Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk

Shirin Pourteymour , Rakesh Kumar Majhi , Frode A. Norheim , Christian A. Drevon

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70026

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70026 DOI: 10.1111/cpr.70026
REVIEW

Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk

Author information +
History +
PDF

Abstract

Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle–brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.

Keywords

brain / brain ageing / CNS myelination / exercise / healthy ageing / myokines and brain health

Cite this article

Download citation ▾
Shirin Pourteymour, Rakesh Kumar Majhi, Frode A. Norheim, Christian A. Drevon. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Proliferation, 2025, 58(7): e70026 DOI:10.1111/cpr.70026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Dubois, H. H. Feldman, C. Jacova, et al., “Revising the Definition of Alzheimer's Disease: A New Lexicon,” Lancet Neurology 9 (2010): 1118-1127.

[2]

Z. Arvanitakis, R. C. Shah, and D. A. Bennett, “Diagnosis and Management of Dementia: Review,” JAMA 322 (2019): 1589-1599.

[3]

S. Norton, F. E. Matthews, D. E. Barnes, K. Yaffe, and C. Brayne, “Potential for Primary Prevention of Alzheimer's Disease: An Analysis of Population-Based Data,” Lancet Neurology 13 (2014): 788-794.

[4]

P. T. Kamatham, R. Shukla, D. K. Khatri, and L. K. Vora, “Pathogenesis, Diagnostics, and Therapeutics for Alzheimer's Disease: Breaking the Memory Barrier,” Ageing Research Reviews 101 (2024): 102481.

[5]

E. Jaul and J. Barron, “Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population,” Frontiers in Public Health 5 (2017): 335.

[6]

D. J. Tisserand, P. J. Visser, M. P. van Boxtel, and J. Jolles, “The Relation Between Global and Limbic Brain Volumes on MRI and Cognitive Performance in Healthy Individuals Across the Age Range,” Neurobiology of Aging 21 (2000): 569-576.

[7]

D. J. Tisserand, J. C. Pruessner, E. J. Sanz Arigita, et al., “Regional Frontal Cortical Volumes Decrease Differentially in Aging: An MRI Study to Compare Volumetric Approaches and Voxel-Based Morphometry,” NeuroImage 17 (2002): 657-669.

[8]

E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henkenius, and A. W. Toga, “Mapping Cortical Change Across the Human Life Span,” Nature Neuroscience 6 (2003): 309-315.

[9]

E. R. Sowell, P. M. Thompson, K. D. Tessner, and A. W. Toga, “Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships During Postadolescent Brain Maturation,” Journal of Neuroscience 21 (2001): 8819-8829.

[10]

N. Raz, U. Lindenberger, K. M. Rodrigue, et al., “Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers,” Cerebral Cortex (New York, NY: 1991) 15 (2005): 1676-1689.

[11]

R. Peters, “Ageing and the Brain,” Postgraduate Medical Journal 82 (2006): 84-88.

[12]

T. D. Smith, M. M. Adams, M. Gallagher, J. H. Morrison, and P. R. Rapp, “Circuit-Specific Alterations in Hippocampal Synaptophysin Immunoreactivity Predict Spatial Learning Impairment in Aged Rats,” Journal of Neuroscience 20 (2000): 6587-6593.

[13]

C. A. Barnes, “Normal Aging: Regionally Specific Changes in Hippocampal Synaptic Transmission,” Trends in Neurosciences 17 (1994): 13-18.

[14]

C. T. Siwak-Tapp, E. Head, B. A. Muggenburg, N. W. Milgram, and C. W. Cotman, “Neurogenesis Decreases With Age in the Canine Hippocampus and Correlates With Cognitive Function,” Neurobiology of Learning and Memory 88 (2007): 249-259.

[15]

H. G. Kuhn, H. Dickinson-Anson, and F. H. Gage, “Neurogenesis in the Dentate Gyrus of the Adult Rat: Age-Related Decrease of Neuronal Progenitor Proliferation,” Journal of Neuroscience 16 (1996): 2027-2033.

[16]

R. O. Roberts, Y. E. Geda, D. S. Knopman, et al., “Cardiac Disease Associated With Increased Risk of Nonamnestic Cognitive Impairment: Stronger Effect on Women,” JAMA Neurology 70 (2013): 374-382.

[17]

K. Deckers, S. H. J. Schievink, M. M. F. Rodriquez, et al., “Coronary Heart Disease and Risk for Cognitive Impairment or Dementia: Systematic Review and Meta-Analysis,” PLoS One 12 (2017): e0184244.

[18]

C. A. Hammond, N. J. Blades, S. I. Chaudhry, et al., “Long-Term Cognitive Decline After Newly Diagnosed Heart Failure: Longitudinal Analysis in the CHS (Cardiovascular Health Study),” Circulation. Heart Failure 11 (2018): e004476.

[19]

W. Xie, F. Zheng, L. Yan, and B. Zhong, “Cognitive Decline Before and After Incident Coronary Events,” Journal of the American College of Cardiology 73 (2019): 3041-3050.

[20]

D. M. Lloyd-Jones, E. P. Leip, M. G. Larson, et al., “Prediction of Lifetime Risk for Cardiovascular Disease by Risk Factor Burden at 50 Years of Age,” Circulation 113 (2006): 791-798.

[21]

J. Agrimi, D. Menicucci, J. H. Qu, et al., “Enhanced Myocardial Adenylyl Cyclase Activity Alters Heart-Brain Communication,” JACC: Clinical Electrophysiology 9 (2023): 2219-2235.

[22]

J. H. Park, J. H. Moon, H. J. Kim, M. H. Kong, and Y. H. Oh, “Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks,” Korean Journal of Family Medicine 41 (2020): 365-373.

[23]

M. P. Mattson, “Evolutionary Aspects of Human Exercise-Born to Run Purposefully,” Ageing Research Reviews 11 (2012): 347-352.

[24]

J. A. Kanaley, S. R. Colberg, M. H. Corcoran, et al., “Exercise/Physical Activity in Individuals With Type 2 Diabetes: A Consensus Statement From the American College of Sports Medicine,” Medicine and Science in Sports and Exercise 54 (2022): 353-368.

[25]

C. Greenhill, “The Metabolic Benefits of Exercise-Induced Hepatic Autophagy,” Nature Reviews. Endocrinology 19, no. 5 (2023): 254, https://doi.org/10.1038/s41574-023-00823-6.

[26]

Y. Park, D. H. Sinn, K. Kim, and G. Y. Gwak, “Associations of Physical Activity Domains and Muscle Strength Exercise With Non-Alcoholic Fatty Liver Disease: A Nation-Wide Cohort Study,” Scientific Reports 13 (2023): 4724.

[27]

M. Idorn and P. Hojman, “Exercise-Dependent Regulation of NK Cells in Cancer Protection,” Trends in Molecular Medicine 22 (2016): 565-577.

[28]

J. Alty, M. Farrow, and K. Lawler, “Exercise and Dementia Prevention,” Practical Neurology 20 (2020): 234-240.

[29]

J. Agrimi, C. Spalletti, C. Baroni, et al., “Obese Mice Exposed to Psychosocial Stress Display Cardiac and Hippocampal Dysfunction Associated With Local Brain-Derived Neurotrophic Factor Depletion,” eBioMedicine 47 (2019): 384-401.

[30]

D. J. O'Gorman, H. K. Karlsson, S. McQuaid, et al., “Exercise Training Increases Insulin-Stimulated Glucose Disposal and GLUT4 (SLC2A4) Protein Content in Patients With Type 2 Diabetes,” Diabetologia 49 (2006): 2983-2992.

