Targeting Regulation of Macrophage to Treat Metabolic Disease: Role of Phytochemicals

Zeting Ye , Yanlin Li , Xiaolin Yang , Chenglin Li , Rui Yu , Guangjuan Zheng , Zuqing Su

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70012

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (7) : e70012 DOI: 10.1111/cpr.70012
REVIEW

Targeting Regulation of Macrophage to Treat Metabolic Disease: Role of Phytochemicals

Author information +
History +
PDF

Abstract

Metabolic syndrome encompasses a cluster of predictive metabolic risk factors, including obesity, insulin resistance, dyslipidemia, hyperglycemia and hypertension. It is strongly associated with the development of type 2 diabetes and cardiovascular disease. Given the increasing morbidity and mortality associated with metabolic syndrome, along with the limited availability of drug treatments, it is high time to investigate the pathogenesis of this condition and explore potential pharmacotherapies. Macrophages, well-known innate immune cells, play an essential role in maintaining tissue immune homeostasis and multiple physiological processes, including glucose and lipid metabolism, oxidative stress and inflammation. Emerging evidence indicates that the effects of macrophages in metabolic syndrome are linked to macrophage-mediated metaflammation. Phytochemicals derived from natural plants have been shown to exert therapeutic effects on metabolic syndrome by modulating macrophage function. In this review, we sort out the role of macrophage-mediated metaflammation in the pathogenesis of metabolic syndrome and summarise potential phytochemicals that target macrophages for the treatment of this condition.

Keywords

macrophage / metabolic syndrome / metaflammation / phytotherapy

Cite this article

Download citation ▾
Zeting Ye, Yanlin Li, Xiaolin Yang, Chenglin Li, Rui Yu, Guangjuan Zheng, Zuqing Su. Targeting Regulation of Macrophage to Treat Metabolic Disease: Role of Phytochemicals. Cell Proliferation, 2025, 58(7): e70012 DOI:10.1111/cpr.70012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. L. Huang, “A Comprehensive Definition for Metabolic Syndrome,” Disease Models & Mechanisms 2, no. 5-6 (2009): 231-237, https://doi.org/10.1242/dmm.001180.

[2]

F. Belladelli, F. Montorsi, and A. Martini, “Metabolic Syndrome, Obesity and Cancer Risk,” Current Opinion in Urology 32, no. 6 (2022): 594-597, https://doi.org/10.1097/mou.0000000000001041.

[3]

M. James, T. P. Varghese, R. Sharma, and S. Chand, “Association Between Metabolic Syndrome and Diabetes Mellitus According to International Diabetic Federation and National Cholesterol Education Program Adult Treatment Panel III Criteria: A Cross-Sectional Study,” Journal of Diabetes and Metabolic Disorders 19, no. 1 (2020): 437-443, https://doi.org/10.1007/s40200-020-00523-2.

[4]

Y. Chen, W. Xu, W. Zhang, et al., “Plasma Metabolic Fingerprints for Large-Scale Screening and Personalized Risk Stratification of Metabolic Syndrome,” Cell Reports Medicine 4, no. 7 (2023): 101109, https://doi.org/10.1016/j.xcrm.2023.101109.

[5]

J. J. Noubiap, J. R. Nansseu, E. Lontchi-Yimagou, et al., “Global, Regional, and Country Estimates of Metabolic Syndrome Burden in Children and Adolescents in 2020: A Systematic Review and Modelling Analysis,” Lancet Child & Adolescent Health 6, no. 3 (2022): 158-170, https://doi.org/10.1016/s2352-4642(21)00374-6.

[6]

G. S. Hotamisligil, “Inflammation, Metaflammation and Immunometabolic Disorders,” Nature 542, no. 7640 (2017): 177-185, https://doi.org/10.1038/nature21363.

[7]

J. L. Silveira Rossi, S. M. Barbalho, R. Reverete de Araujo, M. D. Bechara, K. P. Sloan, and L. A. Sloan, “Metabolic Syndrome and Cardiovascular Diseases: Going Beyond Traditional Risk Factors,” Diabetes/Metabolism Research and Reviews 38, no. 3 (2022): e3502, https://doi.org/10.1002/dmrr.3502.

[8]

S. Lefere and F. Tacke, “Macrophages in Obesity and Non-Alcoholic Fatty Liver Disease: Crosstalk With Metabolism,” JHEP Reports 1, no. 1 (2019): 30-43, https://doi.org/10.1016/j.jhepr.2019.02.004.

[9]

R. Altalhi, N. Pechlivani, and R. A. Ajjan, “PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target,” International Journal of Molecular Sciences 22, no. 6 (2021): 3170, https://doi.org/10.3390/ijms22063170.

[10]

S. Epelman, K. J. Lavine, and G. J. Randolph, “Origin and Functions of Tissue Macrophages,” Immunity 41, no. 1 (2014): 21-35, https://doi.org/10.1016/j.immuni.2014.06.013.

[11]

Y. Zhao, W. Zou, J. Du, and Y. Zhao, “The Origins and Homeostasis of Monocytes and Tissue-Resident Macrophages in Physiological Situation,” Journal of Cellular Physiology 233, no. 10 (2018): 6425-6439, https://doi.org/10.1002/jcp.26461.

[12]

P. J. Murray, “On Macrophage Diversity and Inflammatory Metabolic Timers,” Nature Reviews. Immunology 20, no. 2 (2020): 89-90, https://doi.org/10.1038/s41577-019-0260-2.

[13]

P. Ruytinx, P. Proost, J. Van Damme, and S. Struyf, “Chemokine-Induced Macrophage Polarization in Inflammatory Conditions,” Frontiers in Immunology 9 (2018): 1930, https://doi.org/10.3389/fimmu.2018.01930.

[14]

S. Guria, A. Hoory, S. Das, D. Chattopadhyay, and S. Mukherjee, “Adipose Tissue Macrophages and Their Role in Obesity-Associated Insulin Resistance: An Overview of the Complex Dynamics at Play,” Bioscience Reports 43, no. 3 (2023): BSR20220200, https://doi.org/10.1042/bsr20220200.

[15]

M. A. Lauterbach and F. T. Wunderlich, “Macrophage Function in Obesity-Induced Inflammation and Insulin Resistance,” Pflügers Archives 469, no. 3-4 (2017): 385-396, https://doi.org/10.1007/s00424-017-1955-5.

[16]

H. Charles-Messance, K. A. J. Mitchelson, E. De Marco Castro, F. J. Sheedy, and H. M. Roche, “Regulating Metabolic Inflammation by Nutritional Modulation,” Journal of Allergy and Clinical Immunology 146, no. 4 (2020): 706-720, https://doi.org/10.1016/j.jaci.2020.08.013.

[17]

H. Charles-Messance and F. J. Sheedy, “Train to Lose: Innate Immune Memory in Metaflammation,” Molecular Nutrition & Food Research 65, no. 1 (2021): e1900480, https://doi.org/10.1002/mnfr.201900480.

[18]

R. Acín-Pérez, S. Iborra, Y. Martí-Mateos, et al., “Fgr Kinase Is Required for Proinflammatory Macrophage Activation During Diet-Induced Obesity,” Nature Metabolism 2, no. 9 (2020): 974-988, https://doi.org/10.1038/s42255-020-00273-8.

[19]

J. Sheng, C. Ruedl, and K. Karjalainen, “Most Tissue-Resident Macrophages Except Microglia Are Derived From Fetal Hematopoietic Stem Cells,” Immunity 43, no. 2 (2015): 382-393, https://doi.org/10.1016/j.immuni.2015.07.016.

[20]

Y. Wu and K. K. Hirschi, “Tissue-Resident Macrophage Development and Function,” Frontiers in Cell and Development Biology 8 (2020): 617879, https://doi.org/10.3389/fcell.2020.617879.

[21]

K. R. Peterson, M. A. Cottam, A. J. Kennedy, and A. H. Hasty, “Macrophage-Targeted Therapeutics for Metabolic Disease,” Trends in Pharmacological Sciences 39, no. 6 (2018): 536-546, https://doi.org/10.1016/j.tips.2018.03.001.

[22]

A. Shapouri-Moghaddam, S. Mohammadian, H. Vazini, et al., “Macrophage Plasticity, Polarization, and Function in Health and Disease,” Journal of Cellular Physiology 233, no. 9 (2018): 6425-6440, https://doi.org/10.1002/jcp.26429.

[23]

S. C. Funes, M. Rios, J. Escobar-Vera, and A. M. Kalergis, “Implications of Macrophage Polarization in Autoimmunity,” Immunology 154, no. 2 (2018): 186-195, https://doi.org/10.1111/imm.12910.

[24]

J. Van den Bossche, L. A. O'Neill, and D. Menon, “Macrophage Immunometabolism: Where Are we (Going)?,” Trends in Immunology 38, no. 6 (2017): 395-406, https://doi.org/10.1016/j.it.2017.03.001.

[25]

L. Zhu, Q. Zhao, T. Yang, W. Ding, and Y. Zhao, “Cellular Metabolism and Macrophage Functional Polarization,” International Reviews of Immunology 34, no. 1 (2015): 82-100, https://doi.org/10.3109/08830185.2014.969421.

[26]

S. T. Liao, C. Han, D. Q. Xu, X. W. Fu, J. S. Wang, and L. Y. Kong, “4-Octyl Itaconate Inhibits Aerobic Glycolysis by Targeting GAPDH to Exert Anti-Inflammatory Effects,” Nature Communications 10, no. 1 (2019): 5091, https://doi.org/10.1038/s41467-019-13078-5.

[27]

A. De Jesus, F. Keyhani-Nejad, C. M. Pusec, et al., “Hexokinase 1 Cellular Localization Regulates the Metabolic Fate of Glucose,” Molecular Cell 82, no. 7 (2022): 1261-1277.e1269, https://doi.org/10.1016/j.molcel.2022.02.028.

[28]

Z. Chen, M. Vaeth, M. Eckstein, et al., “Characterization of the Effect of the GLUT-1 Inhibitor BAY-876 on T Cells and Macrophages,” European Journal of Pharmacology 945 (2023): 175552, https://doi.org/10.1016/j.ejphar.2023.175552.

[29]

P. J. Murray, “Macrophage Polarization,” Annual Review of Physiology 79 (2017): 541-566, https://doi.org/10.1146/annurev-physiol-022516-034339.

