 10, no. 11 (2010): 1434-1439.

[86]

A. G. Zimmermann, J. J. Gu, J. Laliberté, and B. S. Mitchell, “Inosine-5′-Monophosphate Dehydrogenase: Regulation of Expression and Role in Cellular Proliferation and T Lymphocyte Activation,” Progress in Nucleic Acid Research and Molecular Biology 61 (1998): 181-209.

[87]

W. B. French, P. R. Shah, Y. I. Fatani, et al., “Mortality and Costs Associated With Acute Kidney Injury Following Major Elective, Non-Cardiac Surgery,” Journal of Clinical Anesthesia 82 (2022): 110933, https://doi.org/10.1016/j.jclinane.2022.110933.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/