[31]

A. N. Pizarro, J. C. Ribeiro, E. A. Marques, J. Mota, and M. P. Santos, “Is Walking to School Associated With Improved Metabolic Health?,” International Journal of Behavioral Nutrition and Physical Activity 10 (2013): 12.

[32]

T. Christiansen, S. K. Paulsen, J. M. Bruun, S. B. Pedersen, and B. Richelsen, “Exercise Training Versus Diet-Induced Weight-Loss on Metabolic Risk Factors and Inflammatory Markers in Obese Subjects: A 12-Week Randomized Intervention Study,” American Journal of Physiology. Endocrinology and Metabolism 298 (2010): E824-E831.

[33]

N. M. Hamburg, C. J. McMackin, A. L. Huang, et al., “Physical Inactivity Rapidly Induces Insulin Resistance and Microvascular Dysfunction in Healthy Volunteers,” Arteriosclerosis, Thrombosis, and Vascular Biology 27 (2007): 2650-2656.

[34]

G. N. Healy, D. W. Dunstan, J. Salmon, et al., “Breaks in Sedentary Time: Beneficial Associations With Metabolic Risk,” Diabetes Care 31 (2008): 661-666.

[35]

D. W. Dunstan, B. A. Kingwell, R. Larsen, et al., “Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses,” Diabetes Care 35 (2012): 976-983.

[36]

J. Kusuyama, A. B. Alves-Wagner, N. S. Makarewicz, and L. J. Goodyear, “Effects of Maternal and Paternal Exercise on Offspring Metabolism,” Nature Metabolism 2 (2020): 858-872.

[37]

R. C. Laker, A. Altintas, T. S. Lillard, et al., “Exercise During Pregnancy Mitigates Negative Effects of Parental Obesity on Metabolic Function in Adult Mouse Offspring,” Journal of Applied Physiology (Bethesda, MD: 1985) 130 (2021): 605-616.

[38]

C. Moyer, O. R. Reoyo, and L. May, “The Influence of Prenatal Exercise on Offspring Health: A Review,” Clinical Medicine Insights: Women's Health 9 (2016): 37-42.

[39]

K. K. Garnaes, S. A. Nyrnes, K. A. Salvesen, O. Salvesen, S. Morkved, and T. Moholdt, “Effect of Supervised Exercise Training During Pregnancy on Neonatal and Maternal Outcomes Among Overweight and Obese Women. Secondary Analyses of the ETIP Trial: A Randomised Controlled Trial,” PLoS One 12 (2017): e0173937.

[40]

J. F. Clapp, B. Lopez, and R. Harcar-Sevcik, “Neonatal Behavioral Profile of the Offspring of Women Who Continued to Exercise Regularly Throughout Pregnancy,” American Journal of Obstetrics and Gynecology 180 (1999): 91-94.

[41]

L. E. May, S. A. Scholtz, R. Suminski, and K. M. Gustafson, “Aerobic Exercise During Pregnancy Influences Infant Heart Rate Variability at One Month of Age,” Early Human Development 90 (2014): 33-38.

[42]

A. G. McMillan, L. E. May, G. G. Gaines, C. Isler, and D. Kuehn, “Effects of Aerobic Exercise During Pregnancy on 1-Month Infant Neuromotor Skills,” Medicine and Science in Sports and Exercise 51 (2019): 1671-1676.

[43]

T. Moholdt and K. I. Stanford, “Exercised Breastmilk: A Kick-Start to Prevent Childhood Obesity?,” Trends in Endocrinology and Metabolism 35 (2024): 23-30.

[44]

F. Sofi, D. Valecchi, D. Bacci, et al., “Physical Activity and Risk of Cognitive Decline: A Meta-Analysis of Prospective Studies,” Journal of Internal Medicine 269 (2011): 107-117.

[45]

M. Hamer and Y. Chida, “Physical Activity and Risk of Neurodegenerative Disease: A Systematic Review of Prospective Evidence,” Psychological Medicine 39 (2009): 3-11.

[46]

D. A. Raichlen and J. D. Polk, “Linking Brains and Brawn: Exercise and the Evolution of Human Neurobiology,” Proceedings of the Biological Sciences 280 (2013): 20122250.

[47]

D. A. Raichlen and A. D. Gordon, “Relationship Between Exercise Capacity and Brain Size in Mammals,” PLoS One 6 (2011): e20601.

[48]

I. Matthews, A. Birnbaum, A. Gromova, et al., “Skeletal Muscle TFEB Signaling Promotes Central Nervous System Function and Reduces Neuroinflammation During Aging and Neurodegenerative Disease,” Cell Reports 42 (2023): 113436.

[49]

F. Herold, A. Torpel, L. Schega, and N. G. Muller, “Functional and/or Structural Brain Changes in Response to Resistance Exercises and Resistance Training Lead to Cognitive Improvements - A Systematic Review,” European Review of Aging and Physical Activity 16 (2019): 10.

[50]

K. I. Erickson, R. L. Leckie, and A. M. Weinstein, “Physical Activity, Fitness, and Gray Matter Volume,” Neurobiology of Aging 35, no. Suppl 2 (2014): S20-S28.

[51]

N. D. Koblinsky, L.-A. C. Meusel, C. E. Greenwood, and N. D. Anderson, “Household Physical Activity Is Positively Associated With Gray Matter Volume in Older Adults,” BMC Geriatrics 21 (2021): 104.

[52]

W. D. S. Killgore, E. A. Olson, and M. Weber, “Physical Exercise Habits Correlate With Gray Matter Volume of the Hippocampus in Healthy Adult Humans,” Scientific Reports 3 (2013): 3457.

[53]

K. Wittfeld, C. Jochem, M. Dorr, et al., “Cardiorespiratory Fitness and Gray Matter Volume in the Temporal, Frontal, and Cerebellar Regions in the General Population,” Mayo Clinic Proceedings 95 (2020): 44-56.

[54]

S. Colcombe and A. F. Kramer, “Fitness Effects on the Cognitive Function of Older Adults: A Meta-Analytic Study,” Psychological Science 14 (2003): 125-130.

[55]

P. J. Smith, J. A. Blumenthal, B. M. Hoffman, et al., “Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials,” Psychosomatic Medicine 72 (2010): 239-252.

[56]

G. Skovbjerg, A. M. Fritzen, C. S. A. Svendsen, et al., “Atlas of Exercise-Induced Brain Activation in Mice,” Molecular Metabolism 82 (2024): 101907.

[57]

A. Montagne, S. R. Barnes, M. D. Sweeney, et al., “Blood-Brain Barrier Breakdown in the Aging Human Hippocampus,” Neuron 85 (2015): 296-302.

[58]

J. L. Whitwell, H. J. Wiste, S. D. Weigand, et al., “Comparison of Imaging Biomarkers in the Alzheimer Disease Neuroimaging Initiative and the Mayo Clinic Study of Aging,” Archives of Neurology 69 (2012): 614-622.

[59]

L. G. Apostolova, K. S. Hwang, J. P. Andrawis, et al., “3D PIB and CSF Biomarker Associations With Hippocampal Atrophy in ADNI Subjects,” Neurobiology of Aging 31 (2010): 1284-1303.

[60]

J. R. Epp, C. Chow, and L. A. Galea, “Hippocampus-Dependent Learning Influences Hippocampal Neurogenesis,” Frontiers in Neuroscience 7 (2013): 57.

[61]

H. van Praag, T. Shubert, C. Zhao, and F. H. Gage, “Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice,” Journal of Neuroscience 25 (2005): 8680-8685.

[62]

D. J. Creer, C. Romberg, L. M. Saksida, H. van Praag, and T. J. Bussey, “Running Enhances Spatial Pattern Separation in Mice,” Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 2367-2372.