[30]

J. M. Ghergurovich, J. C. García-Cañaveras, J. Wang, et al., “A Small Molecule G6PD Inhibitor Reveals Immune Dependence on Pentose Phosphate Pathway,” Nature Chemical Biology 16, no. 7 (2020): 731-739, https://doi.org/10.1038/s41589-020-0533-x.

[31]

M. Ham, J. W. Lee, A. H. Choi, et al., “Macrophage Glucose-6-Phosphate Dehydrogenase Stimulates Proinflammatory Responses With Oxidative Stress,” Molecular and Cellular Biology 33, no. 12 (2013): 2425-2435, https://doi.org/10.1128/mcb.01260-12.

[32]

E. Rendra, V. Riabov, D. M. Mossel, T. Sevastyanova, M. C. Harmsen, and J. Kzhyshkowska, “Reactive Oxygen Species (ROS) in Macrophage Activation and Function in Diabetes,” Immunobiology 224, no. 2 (2019): 242-253, https://doi.org/10.1016/j.imbio.2018.11.010.

[33]

J. Tőzsér and S. Benkő, “Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1β Production,” Mediators of Inflammation 2016 (2016): 5460302, https://doi.org/10.1155/2016/5460302.

[34]

Y. Liu, R. Xu, H. Gu, et al., “Metabolic Reprogramming in Macrophage Responses,” Biomarker Research 9, no. 1 (2021): 1, https://doi.org/10.1186/s40364-020-00251-y.

[35]

B. Kelly and L. A. O'Neill, “Metabolic Reprogramming in Macrophages and Dendritic Cells in Innate Immunity,” Cell Research 25, no. 7 (2015): 771-784, https://doi.org/10.1038/cr.2015.68.

[36]

V. Infantino, P. Convertini, L. Cucci, et al., “The Mitochondrial Citrate Carrier: A New Player in Inflammation,” Biochemical Journal 438, no. 3 (2011): 433-436, https://doi.org/10.1042/bj20111275.

[37]

K. C. El Kasmi and K. R. Stenmark, “Contribution of Metabolic Reprogramming to Macrophage Plasticity and Function,” Seminars in Immunology 27, no. 4 (2015): 267-275, https://doi.org/10.1016/j.smim.2015.09.001.

[38]

A. Vassallo, V. Santoro, I. Pappalardo, et al., “Liposome-Mediated Inhibition of Inflammation by Hydroxycitrate,” Nanomaterials (Basel) 10, no. 10 (2020): 2080, https://doi.org/10.3390/nano10102080.

[39]

L. A. J. O'Neill and M. N. Artyomov, “Itaconate: The Poster Child of Metabolic Reprogramming in Macrophage Function,” Nature Reviews. Immunology 19, no. 5 (2019): 273-281, https://doi.org/10.1038/s41577-019-0128-5.

[40]

R. Atallah, A. Olschewski, and A. Heinemann, “Succinate at the Crossroad of Metabolism and Angiogenesis: Roles of SDH, HIF1α and SUCNR1,” Biomedicine 10, no. 12 (2022): 3089, https://doi.org/10.3390/biomedicines10123089.

[41]

E. Mills and L. A. O'Neill, “Succinate: A Metabolic Signal in Inflammation,” Trends in Cell Biology 24, no. 5 (2014): 313-320, https://doi.org/10.1016/j.tcb.2013.11.008.

[42]

G. M. Tannahill, A. M. Curtis, J. Adamik, et al., “Succinate Is an Inflammatory Signal That Induces IL-1β Through HIF-1α,” Nature 496, no. 7444 (2013): 238-242, https://doi.org/10.1038/nature11986.

[43]

D. G. Nicholls, “Mitochondrial Membrane Potential and Aging,” Aging Cell 3, no. 1 (2004): 35-40, https://doi.org/10.1111/j.1474-9728.2003.00079.x.

[44]

Y. Wang, N. Li, X. Zhang, and T. Horng, “Mitochondrial Metabolism Regulates Macrophage Biology,” Journal of Biological Chemistry 297, no. 1 (2021): 100904, https://doi.org/10.1016/j.jbc.2021.100904.

[45]

L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, et al., “Mitochondrial Membrane Potential,” Analytical Biochemistry 552 (2018): 50-59, https://doi.org/10.1016/j.ab.2017.07.009.

[46]

I. R. Hutami, T. Izawa, T. Khurel-Ochir, T. Sakamaki, A. Iwasa, and E. Tanaka, “Macrophage Motility in Wound Healing Is Regulated by HIF-1α via S1P Signaling,” International Journal of Molecular Sciences 22, no. 16 (2021): 8992, https://doi.org/10.3390/ijms22168992.

[47]

M. M. Hughes and L. A. J. O'Neill, “Metabolic Regulation of NLRP3,” Immunological Reviews 281, no. 1 (2018): 88-98, https://doi.org/10.1111/imr.12608.

[48]

J. Rius, M. Guma, C. Schachtrup, et al., “NF-κB Links Innate Immunity to the Hypoxic Response Through Transcriptional Regulation of HIF-1Alpha,” Nature 453, no. 7196 (2008): 807-811, https://doi.org/10.1038/nature06905.

[49]

A. Cornwell, S. Fedotova, S. Cowan, and A. Badiei, “Cystathionine γ-Lyase and Hydrogen Sulfide Modulates Glucose Transporter Glut1 Expression via NF-κB and PI3k/Akt in Macrophages During Inflammation,” PLoS One 17, no. 12 (2022): e0278910, https://doi.org/10.1371/journal.pone.0278910.

[50]

H. Abe, H. Semba, and N. Takeda, “The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases,” Journal of Atherosclerosis and Thrombosis 24, no. 9 (2017): 884-894, https://doi.org/10.5551/jat.RV17009.

[51]

N. Takeda, E. L. O'Dea, A. Doedens, et al., “Differential Activation and Antagonistic Function of HIF-{Alpha} Isoforms in Macrophages Are Essential for NO Homeostasis,” Genes & Development 24, no. 5 (2010): 491-501, https://doi.org/10.1101/gad.1881410.

[52]

N. C. Williams and L. A. J. O'Neill, “A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation,” Frontiers in Immunology 9 (2018): 141, https://doi.org/10.3389/fimmu.2018.00141.

[53]

D. Namgaladze, S. Lips, T. J. Leiker, et al., “Inhibition of Macrophage Fatty Acid β-Oxidation Exacerbates Palmitate-Induced Inflammatory and Endoplasmic Reticulum Stress Responses,” Diabetologia 57, no. 5 (2014): 1067-1077, https://doi.org/10.1007/s00125-014-3173-4.

[54]

M. I. Malandrino, R. Fucho, M. Weber, et al., “Enhanced Fatty Acid Oxidation in Adipocytes and Macrophages Reduces Lipid-Induced Triglyceride Accumulation and Inflammation,” American Journal of Physiology. Endocrinology and Metabolism 308, no. 9 (2015): E756-E769, https://doi.org/10.1152/ajpendo.00362.2014.

[55]

M. Nomura, J. Liu, I. I. Rovira, et al., “Fatty Acid Oxidation in Macrophage Polarization,” Nature Immunology 17, no. 3 (2016): 216-217, https://doi.org/10.1038/ni.3366.

[56]

J. Wang, H. Xiang, Y. Lu, T. Wu, and G. Ji, “The Role and Therapeutic Implication of CPTs in Fatty Acid Oxidation and Cancers Progression,” American Journal of Cancer Research 11, no. 6 (2021): 2477-2494.

[57]

A. S. Divakaruni, W. Y. Hsieh, L. Minarrieta, et al., “Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis,” Cell Metabolism 28, no. 3 (2018): 490-503, https://doi.org/10.1016/j.cmet.2018.06.001.

[58]

S. Galván-Peña and L. A. O'Neill, “Metabolic Reprograming in Macrophage Polarization,” Frontiers in Immunology 5 (2014): 420, https://doi.org/10.3389/fimmu.2014.00420.

[59]

P. S. Liu, H. Wang, X. Li, et al., “α-Ketoglutarate Orchestrates Macrophage Activation Through Metabolic and Epigenetic Reprogramming,” Nature Immunology 18, no. 9 (2017): 985-994, https://doi.org/10.1038/ni.3796.

[60]

G. Fahed, L. Aoun, M. Bou Zerdan, et al., “Metabolic Syndrome: Updates on Pathophysiology and Management in 2021,” International Journal of Molecular Sciences 23, no. 2 (2022): 786, https://doi.org/10.3390/ijms23020786.

[61]

H. Wan, Y. Wang, Q. Xiang, et al., “Associations Between Abdominal Obesity Indices and Diabetic Complications: Chinese Visceral Adiposity Index and Neck Circumference,” Cardiovascular Diabetology 19, no. 1 (2020): 118, https://doi.org/10.1186/s12933-020-01095-4.

[62]

G. H. Goossens, “The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function,” Obesity Facts 10, no. 3 (2017): 207-215, https://doi.org/10.1159/000471488.

[63]

G. Ravaut, A. Légiot, K. F. Bergeron, and C. Mounier, “Monounsaturated Fatty Acids in Obesity-Related Inflammation,” International Journal of Molecular Sciences 22, no. 1 (2020): 330, https://doi.org/10.3390/ijms22010330.

[64]

J. P. Després and I. Lemieux, “Abdominal Obesity and Metabolic Syndrome,” Nature 444, no. 7121 (2006): 881-887, https://doi.org/10.1038/nature05488.

[65]

A. Remmerie and C. L. Scott, “Macrophages and Lipid Metabolism,” Cellular Immunology 330 (2018): 27-42, https://doi.org/10.1016/j.cellimm.2018.01.020.

[66]

M. Schoeler and R. Caesar, “Dietary Lipids, Gut Microbiota and Lipid Metabolism,” Reviews in Endocrine & Metabolic Disorders 20, no. 4 (2019): 461-472, https://doi.org/10.1007/s11154-019-09512-0.

[67]

B. Ramms, S. Patel, C. Nora, et al., “ApoC-III ASO Promotes Tissue LPL Activity in the Absence of apoE-Mediated TRL Clearance,” Journal of Lipid Research 60, no. 8 (2019): 1379-1395, https://doi.org/10.1194/jlr.M093740.

[68]

K. R. Feingold, “Lipid and Lipoprotein Metabolism,” Endocrinology and Metabolism Clinics of North America 51, no. 3 (2022): 437-458, https://doi.org/10.1016/j.ecl.2022.02.008.

