YTHDC1 Modulates the Osteogenic Capacity of hPDLSCs via Wnt/β-Catenin Signalling Pathway for the Treatment of Bone Defects in Osteoporosis Rats

Dan Tan , Qilin Li , Zhenzhen Chen , Hongbing Zhang , Pengcheng Rao , Jingxiang Li , Qianke Tao , Jingang Xiao , Jinlin Song

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (8) : e70020

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (8) : e70020 DOI: 10.1111/cpr.70020
ORIGINAL ARTICLE

YTHDC1 Modulates the Osteogenic Capacity of hPDLSCs via Wnt/β-Catenin Signalling Pathway for the Treatment of Bone Defects in Osteoporosis Rats

Author information +
History +
PDF

Abstract

Human periodontal ligament stem cells (hPDLSCs) have emerged as promising candidates for the treatment of osteoporotic bone defects. Previous studies have indicated that m6A plays a crucial role in regulating the osteogenic differentiation of hPDLSCs. However, research on the relationship between YTHDC1, as a reading protein, and the osteogenic differentiation of hPDLSCs remains unexplored. This study aimed to investigate the biological roles of YTHDC1 in the osteogenic differentiation of hPDLSCs and to explore underlying mechanisms. Dot blot analysis revealed a progressive increase in m6A methylation during osteogenic differentiation, accompanied by significant upregulation of YTHDC1 expression, as evidenced by qPCR and Western blot. Functional assays utilising siRNA-mediated knockdown and lentiviral-mediated overexpression demonstrated that YTHDC1 positively regulated the osteogenic differentiation potential of hPDLSCs. Mechanistically, mRNA-seq analysis implicated the Wnt/β-catenin signalling pathway, which was further validated through rescue experiments with the Wnt inhibitor DKK1. Notably, in vivo experiments showed that hPDLSCs overexpressing YTHDC1 exhibited enhanced bone formation capacity in the osteoporotic rats. In conclusion, our findings suggested that YTHDC1 modulated the osteogenic capacity of hPDLSCs through the Wnt/β-catenin signalling pathway, highlighting its therapeutic potential for treating bone defects in osteoporotic conditions.

Keywords

bone regeneration / hPDLSCs / N6-methyladenosine / Wnt/β-catenin signalling pathway / YTHDC1

Cite this article

Download citation ▾
Dan Tan, Qilin Li, Zhenzhen Chen, Hongbing Zhang, Pengcheng Rao, Jingxiang Li, Qianke Tao, Jingang Xiao, Jinlin Song. YTHDC1 Modulates the Osteogenic Capacity of hPDLSCs via Wnt/β-Catenin Signalling Pathway for the Treatment of Bone Defects in Osteoporosis Rats. Cell Proliferation, 2025, 58(8): e70020 DOI:10.1111/cpr.70020

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. D. Walker and E. Shane, “Postmenopausal Osteoporosis,” New England Journal of Medicine 389 (2023): 1979-1991, https://doi.org/10.1056/NEJMcp2307353.

[2]

L. Bai, M. Feng, Q. Zhang, et al., “Synergistic Osteogenic and Antiapoptotic Framework Nucleic Acid Complexes Prevent Diabetic Osteoporosis,” Advanced Functional Materials 34 (2024): 2314789, https://doi.org/10.1002/adfm.202314789.

[3]

Y. Li, Z. Cai, W. Ma, L. Bai, E. Luo, and Y. Lin, “A DNA Tetrahedron-Based Ferroptosis-Suppressing Nanoparticle: Superior Delivery of Curcumin and Alleviation of Diabetic Osteoporosis,” Bone Research 12 (2024): 14, https://doi.org/10.1038/s41413-024-00319-7.

[4]

I. R. Reid, “A Broader Strategy for Osteoporosis Interventions,” Nature Reviews. Endocrinology 16 (2020): 333-339, https://doi.org/10.1038/s41574-020-0339-7.

[5]

I. R. Reid and E. O. Billington, “Drug Therapy for Osteoporosis in Older Adults,” Lancet 399 (2022): 1080-1092, https://doi.org/10.1016/S0140-6736(21)02646-5.