[63]

M. W. Marlatt, M. C. Potter, P. J. Lucassen, and H. van Praag, “Running Throughout Middle-Age Improves Memory Function, Hippocampal Neurogenesis, and BDNF Levels in Female C57BL/6J Mice,” Developmental Neurobiology 72 (2012): 943-952.

[64]

J. E. Fardell, J. Vardy, J. D. Shah, and I. N. Johnston, “Cognitive Impairments Caused by Oxaliplatin and 5-Fluorouracil Chemotherapy Are Ameliorated by Physical Activity,” Psychopharmacology 220 (2012): 183-193.

[65]

T. J. Fischer, T. L. Walker, R. W. Overall, M. D. Brandt, and G. Kempermann, “Acute Effects of Wheel Running on Adult Hippocampal Precursor Cells in Mice Are Not Caused by Changes in Cell Cycle Length or S Phase Length,” Frontiers in Neuroscience 8 (2014): 314.

[66]

M. C. Lee, K. Inoue, M. Okamoto, et al., “Voluntary Resistance Running Induces Increased Hippocampal Neurogenesis in Rats Comparable to Load-Free Running,” Neuroscience Letters 537 (2013): 6-10.

[67]

E. Castilla-Ortega, C. Rosell-Valle, C. Pedraza, F. de Rodriguez Fonseca, G. Estivill-Torrus, and L. J. Santin, “Voluntary Exercise Followed by Chronic Stress Strikingly Increases Mature Adult-Born Hippocampal Neurons and Prevents Stress-Induced Deficits in ‘What-When-Where’ Memory,” Neurobiology of Learning and Memory 109 (2014): 62-73.

[68]

J. C. Conover and R. L. Allen, “The Subventricular Zone: New Molecular and Cellular Developments,” Cellular and Molecular Life Sciences 59 (2002): 2128-2135.

[69]

A. Castells-Sanchez, F. Roig-Coll, R. Dacosta-Aguayo, et al., “Exercise and Fitness Neuroprotective Effects: Molecular, Brain Volume and Psychological Correlates and Their Mediating Role in Healthy Late-Middle-Aged Women and Men,” Frontiers in Aging Neuroscience 13 (2021): 615247.

[70]

H. Yanagisawa, I. Dan, D. Tsuzuki, et al., “Acute Moderate Exercise Elicits Increased Dorsolateral Prefrontal Activation and Improves Cognitive Performance With Stroop Test,” NeuroImage 50 (2010): 1702-1710.

[71]

S. J. Colcombe, K. I. Erickson, N. Raz, et al., “Aerobic Fitness Reduces Brain Tissue Loss in Aging Humans,” Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 58 (2003): 176-180.

[72]

A. C. Smolarek, L. H. Ferreira, L. P. Mascarenhas, et al., “The Effects of Strength Training on Cognitive Performance in Elderly Women,” Clinical Interventions in Aging 11 (2016): 749-754.

[73]

K. I. Erickson, M. W. Voss, R. S. Prakash, et al., “Exercise Training Increases Size of Hippocampus and Improves Memory,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 3017-3022.

[74]

L. S. Nagamatsu, T. C. Handy, C. L. Hsu, M. Voss, and T. Liu-Ambrose, “Resistance Training Promotes Cognitive and Functional Brain Plasticity in Seniors With Probable Mild Cognitive Impairment,” Archives of Internal Medicine 172 (2012): 666-668.

[75]

D. H. Yoon, D. Kang, H. J. Kim, J. S. Kim, H. S. Song, and W. Song, “Effect of Elastic Band-Based High-Speed Power Training on Cognitive Function, Physical Performance and Muscle Strength in Older Women With Mild Cognitive Impairment,” Geriatrics & Gerontology International 17 (2017): 765-772.

[76]

L. S. Chow, R. E. Gerszten, J. M. Taylor, et al., “Exerkines in Health, Resilience and Disease,” Nature Reviews. Endocrinology 18 (2022): 273-289.

[77]

A. I. Doncheva, S. Romero, M. Ramirez-Garrastacho, et al., “Extracellular Vesicles and microRNAs Are Altered in Response to Exercise, Insulin Sensitivity and Overweight,” Acta Physiologica (Oxford, England) 236 (2022): e13862.

[78]

C. Morland, K. A. Andersson, O. P. Haugen, et al., “Exercise Induces Cerebral VEGF and Angiogenesis via the Lactate Receptor HCAR1,” Nature Communications 8 (2017): 15557.

[79]

M. Rai and F. Demontis, “Muscle-to-Brain Signaling via Myokines and Myometabolites,” Brain Plasticity 8 (2022): 43-63.

[80]

D. Garcia- Rodriguez and A. Gimenez- Cassina, “Ketone Bodies in the Brain Beyond Fuel Metabolism: From Excitability to Gene Expression and Cell Signaling,” Frontiers in Molecular Neuroscience 14 (2021): 732120.

[81]

R. Yao, K. Nishii, N. Aizu, T. Kito, K. Sakai, and K. Yamada, “Maintenance of the Amygdala-Hippocampal Circuit Function With Safe and Feasible Shaking Exercise Therapy in SAMP-10 Mice,” Dementia and Geriatric Cognitive Disorders Extra 11 (2021): 114-121.

[82]

T. Tsujii, K. Komatsu, and K. Sakatani, “Acute Effects of Physical Exercise on Prefrontal Cortex Activity in Older Adults: A Functional Near-Infrared Spectroscopy Study,” Advances in Experimental Medicine and Biology 765 (2013): 293-298.

[83]

R. Lima-Filho, J. S. Fortuna, D. Cozachenco, et al., “Brain FNDC5/Irisin Expression in Patients and Mouse Models of Major Depression,” eNeuro 10, no. 2 (2023): ENEURO.0256-22.2023, https://doi.org/10.1523/ENEURO.0256-22.2023.

[84]

E. Albrecht, L. Schering, F. Buck, et al., “Irisin: Still Chasing Shadows,” Molecular Metabolism 34 (2020): 124-135.

[85]

S. Maak, F. Norheim, C. A. Drevon, and H. P. Erickson, “Progress and Challenges in the Biology of FNDC5 and Irisin,” Endocrine Reviews 42 (2021): 436-456.

[86]

A. M. Horowitz, X. Fan, G. Bieri, et al., “Blood Factors Transfer Beneficial Effects of Exercise on Neurogenesis and Cognition to the Aged Brain,” Science 369 (2020): 167-173.

[87]

Z. De Miguel, N. Khoury, M. J. Betley, et al., “Exercise Plasma Boosts Memory and Dampens Brain Inflammation via Clusterin,” Nature 600 (2021): 494-499.

[88]

A. C. McPherron, A. M. Lawler, and S. J. Lee, “Regulation of Skeletal Muscle Mass in Mice by a New TGF-Beta Superfamily Member,” Nature 387 (1997): 83-90.

[89]

B. K. Pedersen, A. Steensberg, C. Fischer, et al., “Searching for the Exercise Factor: Is IL-6 a Candidate?,” Journal of Muscle Research and Cell Motility 24 (2003): 113-119.

[90]

P. Bostrom, J. Wu, M. P. Jedrychowski, et al., “A PGC1-Alpha-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis,” Nature 481 (2012): 463-468.

[91]

K. Sakuma, K. Watanabe, M. Sano, et al., “A Possible Role for BDNF, NT-4 and TrkB in the Spinal Cord and Muscle of Rat Subjected to Mechanical Overload, Bupivacaine Injection and Axotomy,” Brain Research 907 (2001): 1-19.