[69]

K. Tosheska Trajkovska and S. Topuzovska, “High-Density Lipoprotein Metabolism and Reverse Cholesterol Transport: Strategies for Raising HDL Cholesterol,” Anatolian Journal of Cardiology 18, no. 2 (2017): 149-154, https://doi.org/10.14744/AnatolJCardiol.2017.7608.

[70]

M. Ouimet, T. J. Barrett, and E. A. Fisher, “HDL and Reverse Cholesterol Transport,” Circulation Research 124, no. 10 (2019): 1505-1518, https://doi.org/10.1161/circresaha.119.312617.

[71]

J. Iqbal, A. Al Qarni, A. Hawwari, A. F. Alghanem, and G. Ahmed, “Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism,” Current Diabetes Reviews 14, no. 5 (2018): 427-433, https://doi.org/10.2174/1573399813666170705161039.

[72]

I. Hussain, N. Patni, and A. Garg, “Lipodystrophies, Dyslipidaemias and Atherosclerotic Cardiovascular Disease,” Pathology 51, no. 2 (2019): 202-212, https://doi.org/10.1016/j.pathol.2018.11.004.

[73]

S. Yamamoto, I. Narita, and K. Kotani, “The Macrophage and Its Related Cholesterol Efflux as a HDL Function Index in Atherosclerosis,” Clinica Chimica Acta 457 (2016): 117-122, https://doi.org/10.1016/j.cca.2016.04.012.

[74]

D. A. Chistiakov, Y. V. Bobryshev, and A. N. Orekhov, “Macrophage-Mediated Cholesterol Handling in Atherosclerosis,” Journal of Cellular and Molecular Medicine 20, no. 1 (2016): 17-28, https://doi.org/10.1111/jcmm.12689.

[75]

S. Gautam and M. Banerjee, “The Macrophage Ox-LDL Receptor, CD36 and Its Association With Type II Diabetes Mellitus,” Molecular Genetics and Metabolism 102, no. 4 (2011): 389-398, https://doi.org/10.1016/j.ymgme.2010.12.012.

[76]

D. Calvo, D. Gómez-Coronado, Y. Suárez, M. A. Lasunción, and M. A. Vega, “Human CD36 Is a High Affinity Receptor for the Native Lipoproteins HDL, LDL, and VLDL,” Journal of Lipid Research 39, no. 4 (1998): 777-788.

[77]

P. Yue, Z. Chen, F. Nassir, et al., “Enhanced Hepatic apoA-I Secretion and Peripheral Efflux of Cholesterol and Phospholipid in CD36 Null Mice,” PLoS One 5, no. 3 (2010): e9906, https://doi.org/10.1371/journal.pone.0009906.

[78]

M. Ouimet, V. Franklin, E. Mak, X. Liao, I. Tabas, and Y. L. Marcel, “Autophagy Regulates Cholesterol Efflux From Macrophage Foam Cells via Lysosomal Acid Lipase,” Cell Metabolism 13, no. 6 (2011): 655-667, https://doi.org/10.1016/j.cmet.2011.03.023.

[79]

Q. Hai and J. D. Smith, “Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era,” Metabolites 11, no. 8 (2021): 543, https://doi.org/10.3390/metabo11080543.

[80]

H. Okazaki, M. Igarashi, M. Nishi, et al., “Identification of Neutral Cholesterol Ester Hydrolase, a Key Enzyme Removing Cholesterol From Macrophages,” Journal of Biological Chemistry 283, no. 48 (2008): 33357-33364, https://doi.org/10.1074/jbc.M802686200.

[81]

K. Sakai, M. Igarashi, D. Yamamuro, et al., “Critical Role of Neutral Cholesteryl Ester Hydrolase 1 in Cholesteryl Ester Hydrolysis in Murine Macrophages,” Journal of Lipid Research 55, no. 10 (2014): 2033-2040, https://doi.org/10.1194/jlr.M047787.

[82]

H. Yamazaki, M. Takahashi, T. Wakabayashi, et al., “Loss of ACAT1 Attenuates Atherosclerosis Aggravated by Loss of NCEH1 in Bone Marrow-Derived Cells,” Journal of Atherosclerosis and Thrombosis 26, no. 3 (2019): 246-259, https://doi.org/10.5551/jat.44040.

[83]

L. H. Huang, E. M. Melton, H. Li, et al., “Myeloid-Specific Acat1 Ablation Attenuates Inflammatory Responses in Macrophages, Improves Insulin Sensitivity, and Suppresses Diet-Induced Obesity,” American Journal of Physiology. Endocrinology and Metabolism 315, no. 3 (2018): E340-e356, https://doi.org/10.1152/ajpendo.00174.2017.

[84]

L. H. Huang, E. M. Melton, H. Li, et al., “Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression,” Journal of Biological Chemistry 291, no. 12 (2016): 6232-6244, https://doi.org/10.1074/jbc.M116.713818.

[85]

I. Gracia-Rubio, C. Martín, F. Civeira, and A. Cenarro, “SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective From Mice and Human Genetic Studies,” Biomedicine 9, no. 6 (2021): 612, https://doi.org/10.3390/biomedicines9060612.

[86]

M. A. Kennedy, G. C. Barrera, K. Nakamura, et al., “ABCG1 Has a Critical Role in Mediating Cholesterol Efflux to HDL and Preventing Cellular Lipid Accumulation,” Cell Metabolism 1, no. 2 (2005): 121-131, https://doi.org/10.1016/j.cmet.2005.01.002.

[87]

Y. Fu, N. Mukhamedova, S. Ip, et al., “ABCA12 Regulates ABCA1-Dependent Cholesterol Efflux From Macrophages and the Development of Atherosclerosis,” Cell Metabolism 18, no. 2 (2013): 225-238, https://doi.org/10.1016/j.cmet.2013.07.003.

[88]

L. Yvan-Charvet, M. Ranalletta, N. Wang, et al., “Combined Deficiency of ABCA1 and ABCG1 Promotes Foam Cell Accumulation and Accelerates Atherosclerosis in Mice,” Journal of Clinical Investigation 117, no. 12 (2007): 3900-3908, https://doi.org/10.1172/jci33372.

[89]

Z. Xie, X. Wang, X. Liu, et al., “Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization,” Journal of the American Heart Association 7, no. 5 (2018): e007442, https://doi.org/10.1161/jaha.117.007442.

[90]

I. Pierantonelli, G. Lioci, F. Gurrado, et al., “HDL Cholesterol Protects From Liver Injury in Mice With Intestinal Specific LXRα Activation,” Liver International 40, no. 12 (2020): 3127-3139, https://doi.org/10.1111/liv.14712.

[91]

K. L. Ong, B. J. Cochran, B. Manandhar, S. Thomas, and K. A. Rye, “HDL Maturation and Remodelling,” Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids 1867, no. 4 (2022): 159119, https://doi.org/10.1016/j.bbalip.2022.159119.

[92]

G. J. Warner, G. Stoudt, M. Bamberger, W. J. Johnson, and G. H. Rothblat, “Cell Toxicity Induced by Inhibition of Acyl Coenzyme A:Cholesterol Acyltransferase and Accumulation of Unesterified Cholesterol,” Journal of Biological Chemistry 270, no. 11 (1995): 5772-5778, https://doi.org/10.1074/jbc.270.11.5772.

[93]

A. R. Mridha, A. Wree, A. A. B. Robertson, et al., “NLRP3 Inflammasome Blockade Reduces Liver Inflammation and Fibrosis in Experimental NASH in Mice,” Journal of Hepatology 66, no. 5 (2017): 1037-1046, https://doi.org/10.1016/j.jhep.2017.01.022.

[94]

O. Govaere, S. K. Petersen, N. Martinez-Lopez, et al., “Macrophage Scavenger Receptor 1 Mediates Lipid-Induced Inflammation in Non-alcoholic Fatty Liver Disease,” Journal of Hepatology 76, no. 5 (2022): 1001-1012, https://doi.org/10.1016/j.jhep.2021.12.012.

[95]

J. D. Tune, A. G. Goodwill, D. J. Sassoon, and K. J. Mather, “Cardiovascular Consequences of Metabolic Syndrome,” Translational Research 183 (2017): 57-70, https://doi.org/10.1016/j.trsl.2017.01.001.

[96]

W. März, M. E. Kleber, H. Scharnagl, et al., “HDL Cholesterol: Reappraisal of Its Clinical Relevance,” Clinical Research in Cardiology 106, no. 9 (2017): 663-675, https://doi.org/10.1007/s00392-017-1106-1.

[97]

M. A. Dedual, S. Wueest, M. Borsigova, and D. Konrad, “Intermittent Fasting Improves Metabolic Flexibility in Short-Term High-Fat Diet-Fed Mice,” American Journal of Physiology. Endocrinology and Metabolism 317, no. 5 (2019): E773-e782, https://doi.org/10.1152/ajpendo.00187.2019.

[98]

Z. L. Luo, J. D. Ren, Z. Huang, et al., “The Role of Exogenous Hydrogen Sulfide in Free Fatty Acids Induced Inflammation in Macrophages,” Cellular Physiology and Biochemistry 42, no. 4 (2017): 1635-1644, https://doi.org/10.1159/000479405.

[99]

D. M. Muoio, “Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock,” Cell 159, no. 6 (2014): 1253-1262, https://doi.org/10.1016/j.cell.2014.11.034.

[100]

L. He, K. J. Weber, and J. D. Schilling, “Glutamine Modulates Macrophage Lipotoxicity,” Nutrients 8, no. 4 (2016): 215, https://doi.org/10.3390/nu8040215.

[101]

K. L. Diehl, J. Vorac, K. Hofmann, et al., “Kupffer Cells Sense Free Fatty Acids and Regulate Hepatic Lipid Metabolism in High-Fat Diet and Inflammation,” Cells 9, no. 10 (2020): 2258, https://doi.org/10.3390/cells9102258.

[102]

J. Jager, M. Aparicio-Vergara, and M. Aouadi, “Liver Innate Immune Cells and Insulin Resistance: The Multiple Facets of Kupffer Cells,” Journal of Internal Medicine 280, no. 2 (2016): 209-220, https://doi.org/10.1111/joim.12483.

[103]

R. Stienstra, F. Saudale, C. Duval, et al., “Kupffer Cells Promote Hepatic Steatosis via Interleukin-1beta-Dependent Suppression of Peroxisome Proliferator-Activated Receptor Alpha Activity,” Hepatology 51, no. 2 (2010): 511-522, https://doi.org/10.1002/hep.23337.