[6]

K. Huang, S. Cai, T. Fu, et al., “Wnt10b Regulates Osteogenesis of Adipose-Derived Stem Cells Through Wnt/β-Catenin Signalling Pathway in Osteoporosis,” Cell Proliferation 57 (2023): e13522, https://doi.org/10.1111/cpr.13522.

[7]

T. Wu, H. Tang, J. Yang, et al., “METTL3-m6A Methylase Regulates the Osteogenic Potential of Bone Marrow Mesenchymal Stem Cells in Osteoporotic Rats via the Wnt Signalling Pathway,” Cell Proliferation 55 (2022): e13234, https://doi.org/10.1111/cpr.13234.

[8]

N. An, X. Yan, Q. Qiu, et al., “Human Periodontal Ligament Stem Cell Sheets Activated by Graphene Oxide Quantum Dots Repair Periodontal Bone Defects by Promoting Mitochondrial Dynamics Dependent Osteogenic Differentiation,” Journal of Nanobiotechnology 22 (2024): 133, https://doi.org/10.1186/s12951-024-02422-7.

[9]

F. Lei, M. Li, T. Lin, H. Zhou, F. Wang, and X. Su, “Treatment of Inflammatory Bone Loss in Periodontitis by Stem Cell-Derived Exosomes,” Acta Biomaterialia 141 (2022): 333-343, https://doi.org/10.1016/j.actbio.2021.12.035.

[10]

S. Ren, Y. Zhou, K. Zheng, et al., “Cerium Oxide Nanoparticles Loaded Nanofibrous Membranes Promote Bone Regeneration for Periodontal Tissue Engineering,” Bioactive Materials 7 (2022): 242-253, https://doi.org/10.1016/j.bioactmat.2021.05.037.

[11]

Y. Sun, Z. Zhao, Q. Qiao, et al., “Injectable Periodontal Ligament Stem Cell-Metformin-Calcium Phosphate Scaffold for Bone Regeneration and Vascularization in Rats,” Dental Materials 39 (2023): 872-885, https://doi.org/10.1016/j.dental.2023.07.008.

[12]

L. Zhu, J. Wang, Z. Wu, et al., “AFF4 Regulates Osteogenic Potential of Human Periodontal Ligament Stem Cells via mTOR-ULK1-Autophagy Axis,” Cell Proliferation 57 (2024): e13546, https://doi.org/10.1111/cpr.13546.

[13]

C. Zheng, J. Chen, S. Liu, and Y. Jin, “Stem Cell-Based Bone and Dental Regeneration: A View of Microenvironmental Modulation,” International Journal of Oral Science 11 (2019): 23, https://doi.org/10.1038/s41368-019-0060-3.

[14]

X. Jiang, B. Liu, Z. Nie, et al., “The Role of m6A Modification in the Biological Functions and Diseases,” Signal Transduction and Targeted Therapy 6 (2021): 74, https://doi.org/10.1038/s41392-020-00450-x.

[15]

J. Liu, M. Gao, J. He, et al., “The RNA m6A Reader YTHDC1 Silences Retrotransposons and Guards ES Cell Identity,” Nature 591, no. 7849 (2021): 322-326, https://doi.org/10.1038/s41586-021-03313-9.

[16]

Y. Li, L. Meng, and B. Zhao, “The Roles of N6-Methyladenosine Methylation in the Regulation of Bone Development, Bone Remodeling and Osteoporosis,” Pharmacology & Therapeutics 238 (2022): 108174, https://doi.org/10.1016/j.pharmthera.2022.108174.

[17]

Z. Sun, H. Wang, Y. Wang, et al., “MiR-103-3p Targets the m(6) A Methyltransferase METTL14 to Inhibit Osteoblastic Bone Formation,” Aging Cell 20 (2021): e13298, https://doi.org/10.1111/acel.13298.

[18]

Y. Wu, L. Xie, M. Wang, et al., “Mettl3-Mediated m(6)A RNA Methylation Regulates the Fate of Bone Marrow Mesenchymal Stem Cells and Osteoporosis,” Nature Communications 9 (2018): 4772, https://doi.org/10.1038/s41467-018-06898-4.

[19]

C. Yang, Z. Dong, Z. Ling, and Y. Chen, “The Crucial Mechanism and Therapeutic Implication of RNA Methylation in Bone Pathophysiology,” Ageing Research Reviews 79 (2022): 101641, https://doi.org/10.1016/j.arr.2022.101641.