[92]

S. Edman, O. Horwath, T. Van der Stede, et al., “Pro-Brain-Derived Neurotrophic Factor (BDNF), but Not Mature BDNF, Is Expressed in Human Skeletal Muscle: Implications for Exercise-Induced Neuroplasticity,” Function (Oxford, England) 5 (2024): zqae005.

[93]

T. Usui, A. Naruo, M. Okada, Y. Hayabe, and H. Yamawaki, “Brain-Derived Neurotrophic Factor Promotes Angiogenic Tube Formation Through Generation of Oxidative Stress in Human Vascular Endothelial Cells,” Acta Physiologica (Oxford, England) 211 (2014): 385-394.

[94]

P. Kermani and B. Hempstead, “Brain-Derived Neurotrophic Factor: A Newly Described Mediator of Angiogenesis,” Trends in Cardiovascular Medicine 17 (2007): 140-143.

[95]

M. M. Hofer and Y. A. Barde, “Brain-Derived Neurotrophic Factor Prevents Neuronal Death In Vivo,” Nature 331 (1988): 261-262.

[96]

M. P. Mattson, S. Maudsley, and B. Martin, “BDNF and 5-HT: A Dynamic Duo in Age-Related Neuronal Plasticity and Neurodegenerative Disorders,” Trends in Neurosciences 27 (2004): 589-594.

[97]

M. E. Greenberg, B. Xu, B. Lu, and B. L. Hempstead, “New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function,” Journal of Neuroscience 29 (2009): 12764-12767.

[98]

S. J. Mowla, S. Pareek, H. F. Farhadi, et al., “Differential Sorting of Nerve Growth Factor and Brain-Derived Neurotrophic Factor in Hippocampal Neurons,” Journal of Neuroscience 19 (1999): 2069-2080.

[99]

T. Mizui, Y. Ishikawa, H. Kumanogoh, et al., “BDNF Pro-Peptide Actions Facilitate Hippocampal LTD and Are Altered by the Common BDNF Polymorphism Val66Met,” Proceedings of the National Academy of Sciences of the United States of America 112 (2015): E3067-E3074.

[100]

J. P. Zanin, N. Unsain, and A. Anastasia, “Growth Factors and Hormones Pro-Peptides: The Unexpected Adventures of the BDNF Prodomain,” Journal of Neurochemistry 141 (2017): 330-340.

[101]

J. M. Conner, J. C. Lauterborn, Q. Yan, C. M. Gall, and S. Varon, “Distribution of Brain-Derived Neurotrophic Factor (BDNF) Protein and mRNA in the Normal Adult Rat CNS: Evidence for Anterograde Axonal Transport,” Journal of Neuroscience 17 (1997): 2295-2313.

[102]

A. Luoni, F. Macchi, M. Papp, R. Molteni, and M. A. Riva, “Lurasidone Exerts Antidepressant Properties in the Chronic Mild Stress Model Through the Regulation of Synaptic and Neuroplastic Mechanisms in the Rat Prefrontal Cortex,” International Journal of Neuropsychopharmacology 18, no. 4 (2014): pyu061, https://doi.org/10.1093/ijnp/pyu061.

[103]

P. Kowianski, G. Lietzau, E. Czuba, M. Waskow, A. Steliga, and J. Morys, “BDNF: A Key Factor With Multipotent Impact on Brain Signaling and Synaptic Plasticity,” Cellular and Molecular Neurobiology 38 (2018): 579-593.

[104]

G. Fulgenzi, F. Tomassoni-Ardori, L. Babini, et al., “BDNF Modulates Heart Contraction Force and Long-Term Homeostasis Through Truncated TrkB.T1 Receptor Activation,” Journal of Cell Biology 210 (2015): 1003-1012.

[105]

K. Mousavi and B. J. Jasmin, “BDNF Is Expressed in Skeletal Muscle Satellite Cells and Inhibits Myogenic Differentiation,” Journal of Neuroscience 26 (2006): 5739-5749.

[106]

C. Cunha, R. Brambilla, and K. L. Thomas, “A Simple Role for BDNF in Learning and Memory?,” Frontiers in Molecular Neuroscience 3 (2010): 1.

[107]

P. Bekinschtein, M. Cammarota, C. Katche, et al., “BDNF Is Essential to Promote Persistence of Long-Term Memory Storage,” Proceedings of the National Academy of Sciences of the United States of America 105 (2008): 2711-2716.

[108]

P. Bekinschtein, M. Cammarota, and J. H. Medina, “BDNF and Memory Processing,” Neuropharmacology 76 (2014): 677-683.

[109]

P. Bekinschtein, M. Cammarota, I. Izquierdo, and J. H. Medina, “BDNF and Memory Formation and Storage,” Neuroscientist 14 (2008): 147-156.

[110]

F. Cirulli, A. Berry, F. Chiarotti, and E. Alleva, “Intrahippocampal Administration of BDNF in Adult Rats Affects Short-Term Behavioral Plasticity in the Morris Water Maze and Performance in the Elevated Plus-Maze,” Hippocampus 14 (2004): 802-807.

[111]

J. S. Mu, W. P. Li, Z. B. Yao, and X. F. Zhou, “Deprivation of Endogenous Brain-Derived Neurotrophic Factor Results in Impairment of Spatial Learning and Memory in Adult Rats,” Brain Research 835 (1999): 259-265.

[112]

H. W. Horch, A. Kruttgen, S. D. Portbury, and L. C. Katz, “Destabilization of Cortical Dendrites and Spines by BDNF,” Neuron 23 (1999): 353-364.

[113]

L. T. Ferris, J. S. Williams, and C. L. Shen, “The Effect of Acute Exercise on Serum Brain-Derived Neurotrophic Factor Levels and Cognitive Function,” Medicine and Science in Sports and Exercise 39 (2007): 728-734.

[114]

E. W. Griffin, S. Mullally, C. Foley, S. A. Warmington, S. M. O'Mara, and A. M. Kelly, “Aerobic Exercise Improves Hippocampal Function and Increases BDNF in the Serum of Young Adult Males,” Physiology & Behavior 104 (2011): 934-941.

[115]

P. Rasmussen, P. Brassard, H. Adser, et al., “Evidence for a Release of Brain-Derived Neurotrophic Factor From the Brain During Exercise,” Experimental Physiology 94 (2009): 1062-1069.

[116]

S. W. Tang, E. Chu, T. Hui, D. Helmeste, and C. Law, “Influence of Exercise on Serum Brain-Derived Neurotrophic Factor Concentrations in Healthy Human Subjects,” Neuroscience Letters 431 (2008): 62-65.

[117]

S. Rojas Vega, H. K. Struder, B. Vera Wahrmann, A. Schmidt, W. Bloch, and W. Hollmann, “Acute BDNF and Cortisol Response to Low Intensity Exercise and Following Ramp Incremental Exercise to Exhaustion in Humans,” Brain Research 1121 (2006): 59-65.

[118]

J. A. Zoladz, A. Pilc, J. Majerczak, M. Grandys, J. Zapart-Bukowska, and K. Duda, “Endurance Training Increases Plasma Brain-Derived Neurotrophic Factor Concentration in Young Healthy Men,” Journal of Physiology and Pharmacology 59, no. Suppl 7 (2008): 119-132.

[119]

J. M. Gaitan, H. Y. Moon, M. Stremlau, et al., “Effects of Aerobic Exercise Training on Systemic Biomarkers and Cognition in Late Middle-Aged Adults at Risk for Alzheimer's Disease,” Frontiers in Endocrinology (Lausanne) 12 (2021): 660181.