[104]

W. Luo, Q. Xu, Q. Wang, H. Wu, and J. Hua, “Effect of Modulation of PPAR-γ Activity on Kupffer Cells M1/M2 Polarization in the Development of Non-alcoholic Fatty Liver Disease,” Scientific Reports 7 (2017): 44612, https://doi.org/10.1038/srep44612.

[105]

Y. Yan, W. Jiang, T. Spinetti, et al., “Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder Through Inhibition of NLRP3 Inflammasome Activation,” Immunity 38, no. 6 (2013): 1154-1163, https://doi.org/10.1016/j.immuni.2013.05.015.

[106]

A. Kawano, W. Ariyoshi, Y. Yoshioka, H. Hikiji, T. Nishihara, and T. Okinaga, “Docosahexaenoic Acid Enhances M2 Macrophage Polarization via the p38 Signaling Pathway and Autophagy,” Journal of Cellular Biochemistry 120, no. 8 (2019): 12604-12617, https://doi.org/10.1002/jcb.28527.

[107]

J. E. Kim, J. S. Kim, M. J. Jo, et al., “The Roles and Associated Mechanisms of Adipokines in Development of Metabolic Syndrome,” Molecules 27, no. 2 (2022): 334, https://doi.org/10.3390/molecules27020334.

[108]

G. Paz-Filho, C. Mastronardi, C. B. Franco, K. B. Wang, M. L. Wong, and J. Licinio, “Leptin: Molecular Mechanisms, Systemic Pro-Inflammatory Effects, and Clinical Implications,” Arquivos Brasileiros de Endocrinologia e Metabologia 56, no. 9 (2012): 597-607, https://doi.org/10.1590/s0004-27302012000900001.

[109]

S. Pereira, D. L. Cline, M. M. Glavas, S. D. Covey, and T. J. Kieffer, “Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism,” Endocrine Reviews 42, no. 1 (2021): 1-28, https://doi.org/10.1210/endrev/bnaa027.

[110]

S. C. Lu and A. O. Akanji, “Leptin, Obesity, and Hypertension: A Review of Pathogenetic Mechanisms,” Metabolic Syndrome and Related Disorders 18, no. 9 (2020): 399-405, https://doi.org/10.1089/met.2020.0065.

[111]

G. Souza-Almeida, L. Palhinha, S. Liechocki, et al., “Peripheral Leptin Signaling Persists in Innate Immune Cells During Diet-Induced Obesity,” Journal of Leukocyte Biology 109, no. 6 (2021): 1131-1138, https://doi.org/10.1002/jlb.3ab0820-092rr.

[112]

J. Liu, X. Yang, S. Yu, and R. Zheng, “The Leptin Resistance,” Advances in Experimental Medicine and Biology 1090 (2018): 145-163, https://doi.org/10.1007/978-981-13-1286-1_8.

[113]

H. Cui, M. López, and K. Rahmouni, “The Cellular and Molecular Bases of Leptin and Ghrelin Resistance in Obesity,” Nature Reviews. Endocrinology 13, no. 6 (2017): 338-351, https://doi.org/10.1038/nrendo.2016.222.

[114]

L. Monteiro, J. Pereira, L. Palhinha, and P. M. M. Moraes-Vieira, “Leptin in the Regulation of the Immunometabolism of Adipose Tissue-Macrophages,” Journal of Leukocyte Biology 106, no. 3 (2019): 703-716, https://doi.org/10.1002/jlb.Mr1218-478r.

[115]

L. B. Monteiro, J. S. Prodonoff, C. Favero de Aguiar, et al., “Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity,” Diabetes 71, no. 7 (2022): 1546-1561, https://doi.org/10.2337/db21-0842.

[116]

P. Subash-Babu, H. Mohammed Alowaidh, L. N. Al-Harbi, et al., “Ocimum basilicum L. Methanol Extract Enhances Mitochondrial Efficiency and Decreases Adipokine Levels in Maturing Adipocytes Which Regulate Macrophage Systemic Inflammation,” Molecules 27, no. 4 (2022): 1388, https://doi.org/10.3390/molecules27041388.

[117]

F. Maingrette and G. Renier, “Leptin Increases Lipoprotein Lipase Secretion by Macrophages: Involvement of Oxidative Stress and Protein Kinase C,” Diabetes 52, no. 8 (2003): 2121-2128, https://doi.org/10.2337/diabetes.52.8.2121.

[118]

S. Hongo, T. Watanabe, S. Arita, et al., “Leptin Modulates ACAT1 Expression and Cholesterol Efflux From Human Macrophages,” American Journal of Physiology. Endocrinology and Metabolism 297, no. 2 (2009): E474-E482, https://doi.org/10.1152/ajpendo.90369.2008.

[119]

T. S. Lee, C. Y. Lin, J. Y. Tsai, et al., “Resistin Increases Lipid Accumulation by Affecting Class A Scavenger Receptor, CD36 and ATP-Binding Cassette Transporter-A1 in Macrophages,” Life Sciences 84, no. 3-4 (2009): 97-104, https://doi.org/10.1016/j.lfs.2008.11.004.

[120]

C. H. Kuo, M. S. Chen, C. H. Wang, Y. H. Lai, Y. L. Lin, and B. G. Hsu, “Resistin: A Potential Indicator of Aortic Stiffness in Non-Dialysis Chronic Kidney Disease Patients,” Medicina (Kaunas, Lithuania) 59, no. 9 (2023): 1652, https://doi.org/10.3390/medicina59091652.

[121]

B. Li, J. Fang, T. He, et al., “Resistin Up-Regulates LPL Expression Through the PPARγ-Dependent PI3K/AKT Signaling Pathway Impacting Lipid Accumulation in RAW264.7 Macrophages,” Cytokine 119 (2019): 168-174, https://doi.org/10.1016/j.cyto.2019.03.016.

[122]

A. E. Achari and S. K. Jain, “Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction,” International Journal of Molecular Sciences 18, no. 6 (2017): 1321, https://doi.org/10.3390/ijms18061321.

[123]

H. Thakkar, V. Vincent, S. Shukla, et al., “Improvements in Cholesterol Efflux Capacity of HDL and Adiponectin Contribute to Mitigation in Cardiovascular Disease Risk After Bariatric Surgery in a Cohort With Morbid Obesity,” Diabetology and Metabolic Syndrome 13, no. 1 (2021): 46, https://doi.org/10.1186/s13098-021-00662-3.

[124]

A. Hafiane and S. S. Daskalopoulou, “Adiponectin's Mechanisms in High-Density Lipoprotein Biogenesis and Cholesterol Efflux,” Metabolism 113 (2020): 154393, https://doi.org/10.1016/j.metabol.2020.154393.

[125]

B. Liang, X. Wang, X. Guo, et al., “Adiponectin Upregulates ABCA1 Expression Through Liver X Receptor Alpha Signaling Pathway in RAW 264.7 Macrophages,” International Journal of Clinical and Experimental Pathology 8, no. 1 (2015): 450-457.

[126]

M. M. Babashamsi, S. Z. Koukhaloo, S. Halalkhor, A. Salimi, and M. Babashamsi, “ABCA1 and Metabolic Syndrome; a Review of the ABCA1 Role in HDL-VLDL Production, Insulin-Glucose Homeostasis, Inflammation and Obesity,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews 13, no. 2 (2019): 1529-1534, https://doi.org/10.1016/j.dsx.2019.03.004.

[127]

L. Tian, N. Luo, R. L. Klein, B. H. Chung, W. T. Garvey, and Y. Fu, “Adiponectin Reduces Lipid Accumulation in Macrophage Foam Cells,” Atherosclerosis 202, no. 1 (2009): 152-161, https://doi.org/10.1016/j.atherosclerosis.2008.04.011.

[128]

Z. Z. Zhang, J. J. Chen, W. Y. Deng, X. H. Yu, and W. H. Tan, “CTRP1 Decreases ABCA1 Expression and Promotes Lipid Accumulation Through the miR-424-5p/FoxO1 Pathway in THP-1 Macrophage-Derived Foam Cells,” Cell Biology International 45, no. 11 (2021): 2226-2237, https://doi.org/10.1002/cbin.11666.

[129]

K. Ohashi, J. L. Parker, N. Ouchi, et al., “Adiponectin Promotes Macrophage Polarization Toward an Anti-Inflammatory Phenotype,” Journal of Biological Chemistry 285, no. 9 (2010): 6153-6160, https://doi.org/10.1074/jbc.M109.088708.

[130]

C. M. van Stijn, J. Kim, A. J. Lusis, G. D. Barish, and R. K. Tangirala, “Macrophage Polarization Phenotype Regulates Adiponectin Receptor Expression and Adiponectin Anti-Inflammatory Response,” FASEB Journal 29, no. 2 (2015): 636-649, https://doi.org/10.1096/fj.14-253831.

[131]

K. D. Niswender, “Basal Insulin: Physiology, Pharmacology, and Clinical Implications,” Postgraduate Medicine 123, no. 4 (2011): 17-26, https://doi.org/10.3810/pgm.2011.07.2300.

[132]

L. Norton, C. Shannon, A. Gastaldelli, and R. A. DeFronzo, “Insulin: The Master Regulator of Glucose Metabolism,” Metabolism 129 (2022): 155142, https://doi.org/10.1016/j.metabol.2022.155142.

[133]

M. Thevis, A. Thomas, and W. Schänzer, “Insulin,” Handbook of Experimental Pharmacology 195 (2010): 209-226, https://doi.org/10.1007/978-3-540-79088-4_10.

[134]

H. E. Lebovitz, “Insulin Resistance: Definition and Consequences,” Experimental and Clinical Endocrinology & Diabetes 109 (2001): S135-S148, https://doi.org/10.1055/s-2001-18576.

[135]

M. C. Petersen and G. I. Shulman, “Mechanisms of Insulin Action and Insulin Resistance,” Physiological Reviews 98, no. 4 (2018): 2133-2223, https://doi.org/10.1152/physrev.00063.2017.

[136]

M. A. Hill, Y. Yang, L. Zhang, et al., “Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease,” Metabolism 119 (2021): 154766, https://doi.org/10.1016/j.metabol.2021.154766.

[137]

H. Yaribeygi, F. R. Farrokhi, A. E. Butler, and A. Sahebkar, “Insulin Resistance: Review of the Underlying Molecular Mechanisms,” Journal of Cellular Physiology 234, no. 6 (2019): 8152-8161, https://doi.org/10.1002/jcp.27603.