[20]

W. Sun, J. Liu, X. Zhang, et al., “Long Noncoding RNA and mRNA m6A Modification Analyses of Periodontal Ligament Stem Cells From the Periodontitis Microenvironment Exposed to Static Mechanical Strain,” Stem Cells International 2022 (2022): 6243004, https://doi.org/10.1155/2022/6243004.

[21]

X. Sun, X. Meng, Y. Piao, S. Dong, and Q. Dong, “METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells Through IGF2BP1-Mediated Regulation of Runx2 Stability,” International Journal of Medical Sciences 21 (2024): 664-673, https://doi.org/10.7150/ijms.90485.

[22]

W. Li, K. Ye, X. Li, et al., “YTHDC1 Is Downregulated by the YY1/HDAC2 Complex and Controls the Sensitivity of ccRCC to Sunitinib by Targeting the ANXA1-MAPK Pathway,” Journal of Experimental & Clinical Cancer Research 41 (2022): 250, https://doi.org/10.1186/s13046-022-02460-9.

[23]

T. Liu, X. Zheng, C. Wang, et al., “The m(6)A “Reader” YTHDF1 Promotes Osteogenesis of Bone Marrow Mesenchymal Stem Cells Through Translational Control of ZNF839,” Cell Death & Disease 12 (2021): 1078, https://doi.org/10.1038/s41419-021-04312-4.

[24]

T. Wang, S. Kong, M. Tao, and S. Ju, “The Potential Role of RNA N6-Methyladenosine in Cancer Progression,” Molecular Cancer 19 (2020): 88, https://doi.org/10.1186/s12943-020-01204-7.

[25]

Z. Zhao, J. Meng, R. Su, et al., “Epitranscriptomics in Liver Disease: Basic Concepts and Therapeutic Potential,” Journal of Hepatology 73 (2020): 664-679, https://doi.org/10.1016/j.jhep.2020.04.009.

[26]

H. Z. Qi, H. Qi, Y. Ye, et al., “Wnt/β-Catenin Signaling Mediates the Abnormal Osteogenic and Adipogenic Capabilities of Bone Marrow Mesenchymal Stem Cells From Chronic Graft-Versus-Host Disease Patients,” Cell Death & Disease 12, no. 4 (2021): 308, https://doi.org/10.1038/s41419-021-03570-6.

[27]

C. Li, Z. Li, Y. Zhang, A. H. Fathy, and M. Zhou, “The Role of the Wnt/Beta-Catenin Signaling Pathway in the Proliferation of Gold Nanoparticle-Treated Human Periodontal Ligament Stem Cells,” Stem Cell Research & Therapy 9 (2018): 214, https://doi.org/10.1186/s13287-018-0954-6.

[28]

L. Wang, F. Wu, Y. Song, et al., “Long Noncoding RNA Related to Periodontitis Interacts With miR-182 to Upregulate Osteogenic Differentiation in Periodontal Mesenchymal Stem Cells of Periodontitis Patients,” Cell Death & Disease 7 (2016): e2327, https://doi.org/10.1038/cddis.2016.125.

[29]

Y. Hu, Z. Wang, C. Fan, et al., “Human Gingival Mesenchymal Stem Cell-Derived Exosomes Cross-Regulate the Wnt/β-Catenin and NF-κB Signalling Pathways in the Periodontal Inflammation Microenvironment,” Journal of Clinical Periodontology 50, no. 6 (2023): 796-806, https://doi.org/10.1111/jcpe.13798.

[30]

X. Chen, J. Huang, J. Wu, et al., “Human Mesenchymal Stem Cells,” Cell Proliferation 55, no. 4 (2022): e13141, https://doi.org/10.1111/cpr.13141.

[31]

K. E. Ensrud and C. J. Crandall, “Osteoporosis,” Annals of Internal Medicine 167 (2017): ITC17-ITC32, https://doi.org/10.7326/AITC201708010.

[32]

X. Y. He, H. M. Yu, S. Lin, and Y. Z. Li, “Advances in the Application of Mesenchymal Stem Cells, Exosomes, Biomimetic Materials, and 3D Printing in Osteoporosis Treatment,” Cellular & Molecular Biology Letters 26 (2021): 47, https://doi.org/10.1186/s11658-021-00291-8.