[120]

D. Kimhy, J. Vakhrusheva, M. N. Bartels, et al., “The Impact of Aerobic Exercise on Brain-Derived Neurotrophic Factor and Neurocognition in Individuals With Schizophrenia: A Single-Blind, Randomized Clinical Trial,” Schizophrenia Bulletin 41 (2015): 859-868.

[121]

J. A. Zoladz, J. Majerczak, E. Zeligowska, et al., “Moderate-Intensity Interval Training Increases Serum Brain-Derived Neurotrophic Factor Level and Decreases Inflammation in Parkinson's Disease Patients,” Journal of Physiology and Pharmacology 65 (2014): 441-448.

[122]

A. V. Araya, X. Orellana, D. Godoy, L. Soto, and J. Fiedler, “Effect of Exercise on Circulating Levels of Brain-Derived Neurotrophic Factor (BDNF) in Overweight and Obese Subjects,” Hormone and Metabolic Research 45 (2013): 541-544.

[123]

J. K. Lee, A. C. Koh, S. X. Koh, G. J. Liu, A. Q. Nio, and P. W. Fan, “Neck Cooling and Cognitive Performance Following Exercise-Induced Hyperthermia,” European Journal of Applied Physiology 114 (2014): 375-384.

[124]

K. Skriver, M. Roig, J. Lundbye-Jensen, et al., “Acute Exercise Improves Motor Memory: Exploring Potential Biomarkers,” Neurobiology of Learning and Memory 116 (2014): 46-58.

[125]

B. Winter, C. Breitenstein, F. C. Mooren, et al., “High Impact Running Improves Learning,” Neurobiology of Learning and Memory 87 (2007): 597-609.

[126]

J. J. Heisz, I. B. Clark, K. Bonin, et al., “The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors,” Journal of Cognitive Neuroscience 29 (2017): 1895-1907.

[127]

P. Z. Liu and R. Nusslock, “Exercise-Mediated Neurogenesis in the Hippocampus via BDNF,” Frontiers in Neuroscience 12 (2018): 52.

[128]

M. Parrini, D. Ghezzi, G. Deidda, et al., “Aerobic Exercise and a BDNF-Mimetic Therapy Rescue Learning and Memory in a Mouse Model of Down Syndrome,” Scientific Reports 7 (2017): 16825.

[129]

W. Pan, W. A. Banks, M. B. Fasold, J. Bluth, and A. J. Kastin, “Transport of Brain-Derived Neurotrophic Factor Across the Blood-Brain Barrier,” Neuropharmacology 37 (1998): 1553-1561.

[130]

J. F. Yarrow, L. J. White, S. C. McCoy, and S. E. Borst, “Training Augments Resistance Exercise Induced Elevation of Circulating Brain Derived Neurotrophic Factor (BDNF),” Neuroscience Letters 479 (2010): 161-165.

[131]

F. Norheim, T. Raastad, B. Thiede, A. C. Rustan, C. A. Drevon, and F. Haugen, “Proteomic Identification of Secreted Proteins From Human Skeletal Muscle Cells and Expression in Response to Strength Training,” American Journal of Physiology. Endocrinology and Metabolism 301 (2011): E1013-E1021.

[132]

A. Cannavo, S. Jun, G. Rengo, et al., “beta3AR-Dependent Brain-Derived Neurotrophic Factor (BDNF) Generation Limits Chronic Postischemic Heart Failure,” Circulation Research 132 (2023): 867-881.

[133]

N. Feng, S. Huke, G. Zhu, et al., “Constitutive BDNF/TrkB Signaling Is Required for Normal Cardiac Contraction and Relaxation,” Proceedings of the National Academy of Sciences of the United States of America 112 (2015): 1880-1885.

[134]

X. Yang, M. Zhang, B. Xie, et al., “Myocardial Brain-Derived Neurotrophic Factor Regulates Cardiac Bioenergetics Through the Transcription Factor Yin Yang 1,” Cardiovascular Research 119 (2023): 571-586.

[135]

A. Elia, A. Cannavo, G. Gambino, et al., “Aging Is Associated With Cardiac Autonomic Nerve Fiber Depletion and Reduced Cardiac and Circulating BDNF Levels,” Journal of Geriatric Cardiology 18 (2021): 549-559.

[136]

S. Pourteymour, K. Eckardt, T. Holen, et al., “Global mRNA Sequencing of Human Skeletal Muscle: Search for Novel Exercise-Regulated Myokines,” Molecular Metabolism 6, no. 4 (2017): 352-365, https://doi.org/10.1016/j.molmet.2017.01.007.

[137]

T. M. Langleite, J. Jensen, F. Norheim, et al., “Insulin Sensitivity, Body Composition and Adipose Depots Following 12 w Combined Endurance and Strength Training in Dysglycemic and Normoglycemic Sedentary Men,” Archives of Physiology and Biochemistry 122 (2016): 167-179.

[138]

C. Easley-Neal, O. Foreman, N. Sharma, A. A. Zarrin, and R. M. Weimer, “CSF1R Ligands IL-34 and CSF1 Are Differentially Required for Microglia Development and Maintenance in White and Gray Matter Brain Regions,” Frontiers in Immunology 10 (2019): 2199.

[139]

J. A. Hamilton, “Colony-Stimulating Factors in Inflammation and Autoimmunity,” Nature Reviews. Immunology 8 (2008): 533-544.

[140]

N. Oosterhof, L. E. Kuil, H. C. van der Linde, et al., “Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates Microglia Density and Distribution, but Not Microglia Differentiation In Vivo,” Cell Reports 24 (2018): 1203-1217.e1206.

[141]

R. Berglund, Y. Cheng, E. Piket, et al., “The Aging Mouse CNS Is Protected by an Autophagy-Dependent Microglia Population Promoted by IL-34,” Nature Communications 15 (2024): 383.

[142]

E. R. Stanley and P. M. Heard, “Factors Regulating Macrophage Production and Growth. Purification and Some Properties of the Colony Stimulating Factor From Medium Conditioned by Mouse L Cells,” Journal of Biological Chemistry 252 (1977): 4305-4312.

[143]

H. Lin, E. Lee, K. Hestir, et al., “Discovery of a Cytokine and Its Receptor by Functional Screening of the Extracellular Proteome,” Science 320 (2008): 807-811.

[144]

S. J. Hwang, B. Choi, S. S. Kang, et al., “Interleukin-34 Produced by Human Fibroblast-Like Synovial Cells in Rheumatoid Arthritis Supports Osteoclastogenesis,” Arthritis Research & Therapy 14 (2012): R14.

[145]

Y. Tian, H. Shen, L. Xia, and J. Lu, “Elevated Serum and Synovial Fluid Levels of Interleukin-34 in Rheumatoid Arthritis: Possible Association With Disease Progression via Interleukin-17 Production,” Journal of Interferon & Cytokine Research 33 (2013): 398-401.

[146]

B. Rich, M. Scadeng, M. Yamaguchi, P. D. Wagner, and E. C. Breen, “Skeletal Myofiber Vascular Endothelial Growth Factor Is Required for the Exercise Training-Induced Increase in Dentate Gyrus Neuronal Precursor Cells,” Journal of Physiology 595 (2017): 5931-5943.

[147]

L. Jensen, H. Pilegaard, P. D. Neufer, and Y. Hellsten, “Effect of Acute Exercise and Exercise Training on VEGF Splice Variants in Human Skeletal Muscle,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 287 (2004): R397-R402.

[148]

C. Brinkmann, L. Schafer, M. Masoud, et al., “Effects of Cycling and Exergaming on Neurotrophic Factors in Elderly Type 2 Diabetic Men - A Preliminary Investigation,” Experimental and Clinical Endocrinology & Diabetes 125 (2017): 436-440.