[138]

H. E. Kunz, C. R. Hart, K. J. Gries, et al., “Adipose Tissue Macrophage Populations and Inflammation Are Associated With Systemic Inflammation and Insulin Resistance in Obesity,” American Journal of Physiology. Endocrinology and Metabolism 321, no. 1 (2021): E105-e121, https://doi.org/10.1152/ajpendo.00070.2021.

[139]

H. Li, Y. Meng, S. He, et al., “Macrophages, Chronic Inflammation, and Insulin Resistance,” Cells 11, no. 19 (2022): 3001, https://doi.org/10.3390/cells11193001.

[140]

M. Bijnen, T. Josefs, I. Cuijpers, et al., “Adipose Tissue Macrophages Induce Hepatic Neutrophil Recruitment and Macrophage Accumulation in Mice,” Gut 67, no. 7 (2018): 1317-1327, https://doi.org/10.1136/gutjnl-2016-313654.

[141]

J. R. Brestoff, C. B. Wilen, J. R. Moley, et al., “Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity,” Cell Metabolism 33, no. 2 (2021): 270-282.e278, https://doi.org/10.1016/j.cmet.2020.11.008.

[142]

L. Russo and C. N. Lumeng, “Properties and Functions of Adipose Tissue Macrophages in Obesity,” Immunology 155, no. 4 (2018): 407-417, https://doi.org/10.1111/imm.13002.

[143]

H. Y. Lin, S. W. Weng, F. C. Shen, et al., “Abrogation of Toll-Like Receptor 4 Mitigates Obesity-Induced Oxidative Stress, Proinflammation, and Insulin Resistance Through Metabolic Reprogramming of Mitochondria in Adipose Tissue,” Antioxidants & Redox Signaling 33, no. 2 (2020): 66-86, https://doi.org/10.1089/ars.2019.7737.

[144]

M. Saberi, N. B. Woods, C. de Luca, et al., “Hematopoietic Cell-Specific Deletion of Toll-Like Receptor 4 Ameliorates Hepatic and Adipose Tissue Insulin Resistance in High-Fat-Fed Mice,” Cell Metabolism 10, no. 5 (2009): 419-429, https://doi.org/10.1016/j.cmet.2009.09.006.

[145]

S. Lefere, C. Van Steenkiste, X. Verhelst, H. Van Vlierberghe, L. Devisscher, and A. Geerts, “Hypoxia-Regulated Mechanisms in the Pathogenesis of Obesity and Non-alcoholic Fatty Liver Disease,” Cellular and Molecular Life Sciences 73, no. 18 (2016): 3419-3431, https://doi.org/10.1007/s00018-016-2222-1.

[146]

A. Engin, “The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation,” Advances in Experimental Medicine and Biology 960 (2017): 221-245, https://doi.org/10.1007/978-3-319-48382-5_9.

[147]

J. Yao, D. Wu, and Y. Qiu, “Adipose Tissue Macrophage in Obesity-Associated Metabolic Diseases,” Frontiers in Immunology 13 (2022): 977485, https://doi.org/10.3389/fimmu.2022.977485.

[148]

R. Meshkani and K. Adeli, “Hepatic Insulin Resistance, Metabolic Syndrome and Cardiovascular Disease,” Clinical Biochemistry 42, no. 13-14 (2009): 1331-1346, https://doi.org/10.1016/j.clinbiochem.2009.05.018.

[149]

G. Solinas and B. Becattini, “JNK at the Crossroad of Obesity, Insulin Resistance, and Cell Stress Response,” Molecular Metabolism 6, no. 2 (2017): 174-184, https://doi.org/10.1016/j.molmet.2016.12.001.

[150]

D. Yazıcı and H. Sezer, “Insulin Resistance, Obesity and Lipotoxicity,” Advances in Experimental Medicine and Biology 960 (2017): 277-304, https://doi.org/10.1007/978-3-319-48382-5_12.

[151]

Z. Gao, D. Hwang, F. Bataille, et al., “Serine Phosphorylation of Insulin Receptor Substrate 1 by Inhibitor Kappa B Kinase Complex,” Journal of Biological Chemistry 277, no. 50 (2002): 48115-48121, https://doi.org/10.1074/jbc.M209459200.

[152]

S. Galic, N. Sachithanandan, T. W. Kay, and G. R. Steinberg, “Suppressor of Cytokine Signalling (SOCS) Proteins as Guardians of Inflammatory Responses Critical for Regulating Insulin Sensitivity,” Biochemical Journal 461, no. 2 (2014): 177-188, https://doi.org/10.1042/bj20140143.

[153]

C. S. Whyte, E. T. Bishop, D. Rückerl, et al., “Suppressor of Cytokine Signaling (SOCS)1 Is a Key Determinant of Differential Macrophage Activation and Function,” Journal of Leukocyte Biology 90, no. 5 (2011): 845-854, https://doi.org/10.1189/jlb.1110644.

[154]

C. H. Val, M. C. de Oliveira, D. R. Lacerda, et al., “SOCS2 Modulates Adipose Tissue Inflammation and Expansion in Mice,” Journal of Nutritional Biochemistry 76 (2020): 108304, https://doi.org/10.1016/j.jnutbio.2019.108304.

[155]

V. Briken and D. M. Mosser, “Editorial: Switching on Arginase in M2 Macrophages,” Journal of Leukocyte Biology 90, no. 5 (2011): 839-841, https://doi.org/10.1189/jlb.0411203.

[156]

D. Ramanujam, A. P. Schön, C. Beck, et al., “MicroRNA-21-Dependent Macrophage-To-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload,” Circulation 143, no. 15 (2021): 1513-1525, https://doi.org/10.1161/circulationaha.120.050682.

[157]

S. C. Selvakumar, K. A. Preethi, and D. Sekar, “MicroRNAs as Important Players in Regulating Cancer Through PTEN/PI3K/AKT Signalling Pathways,” Biochimica Et Biophysica Acta. Reviews on Cancer 1878, no. 3 (2023): 188904, https://doi.org/10.1016/j.bbcan.2023.188904.

[158]

A. Fodor, A. L. Lazar, C. Buchman, B. Tiperciuc, O. H. Orasan, and A. Cozma, “MicroRNAs: The Link Between the Metabolic Syndrome and Oncogenesis,” International Journal of Molecular Sciences 22, no. 12 (2021): 6337, https://doi.org/10.3390/ijms22126337.

[159]

D. Taranto, D. J. Kloosterman, and L. Akkari, “Macrophages and T Cells in Metabolic Disorder-Associated Cancers,” Nature Reviews. Cancer 24, no. 11 (2024): 744-767, https://doi.org/10.1038/s41568-024-00743-1.

[160]

X. Wang, T. Ren, X. Zhang, et al., “MiR-21 Suppression in Macrophages Promotes M2-Like Polarization and Attenuates Kidney Ischemia-Reperfusion Injury,” FASEB Journal 38, no. 23 (2024): e70251, https://doi.org/10.1096/fj.202401834R.

[161]

D. Sekar, S. Saravanan, K. Karikalan, K. Thirugnanasambantham, P. Lalitha, and V. I. Islam, “Role of microRNA 21 in Mesenchymal Stem Cell (MSC) Differentiation: A Powerful Biomarker in MSCs Derived Cells,” Current Pharmaceutical Biotechnology 16, no. 1 (2015): 43-48, https://doi.org/10.2174/138920101601150105100851.

[162]

M. Panagal, R. S. S, S. P, et al., “MicroRNA21 and the Various Types of Myeloid Leukemia,” Cancer Gene Therapy 25, no. 7-8 (2018): 161-166, https://doi.org/10.1038/s41417-018-0025-2.

[163]

T. Liu, Y. C. Sun, P. Cheng, and H. G. Shao, “Adipose Tissue Macrophage-Derived Exosomal miR-29a Regulates Obesity-Associated Insulin Resistance,” Biochemical and Biophysical Research Communications 515, no. 2 (2019): 352-358, https://doi.org/10.1016/j.bbrc.2019.05.113.

[164]

K. A. Preethi, S. C. Selvakumar, and D. Sekar, “Diagnostic and Therapeutic Application of Exosomal microRNAs Inducing Inflammation in Type 2 Diabetes Mellitus,” Critical Reviews in Immunology 42, no. 1 (2022): 1-11, https://doi.org/10.1615/CritRevImmunol.2022044927.

[165]

Y. S. Lee, J. W. Kim, O. Osborne, et al., “Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity,” Cell 157, no. 6 (2014): 1339-1352, https://doi.org/10.1016/j.cell.2014.05.012.

[166]

Y. Lin, M. Bai, S. Wang, et al., “Lactate Is a Key Mediator That Links Obesity to Insulin Resistance via Modulating Cytokine Production From Adipose Tissue,” Diabetes 71, no. 4 (2022): 637-652, https://doi.org/10.2337/db21-0535.

[167]

A. Takikawa, A. Mahmood, A. Nawaz, et al., “HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance,” Diabetes 65, no. 12 (2016): 3649-3659, https://doi.org/10.2337/db16-0012.

[168]

F. J. Gonzalez, C. Xie, and C. Jiang, “The Role of Hypoxia-Inducible Factors in Metabolic Diseases,” Nature Reviews. Endocrinology 15, no. 1 (2018): 21-32, https://doi.org/10.1038/s41574-018-0096-z.

[169]

L. Boutens, G. J. Hooiveld, S. Dhingra, R. A. Cramer, M. G. Netea, and R. Stienstra, “Unique Metabolic Activation of Adipose Tissue Macrophages in Obesity Promotes Inflammatory Responses,” Diabetologia 61, no. 4 (2018): 942-953, https://doi.org/10.1007/s00125-017-4526-6.

[170]

J. M. S. Poblete, M. N. Ballinger, S. Bao, et al., “Macrophage HIF-1α Mediates Obesity-Related Adipose Tissue Dysfunction via Interleukin-1 Receptor-Associated Kinase M,” American Journal of Physiology. Endocrinology and Metabolism 318, no. 5 (2020): E689-e700, https://doi.org/10.1152/ajpendo.00174.2019.

[171]

T. Feng, X. Zhao, P. Gu, et al., “Adipocyte-Derived Lactate Is a Signalling Metabolite That Potentiates Adipose Macrophage Inflammation via Targeting PHD2,” Nature Communications 13, no. 1 (2022): 5208, https://doi.org/10.1038/s41467-022-32871-3.