[33]

C. E. Jacome-Galarza, G. I. Percin, J. T. Muller, et al., “Developmental Origin, Functional Maintenance and Genetic Rescue of Osteoclasts,” Nature 568 (2019): 541-545, https://doi.org/10.1038/s41586-019-1105-7.

[34]

Y. Jiang, P. Zhang, X. Zhang, L. Lv, and Y. Zhou, “Advances in Mesenchymal Stem Cell Transplantation for the Treatment of Osteoporosis,” Cell Proliferation 54 (2021): e12956, https://doi.org/10.1111/cpr.12956.

[35]

D. Lin, Y. Chai, Y. Ma, B. Duan, Y. Yuan, and C. Liu, “Rapid Initiation of Guided Bone Regeneration Driven by Spatiotemporal Delivery of IL-8 and BMP-2 From Hierarchical MBG-Based Scaffold,” Biomaterials 196 (2019): 122-137, https://doi.org/10.1016/j.biomaterials.2017.11.011.

[36]

J. Phetfong, T. Sanvoranart, K. Nartprayut, et al., “Osteoporosis: The Current Status of Mesenchymal Stem Cell-Based Therapy,” Cellular & Molecular Biology Letters 21 (2016): 12, https://doi.org/10.1186/s11658-016-0013-1.

[37]

X. N. Pundole, A. G. Barbo, H. Lin, R. E. Champlin, and H. Lu, “Increased Incidence of Fractures in Recipients of Hematopoietic Stem-Cell Transplantation,” Journal of Clinical Oncology 33 (2015): 1364-1370, https://doi.org/10.1200/JCO.2014.57.8195.

[38]

E. J. Calabrese, “Human Periodontal Ligament Stem Cells and Hormesis: Enhancing Cell Renewal and Cell Differentiation,” Pharmacological Research 173 (2021): 105914, https://doi.org/10.1016/j.phrs.2021.105914.

[39]

A. Di Vito, J. Bria, A. Antonelli, et al., “A Review of Novel Strategies for Human Periodontal Ligament Stem Cell Ex Vivo Expansion: Are They an Evidence-Based Promise for Regenerative Periodontal Therapy?,” International Journal of Molecular Sciences 24 (2023): 7798, https://doi.org/10.3390/ijms24097798.

[40]

S. P. Sevari, S. Ansari, and A. Moshaverinia, “A Narrative Overview of Utilizing Biomaterials to Recapitulate the Salient Regenerative Features of Dental-Derived Mesenchymal Stem Cells,” International Journal of Oral Science 13 (2021): 22, https://doi.org/10.1038/s41368-021-00126-4.

[41]

W. Xiong, Y. Liu, H. Zhou, et al., “Human Dental Pulp Stem Cells Mitigate the Neuropathology and Cognitive Decline via AKT-GSK3β-Nrf2 Pathways in Alzheimer's Disease,” International Journal of Oral Science 16 (2024): 40, https://doi.org/10.1038/s41368-024-00300-4.

[42]

Y. Qiao, Q. Sun, X. Chen, et al., “Nuclear m6A Reader YTHDC1 Promotes Muscle Stem Cell Activation/Proliferation by Regulating mRNA Splicing and Nuclear Export,” eLife 12 (2023): e82703, https://doi.org/10.7554/eLife.82703.

[43]

H. M. Yun, K.-R. Park, T. H. Quang, et al., “2,4,5-Trimethoxyldalbergiquinol Promotes Osteoblastic Differentiation and Mineralization via the BMP and Wnt/β-Catenin Pathway,” Cell Death & Disease 6, no. 7 (2015): e1819, https://doi.org/10.1038/cddis.2015.185.

[44]

Y. Liu, N. Liu, J. Na, et al., “Wnt/β-Catenin Plays a Dual Function in Calcium Hydroxide Induced Proliferation, Migration, Osteogenic Differentiation and Mineralization In Vitro Human Dental Pulp Stem Cells,” International Endodontic Journal 56, no. 1 (2022): 92-102, https://doi.org/10.1111/iej.13843.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/