[149]

F. Suhr, S. Knuth, S. Achtzehn, J. Mester, and M. de Marees, “Acute Exhaustive Exercise Under Normoxic and Normobaric Hypoxic Conditions Differentially Regulates Angiogenic Biomarkers in Humans,” Medicina (Kaunas, Lithuania) 57, no. 7 (2021): 727, https://doi.org/10.3390/medicina57070727.

[150]

K. Fabel, K. Fabel, B. Tam, et al., “VEGF Is Necessary for Exercise-Induced Adult Hippocampal Neurogenesis,” European Journal of Neuroscience 18 (2003): 2803-2812.

[151]

S. Zhong, L. Li, Y. L. Zhang, et al., “Acetaldehyde Dehydrogenase 2 Interactions With LDLR and AMPK Regulate Foam Cell Formation,” Journal of Clinical Investigation 129 (2019): 252-267.

[152]

C. Vivar, M. C. Potter, and H. van Praag, “All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis,” Current Topics in Behavioral Neurosciences 15 (2013): 189-210.

[153]

V. Mohamed-Ali, S. Goodrick, A. Rawesh, et al., “Subcutaneous Adipose Tissue Releases Interleukin-6, but Not Tumor Necrosis Factor-Alpha, In Vivo,” Journal of Clinical Endocrinology and Metabolism 82 (1997): 4196-4200.

[154]

B. K. Pedersen and M. A. Febbraio, “Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6,” Physiological Reviews 88 (2008): 1379-1406.

[155]

A. Steensberg, G. van Hall, T. Osada, M. Sacchetti, B. Saltin, and B. Klarlund Pedersen, “Production of Interleukin-6 in Contracting Human Skeletal Muscles Can Account for the Exercise-Induced Increase in Plasma Interleukin-6,” Journal of Physiology 529, no. Pt 1 (2000): 237-242.

[156]

A. Vilotic, M. Nacka-Aleksic, A. Pirkovic, Z. Bojic-Trbojevic, D. Dekanski, and M. Jovanovic Krivokuca, “IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies,” International Journal of Molecular Sciences 23, no. 23 (2022): 14574, https://doi.org/10.3390/ijms232314574.

[157]

B. Schöbitz, D. A. M. Voorhuis, and E. R. De Kloet, “Localization of Interleukin 6 mRNA and Interleukin 6 Receptor mRNA in Rat Brain,” Neuroscience Letters 136 (1992): 189-192.

[158]

B. Schobitz, E. R. de Kloet, W. Sutanto, and F. Holsboer, “Cellular Localization of Interleukin 6 mRNA and Interleukin 6 Receptor mRNA in Rat Brain,” European Journal of Neuroscience 5 (1993): 1426-1435.

[159]

R. A. Gadient and U. Otten, “Differential Expression of Interleukin-6 (IL-6) and Interleukin-6 Receptor (IL-6R) mRNAs in Rat Hypothalamus,” Neuroscience Letters 153 (1993): 13-16.

[160]

R. A. Gadient and U. Otten, “Identification of Interleukin-6 (IL-6)-Expressing Neurons in the Cerebellum and Hippocampus of Normal Adult Rats,” Neuroscience Letters 182 (1994): 243-246.

[161]

R. A. Gadient and U. Otten, “Expression of Interleukin-6 (IL-6) and Interleukin-6 Receptor (IL-6R) mRNAs in Rat Brain During Postnatal Development,” Brain Research 637 (1994): 10-14.

[162]

E. Y. Ting, A. C. Yang, and S. J. Tsai, “Role of Interleukin-6 in Depressive Disorder,” International Journal of Molecular Sciences 21, no. 6 (2020): 2194, https://doi.org/10.3390/ijms21062194.

[163]

E. Haroon, A. W. Daguanno, B. J. Woolwine, et al., “Antidepressant Treatment Resistance Is Associated With Increased Inflammatory Markers in Patients With Major Depressive Disorder,” Psychoneuroendocrinology 95 (2018): 43-49.

[164]

M. M. Borovcanin, I. Jovanovic, G. Radosavljevic, et al., “Interleukin-6 in Schizophrenia-Is There a Therapeutic Relevance?,” Frontiers in Psychiatry 8 (2017): 221.

[165]

D. R. Goldsmith, E. Haroon, A. H. Miller, G. P. Strauss, P. F. Buckley, and B. J. Miller, “TNF-Alpha and IL-6 Are Associated With the Deficit Syndrome and Negative Symptoms in Patients With Chronic Schizophrenia,” Schizophrenia Research 199 (2018): 281-284.

[166]

S. Hidese, J. Matsuo, I. Ishida, et al., “Relationship of Handgrip Strength and Body Mass Index With Cognitive Function in Patients With Schizophrenia,” Frontiers in Psychiatry 9 (2018): 156.

[167]

F. Norheim, Y. Hasin-Brumshtein, L. Vergnes, et al., “Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits,” Cell Metabolism 29 (2019): 932-949.e4.

[168]

H. Y. Moon, A. Becke, D. Berron, et al., “Running-Induced Systemic Cathepsin B Secretion Is Associated With Memory Function,” Cell Metabolism 24 (2016): 332-340.

[169]

A. de la Rosa, E. Solana, R. Corpas, et al., “Long-Term Exercise Training Improves Memory in Middle-Aged Men and Modulates Peripheral Levels of BDNF and Cathepsin B,” Scientific Reports 9 (2019): 3337.

[170]

B. K. Pedersen, “Physical Activity and Muscle-Brain Crosstalk,” Nature Reviews. Endocrinology 15 (2019): 383-392.

[171]

S. Mueller-Steiner, Y. Zhou, H. Arai, et al., “Antiamyloidogenic and Neuroprotective Functions of Cathepsin B: Implications for Alzheimer's Disease,” Neuron 51 (2006): 703-714.

[172]

G. Hook, T. Reinheckel, J. Ni, et al., “Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders,” Pharmacological Reviews 74 (2022): 600-629.

[173]

Y. Wu, P. Mumford, S. Noy, et al., “Cathepsin B Abundance, Activity and Microglial Localisation in Alzheimer's Disease-Down Syndrome and Early Onset Alzheimer's Disease; the Role of Elevated Cystatin B,” Acta Neuropathologica Communications 11 (2023): 132.

[174]

M. E. Raichle and D. A. Gusnard, “Appraising the Brain's Energy Budget,” Proceedings of the National Academy of Sciences of the United States of America 99 (2002): 10237-10239.

[175]

Q. Ding, S. Vaynman, P. Souda, J. P. Whitelegge, and F. Gomez-Pinilla, “Exercise Affects Energy Metabolism and Neural Plasticity-Related Proteins in the Hippocampus as Revealed by Proteomic Analysis,” European Journal of Neuroscience 24 (2006): 1265-1276.

[176]

N. Ferrara, “Vascular Endothelial Growth Factor and the Regulation of Angiogenesis,” Recent Progress in Hormone Research 55 (2000): 15-35; discussion 35-16.

[177]

P. De Rossi, E. Harde, J. P. Dupuis, et al., “A Critical Role for VEGF and VEGFR2 in NMDA Receptor Synaptic Function and Fear-Related Behavior,” Molecular Psychiatry 21 (2016): 1768-1780.

[178]

Y. Poitelon, A. M. Kopec, and S. Belin, “Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism,” Cells 9, no. 4 (2020): 812, https://doi.org/10.3390/cells9040812.

[179]

R. A. Demel and B. De Kruyff, “The Function of Sterols in Membranes,” Biochimica et Biophysica Acta 457 (1976): 109-132.

[180]

G. Saher, B. Brugger, C. Lappe-Siefke, et al., “High Cholesterol Level Is Essential for Myelin Membrane Growth,” Nature Neuroscience 8 (2005): 468-475.