[172]

X. Li, X. Zhang, J. Xia, et al., “Macrophage HIF-2α Suppresses NLRP3 Inflammasome Activation and Alleviates Insulin Resistance,” Cell Reports 36, no. 8 (2021): 109607, https://doi.org/10.1016/j.celrep.2021.109607.

[173]

Y. Wen, J. Lambrecht, C. Ju, and F. Tacke, “Hepatic Macrophages in Liver Homeostasis and Diseases-Diversity, Plasticity and Therapeutic Opportunities,” Cellular & Molecular Immunology 18, no. 1 (2021): 45-56, https://doi.org/10.1038/s41423-020-00558-8.

[174]

N. Lanthier, O. Molendi-Coste, P. D. Cani, N. van Rooijen, Y. Horsmans, and I. A. Leclercq, “Kupffer Cell Depletion Prevents but Has no Therapeutic Effect on Metabolic and Inflammatory Changes Induced by a High-Fat Diet,” FASEB Journal 25, no. 12 (2011): 4301-4311, https://doi.org/10.1096/fj.11-189472.

[175]

N. Lanthier, O. Molendi-Coste, Y. Horsmans, N. van Rooijen, P. D. Cani, and I. A. Leclercq, “Kupffer Cell Activation Is a Causal Factor for Hepatic Insulin Resistance,” American Journal of Physiology. Gastrointestinal and Liver Physiology 298, no. 1 (2010): G107-G116, https://doi.org/10.1152/ajpgi.00391.2009.

[176]

M. Snelson, R. E. Clarke, T. V. Nguyen, et al., “Long Term High Protein Diet Feeding Alters the Microbiome and Increases Intestinal Permeability, Systemic Inflammation and Kidney Injury in Mice,” Molecular Nutrition & Food Research 65, no. 8 (2021): e2000851, https://doi.org/10.1002/mnfr.202000851.

[177]

I. J. Malesza, M. Malesza, J. Walkowiak, et al., “High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review,” Cells 10, no. 11 (2021): 3164, https://doi.org/10.3390/cells10113164.

[178]

M. S. H. Akash, K. Rehman, and A. Liaqat, “Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus,” Journal of Cellular Biochemistry 119, no. 1 (2018): 105-110, https://doi.org/10.1002/jcb.26174.

[179]

G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose Expression of Tumor Necrosis Factor-Alpha: Direct Role in Obesity-Linked Insulin Resistance,” Science 259, no. 5091 (1993): 87-91, https://doi.org/10.1126/science.7678183.

[180]

O. Nov, A. Kohl, E. C. Lewis, et al., “Interleukin-1beta May Mediate Insulin Resistance in Liver-Derived Cells in Response to Adipocyte Inflammation,” Endocrinology 151, no. 9 (2010): 4247-4256, https://doi.org/10.1210/en.2010-0340.

[181]

M. Tencerova, M. Aouadi, P. Vangala, et al., “Activated Kupffer Cells Inhibit Insulin Sensitivity in Obese Mice,” FASEB Journal 29, no. 7 (2015): 2959-2969, https://doi.org/10.1096/fj.15-270496.

[182]

T. Zheng, Q. Wang, Y. Dong, et al., “High Glucose-Aggravated Hepatic Insulin Resistance: Role of the NLRP3 Inflammasome in Kupffer Cells,” Obesity (Silver Spring) 28, no. 7 (2020): 1270-1282, https://doi.org/10.1002/oby.22821.

[183]

A. van der Pol, W. H. van Gilst, A. A. Voors, and P. van der Meer, “Treating Oxidative Stress in Heart Failure: Past, Present and Future,” European Journal of Heart Failure 21, no. 4 (2019): 425-435, https://doi.org/10.1002/ejhf.1320.

[184]

A. J. Mouton, X. Li, M. E. Hall, and J. E. Hall, “Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation,” Circulation Research 126, no. 6 (2020): 789-806, https://doi.org/10.1161/circresaha.119.312321.

[185]

B. K. Ooi, B. H. Goh, and W. H. Yap, “Oxidative Stress in Cardiovascular Diseases: Involvement of Nrf2 Antioxidant Redox Signaling in Macrophage Foam Cells Formation,” International Journal of Molecular Sciences 18, no. 11 (2017): 2336, https://doi.org/10.3390/ijms18112336.

[186]

T. Senoner and W. Dichtl, “Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?,” Nutrients 11, no. 9 (2019): 2090, https://doi.org/10.3390/nu11092090.

[187]

S. Singh, D. Anshita, and V. Ravichandiran, “MCP-1: Function, Regulation, and Involvement in Disease,” International Immunopharmacology 101, no. Pt B (2021): 107598, https://doi.org/10.1016/j.intimp.2021.107598.

[188]

A. J. Kattoor, N. V. K. Pothineni, D. Palagiri, and J. L. Mehta, “Oxidative Stress in Atherosclerosis,” Current Atherosclerosis Reports 19, no. 11 (2017): 42, https://doi.org/10.1007/s11883-017-0678-6.

[189]

C. Khatana, N. K. Saini, S. Chakrabarti, et al., “Mechanistic Insights Into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis,” Oxidative Medicine and Cellular Longevity 2020 (2020): 5245308, https://doi.org/10.1155/2020/5245308.

[190]

A. V. Poznyak, D. Bharadwaj, G. Prasad, A. V. Grechko, M. A. Sazonova, and A. N. Orekhov, “Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD,” International Journal of Molecular Sciences 22, no. 13 (2021): 6702, https://doi.org/10.3390/ijms22136702.

[191]

Z. W. Zhao, M. Zhang, J. Zou, et al., “TIGAR Mitigates Atherosclerosis by Promoting Cholesterol Efflux From Macrophages,” Atherosclerosis 327 (2021): 76-86, https://doi.org/10.1016/j.atherosclerosis.2021.04.002.

[192]

H. Y. Tan, N. Wang, S. Li, M. Hong, X. Wang, and Y. Feng, “The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases,” Oxidative Medicine and Cellular Longevity 2016 (2016): 2795090, https://doi.org/10.1155/2016/2795090.

[193]

F. Li, Y. Bai, Z. Guan, et al., “Dexmedetomidine Attenuates Sepsis-Associated Acute Lung Injury by Regulating Macrophage Efferocytosis Through the ROS/ADAM10/AXL Pathway,” International Immunopharmacology 142 (2024): 112832, https://doi.org/10.1016/j.intimp.2024.112832.

[194]

S. Yang, H. Q. Yuan, Y. M. Hao, et al., “Macrophage Polarization in Atherosclerosis,” Clinica Chimica Acta 501 (2020): 142-146, https://doi.org/10.1016/j.cca.2019.10.034.

[195]

J. L. Stöger, M. J. Gijbels, S. van der Velden, et al., “Distribution of Macrophage Polarization Markers in Human Atherosclerosis,” Atherosclerosis 225, no. 2 (2012): 461-468, https://doi.org/10.1016/j.atherosclerosis.2012.09.013.

[196]

J. Wang, Z. Kang, Y. Liu, Z. Li, Y. Liu, and J. Liu, “Identification of Immune Cell Infiltration and Diagnostic Biomarkers in Unstable Atherosclerotic Plaques by Integrated Bioinformatics Analysis and Machine Learning,” Frontiers in Immunology 13 (2022): 956078, https://doi.org/10.3389/fimmu.2022.956078.

[197]

L. Liberale, F. Dallegri, F. Montecucco, and F. Carbone, “Pathophysiological Relevance of Macrophage Subsets in Atherogenesis,” Thrombosis and Haemostasis 117, no. 1 (2017): 7-18, https://doi.org/10.1160/th16-08-0593.

[198]

H. Li, Z. Cao, L. Wang, et al., “Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation,” Frontiers in Immunology 13 (2022): 843712, https://doi.org/10.3389/fimmu.2022.843712.

[199]

J. Tur, S. Pereira-Lopes, T. Vico, et al., “Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity,” Cell Reports 32, no. 8 (2020): 108079, https://doi.org/10.1016/j.celrep.2020.108079.

[200]

A. Justin Rucker and S. D. Crowley, “The Role of Macrophages in Hypertension and Its Complications,” Pflügers Archives 469, no. 3-4 (2017): 419-430, https://doi.org/10.1007/s00424-017-1950-x.

[201]

M. R. Noh, M. J. Kong, S. J. Han, J. I. Kim, and K. M. Park, “Isocitrate Dehydrogenase 2 Deficiency Aggravates Prolonged High-Fat Diet Intake-Induced Hypertension,” Redox Biology 34 (2020): 101548, https://doi.org/10.1016/j.redox.2020.101548.

[202]

N. S. Ferreira, R. C. Tostes, P. Paradis, and E. L. Schiffrin, “Aldosterone, Inflammation, Immune System, and Hypertension,” American Journal of Hypertension 34, no. 1 (2021): 15-27, https://doi.org/10.1093/ajh/hpaa137.

[203]

H. Lee, G. Kong, Q. Tran, C. Kim, J. Park, and J. Park, “Relationship Between Ginsenoside Rg3 and Metabolic Syndrome,” Frontiers in Pharmacology 11 (2020): 130, https://doi.org/10.3389/fphar.2020.00130.

[204]

A. Hosseini, B. M. Razavi, M. Banach, and H. Hosseinzadeh, “Quercetin and Metabolic Syndrome: A Review,” Phytotherapy Research 35, no. 10 (2021): 5352-5364, https://doi.org/10.1002/ptr.7144.

[205]

R. Ladeiras-Lopes, R. Fontes-Carvalho, N. Bettencourt, F. Sampaio, V. Gama, and A. Leite-Moreira, “Novel Therapeutic Targets of Metformin: Metabolic Syndrome and Cardiovascular Disease,” Expert Opinion on Therapeutic Targets 19, no. 7 (2015): 869-877, https://doi.org/10.1517/14728222.2015.1025051.

[206]

T. Liu, L. Zhu, and L. Wang, “A Narrative Review of the Pharmacology of Ginsenoside Compound K,” Annals of Translational Medicine 10, no. 4 (2022): 234, https://doi.org/10.21037/atm-22-501.

[207]

L. Shao, Y. P. Guo, L. Wang, et al., “Effects of Ginsenoside Compound K on Colitis-Associated Colorectal Cancer and Gut Microbiota Profiles in Mice,” Annals of Translational Medicine 10, no. 7 (2022): 408, https://doi.org/10.21037/atm-22-793.

[208]

B. Wang, J. Dong, J. Xu, Z. Qiu, and F. Yao, “Ginsenoside CK Inhibits Obese Insulin Resistance by Activating PPARγ to Interfere With Macrophage Activation,” Microbial Pathogenesis 157 (2021): 105002, https://doi.org/10.1016/j.micpath.2021.105002.

[209]

J. Xu, J. Dong, H. Ding, et al., “Ginsenoside Compound K Inhibits Obesity-Induced Insulin Resistance by Regulation of Macrophage Recruitment and Polarization via Activating PPARγ,” Food & Function 13, no. 6 (2022): 3561-3571, https://doi.org/10.1039/d1fo04273d.

[210]

M. R. Oh, S. H. Park, S. Y. Kim, et al., “Postprandial Glucose-Lowering Effects of Fermented Red Ginseng in Subjects With Impaired Fasting Glucose or Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial,” BMC Complementary and Alternative Medicine 14 (2014): 237, https://doi.org/10.1186/1472-6882-14-237.

[211]

P. Zhou, W. Xie, S. He, et al., “Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis,” Cells 8, no. 3 (2019): 204, https://doi.org/10.3390/cells8030204.

[212]

H. Ding, J. Dong, Y. Wang, et al., “Ginsenoside Rb1 Interfered With Macrophage Activation by Activating PPARγ to Inhibit Insulin Resistance in Obesity,” Molecules 28, no. 7 (2023):3083, https://doi.org/10.3390/molecules28073083.

[213]

X. Zhang, M. H. Liu, L. Qiao, et al., “Ginsenoside Rb1 Enhances Atherosclerotic Plaque Stability by Skewing Macrophages to the M2 Phenotype,” Journal of Cellular and Molecular Medicine 22, no. 1 (2018): 409-416, https://doi.org/10.1111/jcmm.13329.

[214]

L. Miao, Y. Yang, Z. Li, Z. Fang, Y. Zhang, and C. C. Han, “Ginsenoside Rb2: A Review of Pharmacokinetics and Pharmacological Effects,” Journal of Ginseng Research 46, no. 2 (2022): 206-213, https://doi.org/10.1016/j.jgr.2021.11.007.

[215]

G. Dai, B. Sun, T. Gong, Z. Pan, Q. Meng, and W. Ju, “Ginsenoside Rb2 Inhibits Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Suppressing TGF-β/Smad Signaling,” Phytomedicine 56 (2019): 126-135, https://doi.org/10.1016/j.phymed.2018.10.025.

[216]

Q. Huang, T. Wang, and H. Y. Wang, “Ginsenoside Rb2 Enhances the Anti-Inflammatory Effect of ω-3 Fatty Acid in LPS-Stimulated RAW264.7 Macrophages by Upregulating GPR120 Expression,” Acta Pharmacologica Sinica 38, no. 2 (2017): 192-200, https://doi.org/10.1038/aps.2016.135.

[217]

S. Wang, S. Yang, Y. Chen, et al., “Ginsenoside Rb2 Alleviated Atherosclerosis by Inhibiting M1 Macrophages Polarization Induced by MicroRNA-216a,” Frontiers in Pharmacology 12 (2021): 764130, https://doi.org/10.3389/fphar.2021.764130.

[218]

M. Guo, J. Xiao, X. Sheng, et al., “Ginsenoside Rg3 Mitigates Atherosclerosis Progression in Diabetic apoE−/− Mice by Skewing Macrophages to the M2 Phenotype,” Frontiers in Pharmacology 9 (2018): 464, https://doi.org/10.3389/fphar.2018.00464.

[219]

E. Jovanovski, S. Lea Duvnjak, A. Komishon, et al., “Vascular Effects of Combined Enriched Korean Red Ginseng (Panax Ginseng) and American Ginseng (Panax quinquefolius) Administration in Individuals With Hypertension and Type 2 Diabetes: A Randomized Controlled Trial,” Complementary Therapies in Medicine 49 (2020): 102338, https://doi.org/10.1016/j.ctim.2020.102338.

[220]

A. Rauf, M. Imran, T. Abu-Izneid, et al., “Proanthocyanidins: A Comprehensive Review,” Biomedicine & Pharmacotherapy 116 (2019): 108999, https://doi.org/10.1016/j.biopha.2019.108999.

[221]

J. Peng, Y. Jia, T. Hu, et al., “GC-(4→8)-GCG, A Proanthocyanidin Dimer From Camellia Ptilophylla, Modulates Obesity and Adipose Tissue Inflammation in High-Fat Diet Induced Obese Mice,” Molecular Nutrition & Food Research 63, no. 11 (2019): e1900082, https://doi.org/10.1002/mnfr.201900082.

[222]

A. Koutsos, S. Riccadonna, M. M. Ulaszewska, et al., “Two Apples a Day Lower Serum Cholesterol and Improve Cardiometabolic Biomarkers in Mildly Hypercholesterolemic Adults: A Randomized, Controlled, Crossover Trial,” American Journal of Clinical Nutrition 111, no. 2 (2020): 307-318, https://doi.org/10.1093/ajcn/nqz282.

[223]

P. C. Anunciação, L. M. Cardoso, V. A. V. Queiroz, et al., “Consumption of a Drink Containing Extruded Sorghum Reduces Glycaemic Response of the Subsequent Meal,” European Journal of Nutrition 57, no. 1 (2018): 251-257, https://doi.org/10.1007/s00394-016-1314-x.

[224]

J. Kochman, K. Jakubczyk, J. Antoniewicz, H. Mruk, and K. Janda, “Health Benefits and Chemical Composition of Matcha Green Tea: A Review,” Molecules 26, no. 1 (2020): 85, https://doi.org/10.3390/molecules26010085.

[225]

Y. Du, L. Paglicawan, S. Soomro, et al., “Epigallocatechin-3-Gallate Dampens Non-Alcoholic Fatty Liver by Modulating Liver Function, Lipid Profile and Macrophage Polarization,” Nutrients 13, no. 2 (2021): 599, https://doi.org/10.3390/nu13020599.

[226]

J. Jiang, Z. C. Mo, K. Yin, et al., “Epigallocatechin-3-Gallate Prevents TNF-α-Induced NF-κB Activation Thereby Upregulating ABCA1 via the Nrf2/Keap1 Pathway in Macrophage Foam Cells,” International Journal of Molecular Medicine 29, no. 5 (2012): 946-956, https://doi.org/10.3892/ijmm.2012.924.

[227]

P. Dey, G. Y. Sasaki, P. Wei, et al., “Green Tea Extract Prevents Obesity in Male Mice by Alleviating Gut Dysbiosis in Association With Improved Intestinal Barrier Function That Limits Endotoxin Translocation and Adipose Inflammation,” Journal of Nutritional Biochemistry 67 (2019): 78-89, https://doi.org/10.1016/j.jnutbio.2019.01.017.

[228]

M. Zeng, J. K. Hodges, A. Pokala, et al., “A Green Tea Extract Confection Decreases Circulating Endotoxin and Fasting Glucose by Improving Gut Barrier Function but Without Affecting Systemic Inflammation: A Double-Blind, Placebo-Controlled Randomized Trial in Healthy Adults and Adults With Metabolic Syndrome,” Nutrition Research 124 (2024): 94-110, https://doi.org/10.1016/j.nutres.2024.02.001.

[229]

L. Li, C. Su, X. Chen, et al., “Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics,” Journal of Agricultural and Food Chemistry 68, no. 24 (2020): 6464-6484, https://doi.org/10.1021/acs.jafc.0c01554.

[230]

M. Naveed, V. Hejazi, M. Abbas, et al., “Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research,” Biomedicine & Pharmacotherapy 97 (2018): 67-74, https://doi.org/10.1016/j.biopha.2017.10.064.

[231]

Y. Ma, M. Gao, and D. Liu, “Chlorogenic Acid Improves High Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice,” Pharmaceutical Research 32, no. 4 (2015): 1200-1209, https://doi.org/10.1007/s11095-014-1526-9.

[232]

A. Yanagimoto, Y. Matsui, T. Yamaguchi, M. Hibi, S. Kobayashi, and N. Osaki, “Effects of Ingesting Both Catechins and Chlorogenic Acids on Glucose, Incretin, and Insulin Sensitivity in Healthy Men: A Randomized, Double-Blinded, Placebo-Controlled Crossover Trial,” Nutrients 14, no. 23 (2022): 5063, https://doi.org/10.3390/nu14235063.

[233]

R. R. Kotha and D. L. Luthria, “Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects,” Molecules 24, no. 16 (2019): 2930, https://doi.org/10.3390/molecules24162930.

[234]

S. K. Yekollu, R. Thomas, and B. O'Sullivan, “Targeting Curcusomes to Inflammatory Dendritic Cells Inhibits NF-κB and Improves Insulin Resistance in Obese Mice,” Diabetes 60, no. 11 (2011): 2928-2938, https://doi.org/10.2337/db11-0275.

[235]

M. R. Maradana, S. K. Yekollu, B. Zeng, et al., “Immunomodulatory Liposomes Targeting Liver Macrophages Arrest Progression of Nonalcoholic Steatohepatitis,” Metabolism 78 (2018): 80-94, https://doi.org/10.1016/j.metabol.2017.09.002.

[236]

A. Pandey, M. Chaturvedi, S. Mishra, P. Kumar, P. Somvanshi, and R. Chaturvedi, “Reductive Metabolites of Curcumin and Their Therapeutic Effects,” Heliyon 6, no. 11 (2020): e05469, https://doi.org/10.1016/j.heliyon.2020.e05469.

[237]

M. H. Pan, J. W. Chen, Z. L. Kong, J. C. Wu, C. T. Ho, and C. S. Lai, “Attenuation by Tetrahydrocurcumin of Adiposity and Hepatic Steatosis in Mice With High-Fat-Diet-Induced Obesity,” Journal of Agricultural and Food Chemistry 66, no. 48 (2018): 12685-12695, https://doi.org/10.1021/acs.jafc.8b04624.

[238]

A. A. Sangouni, M. Taghdir, J. Mirahmadi, M. Sepandi, and K. Parastouei, “Effects of Curcumin and/or Coenzyme Q10 Supplementation on Metabolic Control in Subjects With Metabolic Syndrome: A Randomized Clinical Trial,” Nutrition Journal 21, no. 1 (2022): 62, https://doi.org/10.1186/s12937-022-00816-7.

[239]

M. Alidadi, A. Sahebkar, S. Eslami, et al., “The Effect of Curcumin Supplementation on Pulse Wave Velocity in Patients With Metabolic Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial,” Advances in Experimental Medicine and Biology 1308 (2021): 1-11, https://doi.org/10.1007/978-3-030-64872-5_1.