[181]

N. Camargo, A. Goudriaan, A. F. van Deijk, et al., “Oligodendroglial Myelination Requires Astrocyte-Derived Lipids,” PLoS Biology 15 (2017): e1002605.

[182]

J. M. Dietschy and S. D. Turley, “Thematic Review Series: Brain Lipids. Cholesterol Metabolism in the Central Nervous System During Early Development and in the Mature Animal,” Journal of Lipid Research 45 (2004): 1375-1397.

[183]

S. Ando, Y. Tanaka, Y. Toyoda, and K. Kon, “Turnover of Myelin Lipids in Aging Brain,” Neurochemical Research 28 (2003): 5-13.

[184]

D. S. Goodman and R. P. Noble, “Turnover of Plasma Cholesterol in Man,” Journal of Clinical Investigation 47 (1968): 231-241.

[185]

H. Yoon, A. Kleven, A. Paulsen, et al., “Interplay Between Exercise and Dietary Fat Modulates Myelinogenesis in the Central Nervous System,” Biochimica et Biophysica Acta 1862 (2016): 545-555.

[186]

J. Zheng, X. Sun, C. Ma, B. M. Li, and F. Luo, “Voluntary Wheel Running Promotes Myelination in the Motor Cortex Through Wnt Signaling in Mice,” Molecular Brain 12 (2019): 85.

[187]

S. K. Jensen, N. J. Michaels, S. Ilyntskyy, M. B. Keough, O. Kovalchuk, and V. W. Yong, “Multimodal Enhancement of Remyelination by Exercise With a Pivotal Role for Oligodendroglial PGC1alpha,” Cell Reports 24 (2018): 3167-3179.

[188]

L. Chen, F. L. Chao, W. Lu, et al., “Long-Term Running Exercise Delays Age-Related Changes in White Matter in Rats,” Frontiers in Aging Neuroscience 12 (2020): 590530.

[189]

N. Feter, M. P. Freitas, N. G. Gonzales, D. Umpierre, R. K. Cardoso, and A. J. Rombaldi, “Effects of Physical Exercise on Myelin Sheath Regeneration: A Systematic Review and Meta-Analysis,” Science & Sports 33 (2018): 8-21.

[190]

Q. Xiao, F. Wang, Y. Luo, et al., “Exercise Protects Myelinated Fibers of White Matter in a Rat Model of Depression,” Journal of Comparative Neurology 526 (2018): 537-549.

[191]

F. L. Chao, L. Zhang, Y. Zhang, et al., “Running Exercise Protects Against Myelin Breakdown in the Absence of Neurogenesis in the Hippocampus of AD Mice,” Brain Research 1684 (2018): 50-59.

[192]

A. Z. Burzynska, L. Chaddock-Heyman, M. W. Voss, et al., “Physical Activity and Cardiorespiratory Fitness Are Beneficial for White Matter in Low-Fit Older Adults,” PLoS One 9 (2014): e107413.

[193]

B. Y. Tseng, T. Gundapuneedi, M. A. Khan, et al., “White Matter Integrity in Physically Fit Older Adults,” NeuroImage 82 (2013): 510-516.

[194]

M. W. Voss, S. Heo, R. S. Prakash, et al., “The Influence of Aerobic Fitness on Cerebral White Matter Integrity and Cognitive Function in Older Adults: Results of a One-Year Exercise Intervention,” Human Brain Mapping 34 (2013): 2972-2985.

[195]

T. Tarumi, B. P. Thomas, B. Y. Tseng, et al., “Cerebral White Matter Integrity in Amnestic Mild Cognitive Impairment: A 1-Year Randomized Controlled Trial of Aerobic Exercise Training,” Journal of Alzheimer's Disease 73 (2020): 489-501.

[196]

J. M. Northey, N. Cherbuin, K. L. Pumpa, D. J. Smee, and B. Rattray, “Exercise Interventions for Cognitive Function in Adults Older Than 50: A Systematic Review With Meta-Analysis,” British Journal of Sports Medicine 52, no. 3 (2017): 154-160, https://doi.org/10.1136/bjsports-2016-096587.

[197]

J. Ilha, R. T. Araujo, T. Malysz, et al., “Endurance and Resistance Exercise Training Programs Elicit Specific Effects on Sciatic Nerve Regeneration After Experimental Traumatic Lesion in Rats,” Neurorehabilitation and Neural Repair 22 (2008): 355-366.

[198]

N. L. van Meeteren, J. H. Brakkee, P. J. Helders, and W. H. Gispen, “The Effect of Exercise Training on Functional Recovery After Sciatic Nerve Crush in the Rat,” Journal of the Peripheral Nervous System 3 (1998): 277-282.

[199]

V. K. Venkatraman, A. Sanderson, K. L. Cox, et al., “Effect of a 24-Month Physical Activity Program on Brain Changes in Older Adults at Risk of Alzheimer's Disease: The AIBL Active Trial,” Neurobiology of Aging 89 (2020): 132-141.

[200]

K. R. Norum, T. Berg, P. Helgerud, and C. A. Drevon, “Transport of Cholesterol,” Physiological Reviews 63 (1983): 1343-1419.

[201]

A. S. Plump, J. D. Smith, T. Hayek, et al., “Severe Hypercholesterolemia and Atherosclerosis in Apolipoprotein E-Deficient Mice Created by Homologous Recombination in ES Cells,” Cell 71 (1992): 343-353.

[202]

M. F. Linton, R. Gish, S. T. Hubl, et al., “Phenotypes of Apolipoprotein B and Apolipoprotein E After Liver Transplantation,” Journal of Clinical Investigation 88 (1991): 270-281.

[203]

E. Masliah, M. Mallory, N. Ge, M. Alford, I. Veinbergs, and A. D. Roses, “Neurodegeneration in the Central Nervous System of apoE-Deficient Mice,” Experimental Neurology 136 (1995): 107-122.

[204]

J. Poirier, “Apolipoprotein E in the Brain and Its Role in Alzheimer's Disease,” Journal of Psychiatry & Neuroscience 21 (1996): 128-134.

[205]

M. Mato, S. Ookawara, T. Mashiko, et al., “Regional Difference of Lipid Distribution in Brain of Apolipoprotein E Deficient Mice,” Anatomical Record 256 (1999): 165-176.

[206]

I. Soto, L. C. Graham, H. J. Richter, et al., “APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction,” PLoS Biology 13 (2015): e1002279.

[207]

V. I. Zannis, J. L. Breslow, G. Utermann, et al., “Proposed Nomenclature of apoE Isoproteins, apoE Genotypes, and Phenotypes,” Journal of Lipid Research 23 (1982): 911-914.

[208]

R. W. Mahley and S. C. Rall, “Apolipoprotein E: Far More Than a Lipid Transport Protein,” Annual Review of Genomics and Human Genetics 1 (2000): 507-537.

[209]

L. A. Farrer, “Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease,” JAMA 278 (1997): 1349.

[210]

H. Zhang, P. W. Reymer, M. S. Liu, et al., “Patients With apoE3 Deficiency (E2/2, E3/2, and E4/2) who Manifest With Hyperlipidemia Have Increased Frequency of an Asn 291→Ser Mutation in the Human LPL Gene,” Arteriosclerosis, Thrombosis, and Vascular Biology 15 (1995): 1695-1703.

[211]

P. Huebbe and G. Rimbach, “Evolution of Human Apolipoprotein E (APOE) Isoforms: Gene Structure, Protein Function and Interaction With Dietary Factors,” Ageing Research Reviews 37 (2017): 146-161.

[212]

S. Egert, G. Rimbach, and P. Huebbe, “ApoE Genotype: From Geographic Distribution to Function and Responsiveness to Dietary Factors,” Proceedings of the Nutrition Society 71 (2012): 410-424.

[213]

P. P. Singh, M. Singh, and S. S. Mastana, “APOE Distribution in World Populations With New Data From India and the UK,” Annals of Human Biology 33 (2006): 279-308.

[214]

J. W. Blanchard, L. A. Akay, J. Davila-Velderrain, et al., “APOE4 Impairs Myelination via Cholesterol Dysregulation in Oligodendrocytes,” Nature 611 (2022): 769-779.

[215]

G. Saher, S. Quintes, and K. A. Nave, “Cholesterol: A Novel Regulatory Role in Myelin Formation,” Neuroscientist 17 (2011): 79-93.

[216]

D. C. Dean, B. A. Jerskey, K. Chen, et al., “Brain Differences in Infants at Differential Genetic Risk for Late-Onset Alzheimer Disease: A Cross-Sectional Imaging Study,” JAMA Neurology 71 (2014): 11-22.

[217]

Y. Yamazaki, N. Zhao, T. R. Caulfield, C. C. Liu, and G. Bu, “Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting Strategies,” Nature Reviews. Neurology 15 (2019): 501-518.

[218]

J. M. Castellano, J. Kim, F. R. Stewart, et al., “Human apoE Isoforms Differentially Regulate Brain Amyloid-Beta Peptide Clearance,” Science Translational Medicine 3 (2011): 89ra57.

[219]

M. K. Desai, K. L. Sudol, M. C. Janelsins, M. A. Mastrangelo, M. E. Frazer, and W. J. Bowers, “Triple-Transgenic Alzheimer's Disease Mice Exhibit Region-Specific Abnormalities in Brain Myelination Patterns Prior to Appearance of Amyloid and Tau Pathology,” Glia 57 (2009): 54-65.

[220]

L. Houdebine, C. A. Gallelli, M. Rastelli, N. K. Sampathkumar, and J. Grenier, “Effect of Physical Exercise on Brain and Lipid Metabolism in Mouse Models of Multiple Sclerosis,” Chemistry and Physics of Lipids 207 (2017): 127-134.

[221]

M. Meissner, N. Nijstad, F. Kuipers, and U. J. Tietge, “Voluntary Exercise Increases Cholesterol Efflux but Not Macrophage Reverse Cholesterol Transport In Vivo in Mice,” Nutrition & Metabolism (London) 7 (2010): 54.

[222]

C. Wei, M. Penumetcha, N. Santanam, Y. G. Liu, M. Garelnabi, and S. Parthasarathy, “Exercise Might Favor Reverse Cholesterol Transport and Lipoprotein Clearance: Potential Mechanism for Its Anti-Atherosclerotic Effects,” Biochimica et Biophysica Acta 1723 (2005): 124-127.

[223]

K. Mollgard and N. R. Saunders, “The Development of the Human Blood-Brain and Blood-CSF Barriers,” Neuropathology and Applied Neurobiology 12 (1986): 337-358.

[224]

E. E. Goldmann, Vitalfärbung am Zentralnervensystem: Beitrag zur Physio-Pathologie des Plexus chorioideus und der Hirnhäute (Königl. Akademie der Wissenschaften, 1913).

[225]

E. M. Cornford, L. D. Braun, and W. H. Oldendorf, “Developmental Modulations of Blood-Brain Barrier Permeability as an Indicator of Changing Nutritional Requirements in the Brain,” Pediatric Research 16 (1982): 324-328.

[226]

C. Parrado-Fernandez, K. Blennow, M. Hansson, V. Leoni, A. Cedazo-Minguez, and I. Bjorkhem, “Evidence for Sex Difference in the CSF/Plasma Albumin Ratio in ~20 000 Patients and 335 Healthy Volunteers,” Journal of Cellular and Molecular Medicine 22 (2018): 5151-5154.

[227]

R. L. Chen, “Is It Appropriate to Use Albumin CSF/Plasma Ratio to Assess Blood Brain Barrier Permeability?,” Neurobiology of Aging 32 (2011): 1338-1339.

[228]

I. C. M. Verheggen, J. J. A. de Jong, M. P. J. van Boxtel, et al., “Increase in Blood-Brain Barrier Leakage in Healthy, Older Adults,” Geroscience 42 (2020): 1183-1193.

[229]

I. C. M. Verheggen, J. J. A. de Jong, M. P. J. van Boxtel, et al., “Imaging the Role of Blood-Brain Barrier Disruption in Normal Cognitive Ageing,” Geroscience 42 (2020): 1751-1764.

[230]

M. G. Fragas, V. B. Candido, G. G. Davanzo, C. Rocha-Santos, A. Ceroni, and L. C. Michelini, “Transcytosis Within PVN Capillaries: A Mechanism Determining Both Hypertension-Induced Blood-Brain Barrier Dysfunction and Exercise-Induced Correction,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 321 (2021): R732-R741.

[231]

L. Buttler, M. T. Jordao, M. G. Fragas, A. Ruggeri, A. Ceroni, and L. C. Michelini, “Maintenance of Blood-Brain Barrier Integrity in Hypertension: A Novel Benefit of Exercise Training for Autonomic Control,” Frontiers in Physiology 8 (2017): 1048.

[232]

H. A. Raquel, S. M. Perego, G. S. Masson, L. Jensen, A. Colquhoun, and L. C. Michelini, “Blood-Brain Barrier Lesion - A Novel Determinant of Autonomic Imbalance in Heart Failure and the Effects of Exercise Training,” Clinical Science (London, England) 137 (2023): 1049-1066.

[233]

C. Brown, S. Pemberton, A. Babin, et al., “Insulin Blood-Brain Barrier Transport and Interactions Are Greater Following Exercise in Mice,” Journal of Applied Physiology (Bethesda, MD: 1985) 132 (2022): 824-834.

[234]

A. L. Oblak, P. B. Lin, K. P. Kotredes, et al., “Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study,” Frontiers in Aging Neuroscience 13 (2021): 713726.

[235]

O. Razi, A. Parnow, I. Rashidi, N. Pakravan, S. E. Nedaei, and R. W. Motl, “Aerobic Training Improves Blood-Brain Barrier and Neuronal Apoptosis in Experimental Autoimmune Encephalomyelitis,” Iranian Journal of Basic Medical Sciences 25 (2022): 245-253.

[236]

M. U. Chupel, L. G. Minuzzi, G. Furtado, et al., “Exercise and Taurine in Inflammation, Cognition, and Peripheral Markers of Blood-Brain Barrier Integrity in Older Women,” Applied Physiology, Nutrition, and Metabolism 43 (2018): 733-741.

[237]

Z. Zhu, J. Xu, Y. Jin, L. Wang, and X. Li, “Effects of Aerobic Exercise on Markers of Brain Injury in Methamphetamine-Dependent Individuals: A Randomized Controlled Trial,” Brain Sciences 12, no. 11 (2022): 1521.

[238]

M. Savikj and J. R. Zierath, “Train Like an Athlete: Applying Exercise Interventions to Manage Type 2 Diabetes,” Diabetologia 63 (2020): 1491-1499.

[239]

A. Toval, P. Solis-Urra, E. A. Bakker, et al., “Exercise and BRAIN Health in Patients With Coronary Artery Disease: Study Protocol for the HEART-BRAIN Randomized Controlled Trial,” Frontiers in Aging Neuroscience 16 (2024): 1437567.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/