[240]

U. M. Khan, M. Sevindik, A. Zarrabi, et al., “Lycopene: Food Sources, Biological Activities, and Human Health Benefits,” Oxidative Medicine and Cellular Longevity 2021 (2021): 2713511, https://doi.org/10.1155/2021/2713511.

[241]

N. Li, X. Wu, W. Zhuang, et al., “Tomato and Lycopene and Multiple Health Outcomes: Umbrella Review,” Food Chemistry 343 (2021): 128396, https://doi.org/10.1016/j.foodchem.2020.128396.

[242]

J. Marcotorchino, B. Romier, E. Gouranton, et al., “Lycopene Attenuates LPS-Induced TNF-α Secretion in Macrophages and Inflammatory Markers in Adipocytes Exposed to Macrophage-Conditioned Media,” Molecular Nutrition & Food Research 56, no. 5 (2012): 725-732, https://doi.org/10.1002/mnfr.201100623.

[243]

G. Chen, Y. Ni, N. Nagata, et al., “Lycopene Alleviates Obesity-Induced Inflammation and Insulin Resistance by Regulating M1/M2 Status of Macrophages,” Molecular Nutrition & Food Research 63, no. 21 (2019): e1900602, https://doi.org/10.1002/mnfr.201900602.

[244]

Y. Liu, Y. Tian, X. Dai, et al., “Lycopene Ameliorates Islet Function and Down-Regulates the TLR4/MyD88/NF-κB Pathway in Diabetic Mice and Min6 Cells,” Food & Function 14, no. 11 (2023): 5090-5104, https://doi.org/10.1039/d3fo00559c.

[245]

C. Tsitsimpikou, K. Tsarouhas, N. Kioukia-Fougia, et al., “Dietary Supplementation With Tomato-Juice in Patients With Metabolic Syndrome: A Suggestion to Alleviate Detrimental Clinical Factors,” Food and Chemical Toxicology 74 (2014): 9-13, https://doi.org/10.1016/j.fct.2014.08.014.

[246]

J. Q. Silveira, G. K. Dourado, and T. B. Cesar, “Red-Fleshed Sweet Orange Juice Improves the Risk Factors for Metabolic Syndrome,” International Journal of Food Sciences and Nutrition 66, no. 7 (2015): 830-836, https://doi.org/10.3109/09637486.2015.1093610.

[247]

J. Dong, X. Zhang, L. Zhang, et al., “Quercetin Reduces Obesity-Associated ATM Infiltration and Inflammation in Mice: A Mechanism Including AMPKα1/SIRT1,” Journal of Lipid Research 55, no. 3 (2014): 363-374, https://doi.org/10.1194/jlr.M038786.

[248]

C. S. Kim, H. S. Choi, Y. Joe, H. T. Chung, and R. Yu, “Induction of Heme Oxygenase-1 With Dietary Quercetin Reduces Obesity-Induced Hepatic Inflammation Through Macrophage Phenotype Switching,” Nutrition Research and Practice 10, no. 6 (2016): 623-628, https://doi.org/10.4162/nrp.2016.10.6.623.

[249]

M. Pfeuffer, A. Auinger, U. Bley, et al., “Effect of Quercetin on Traits of the Metabolic Syndrome, Endothelial Function and Inflammation in Men With Different APOE Isoforms,” Nutrition, Metabolism, and Cardiovascular Diseases 23, no. 5 (2013): 403-409, https://doi.org/10.1016/j.numecd.2011.08.010.

[250]

M. Imran, A. Rauf, T. Abu-Izneid, et al., “Luteolin, a Flavonoid, as an Anticancer Agent: A Review,” Biomedicine & Pharmacotherapy 112 (2019): 108612, https://doi.org/10.1016/j.biopha.2019.108612.

[251]

L. Zhang, Y. J. Han, X. Zhang, et al., “Luteolin Reduces Obesity-Associated Insulin Resistance in Mice by Activating AMPKα1 Signalling in Adipose Tissue Macrophages,” Diabetologia 59, no. 10 (2016): 2219-2228, https://doi.org/10.1007/s00125-016-4039-8.

[252]

Y. Baek, M. N. Lee, D. Wu, and M. Pae, “Luteolin Reduces Adipose Tissue Macrophage Inflammation and Insulin Resistance in Postmenopausal Obese Mice,” Journal of Nutritional Biochemistry 71 (2019): 72-81, https://doi.org/10.1016/j.jnutbio.2019.06.002.

[253]

Q. Jiang, D. Pan, Y. Yang, et al., “Luteolin Regulates Macrophage Polarization via the PI3K/Akt Pathway to Inhibit the Apoptosis Stimulated by Angiotensin II,” Current Pharmaceutical Biotechnology 19, no. 5 (2018): 428-437, https://doi.org/10.2174/1389201019666180629143251.

[254]

S. Wang, M. Cao, S. Xu, et al., “Luteolin Alters Macrophage Polarization to Inhibit Inflammation,” Inflammation 43, no. 1 (2020): 95-108, https://doi.org/10.1007/s10753-019-01099-7.

[255]

B. C. Zhang, Z. Li, W. Xu, C. H. Xiang, and Y. F. Ma, “Luteolin Alleviates NLRP3 Inflammasome Activation and Directs Macrophage Polarization in Lipopolysaccharide-Stimulated RAW264.7 Cells,” American Journal of Translational Research 10, no. 1 (2018): 265-273.

[256]

G. Castellino, D. Nikolic, A. Magán-Fernández, et al., “Altilix(®) Supplement Containing Chlorogenic Acid and Luteolin Improved Hepatic and Cardiometabolic Parameters in Subjects With Metabolic Syndrome: A 6 Month Randomized, Double-Blind, Placebo-Controlled Study,” Nutrients 11, no. 11 (2019): 2580, https://doi.org/10.3390/nu11112580.

[257]

S. Terzo, A. Amato, A. Magán-Fernández, et al., “A Nutraceutical Containing Chlorogenic Acid and Luteolin Improves Cardiometabolic Parameters in Subjects With Pre-Obesity: A 6-Month Randomized, Double-Blind, Placebo-Controlled Study,” Nutrients 15, no. 2 (2023): 462, https://doi.org/10.3390/nu15020462.

[258]

H. Liao, J. Ye, L. Gao, and Y. Liu, “The Main Bioactive Compounds of Scutellaria Baicalensis Georgi. For Alleviation of Inflammatory Cytokines: A Comprehensive Review,” Biomedicine & Pharmacotherapy 133 (2021): 110917, https://doi.org/10.1016/j.biopha.2020.110917.

[259]

E. J. Bak, J. Kim, Y. H. Choi, et al., “Wogonin Ameliorates Hyperglycemia and Dyslipidemia via PPARα Activation in Db/Db Mice,” Clinical Nutrition 33, no. 1 (2014): 156-163, https://doi.org/10.1016/j.clnu.2013.03.013.

[260]

V. Baradaran Rahimi, V. R. Askari, and H. Hosseinzadeh, “Promising Influences of Scutellaria Baicalensis and Its Two Active Constituents, Baicalin, and Baicalein, Against Metabolic Syndrome: A Review,” Phytotherapy Research 35, no. 7 (2021): 3558-3574, https://doi.org/10.1002/ptr.7046.

[261]

X. W. He, D. Yu, W. L. Li, et al., “Anti-Atherosclerotic Potential of Baicalin Mediated by Promoting Cholesterol Efflux From Macrophages via the PPARγ-LXRα-ABCA1/ABCG1 Pathway,” Biomedicine & Pharmacotherapy 83 (2016): 257-264, https://doi.org/10.1016/j.biopha.2016.06.046.

[262]

H. J. An, J. Y. Lee, and W. Park, “Baicalin Modulates Inflammatory Response of Macrophages Activated by LPS via Calcium-CHOP Pathway,” Cells 11, no. 19 (2022): 3076, https://doi.org/10.3390/cells11193076.

[263]

C. Y. Chen, S. K. Shyue, L. C. Ching, et al., “Wogonin Promotes Cholesterol Efflux by Increasing Protein Phosphatase 2B-Dependent Dephosphorylation at ATP-Binding Cassette Transporter-A1 in Macrophages,” Journal of Nutritional Biochemistry 22, no. 11 (2011): 1015-1021, https://doi.org/10.1016/j.jnutbio.2010.08.014.

[264]

X. Zhang, Y. Qin, W. Ruan, et al., “Targeting Inflammation-Associated AMPK//Mfn-2/MAPKs Signaling Pathways by Baicalein Exerts Anti-Atherosclerotic Action,” Phytotherapy Research 35, no. 8 (2021): 4442-4455, https://doi.org/10.1002/ptr.7149.

[265]

Z. Z. Zhang, X. H. Yu, and W. H. Tan, “Baicalein Inhibits Macrophage Lipid Accumulation and Inflammatory Response by Activating the PPARγ/LXRα Pathway,” Clinical and Experimental Immunology 209, no. 3 (2022): 316-325, https://doi.org/10.1093/cei/uxac062.

[266]

H. Y. Na and B. C. Lee, “Scutellaria Baicalensis Alleviates Insulin Resistance in Diet-Induced Obese Mice by Modulating Inflammation,” International Journal of Molecular Sciences 20, no. 3 (2019): 727, https://doi.org/10.3390/ijms20030727.

[267]

Y. Jang, E. K. Kim, and W. S. Shim, “Phytotherapeutic Effects of the Fruits of Poncirus Trifoliata (L.) Raf. On Cancer, Inflammation, and Digestive Dysfunction,” Phytotherapy Research 32, no. 4 (2018): 616-624, https://doi.org/10.1002/ptr.6008.

[268]

M. Kim, M. H. Seol, and B. C. Lee, “The Effects of Poncirus Fructus on Insulin Resistance and the Macrophage-Mediated Inflammatory Response in High Fat Diet-Induced Obese Mice,” International Journal of Molecular Sciences 20, no. 12 (2019): 2858, https://doi.org/10.3390/ijms20122858.

[269]

J. B. Kim, A. R. Han, E. Y. Park, et al., “Inhibition of LPS-Induced iNOS, COX-2 and Cytokines Expression by Poncirin Through the NF-kappaB Inactivation in RAW 264.7 Macrophage Cells,” Biological & Pharmaceutical Bulletin 30, no. 12 (2007): 2345-2351, https://doi.org/10.1248/bpb.30.2345.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/