Environmental Drivers of Malignant Clonal Selection in Precancerous Lesion Evolution

Yancheng Lai , Shaosen Zhang

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e70011

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e70011 DOI: 10.1111/cpr.70011
LETTER TO THE EDITOR

Environmental Drivers of Malignant Clonal Selection in Precancerous Lesion Evolution

Author information +
History +
PDF

Abstract

Somatic mutations accumulation and subsequent malignant clonal selection are the processes that lead to cancer. The intricacy includes exposure to carcinogens as well as the ways in which these exposures interact with genetic, polygenic, or epigenetic predispositions. It is worthwhile to investigate how environmental factors influence the initial transformation of healthy cells into malignant ones, or their effects on promoting growth, invasion, immune evasion, inflammation and drug resistance of onset cancerous cells.

Cite this article

Download citation ▾
Yancheng Lai, Shaosen Zhang. Environmental Drivers of Malignant Clonal Selection in Precancerous Lesion Evolution. Cell Proliferation, 2025, 58(5): e70011 DOI:10.1111/cpr.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Mustjoki and N. S. Young, “Somatic Mutations in “Benign” Disease,” New England Journal of Medicine 384 (2021): 2039-2052.

[2]

A. Jassim, E. P. Rahrmann, B. D. Simons, and R. J. Gilbertson, “Cancers Make Their Own Luck: Theories of Cancer Origins,” Nature Reviews Cancer 23 (2023): 710-724.

[3]

J. Hao, A. Ma, L. Wang, et al., “General Requirements for Stem Cells,” Cell Proliferation 53 (2020): e12926.

[4]

J.-J. Loh and S. Ma, “Hallmarks of Cancer Stemness,” Cell Stem Cell 31 (2024): 617-639.

[5]

R. Li, L. di, J. Li, et al., “A Body Map of Somatic Mutagenesis in Morphologically Normal Human Tissues,” Nature 597 (2021): 398-403.

[6]

K. Murai, S. Dentro, S. H. Ong, et al., “p53 Mutation in Normal Esophagus Promotes Multiple Stages of Carcinogenesis but Is Constrained by Clonal Competition,” Nature Communications 13 (2022): 6206.

[7]

Z. Lu, “Polyclonal-to-Monoclonal Transition in Colorectal Precancerous Evolution.”

[8]

S. M. Van Neerven and L. Vermeulen, “Cell Competition in Development, Homeostasis and Cancer,” Nature Reviews. Molecular Cell Biology 24 (2023): 221-236.

[9]

M. A. Taylor, E. Kandyba, K. Halliwill, et al., “Stem-Cell States Converge in Multistage Cutaneous Squamous Cell Carcinoma Development,” Science 384 (2024): eadi7453.

[10]

G. Han, A. Sinjab, Z. Rahal, et al., “An Atlas of Epithelial Cell States and Plasticity in Lung Adenocarcinoma,” Nature 627 (2024): 656-663.

[11]

B. Colom, A. Herms, M. W. J. Hall, et al., “Mutant Clones in Normal Epithelium Outcompete and Eliminate Emerging Tumours,” Nature 598 (2021): 510-514.

[12]

B. Colom, M. P. Alcolea, G. Piedrafita, et al., “Spatial Competition Shapes the Dynamic Mutational Landscape of Normal Esophageal Epithelium,” Nature Genetics 52 (2020): 604-614.

[13]

I. D. Sadien, S. Adler, S. Mehmed, et al., “Polyclonality Overcomes Fitness Barriers in APC-Driven Tumorigenesis,” Nature 634 (2024): 1196-1203.

[14]

C.-K. Mo, J. Liu, S. Chen, et al., “Tumour Evolution and Microenvironment Interactions in 2D and 3D Space,” Nature 634 (2024): 1178-1186.

[15]

Y. Zhu, H. Lee, S. White, et al., “Global Loss of Promoter-Enhancer Connectivity and Rebalancing of Gene Expression During Early Colorectal Cancer Carcinogenesis,” Nature Cancer 5 (2024): 1697-1712, https://doi.org/10.1038/s43018-024-00823-z.

[16]

M. Q. Reeves, E. Kandyba, S. Harris, R. Del Rosario, and A. Balmain, “Multicolour Lineage Tracing Reveals Clonal Dynamics of Squamous Carcinoma Evolution From Initiation to Metastasis,” Nature Cell Biology 20 (2018): 699-709.

[17]

E. D. Esplin, C. Hanson, S. Wu, et al., “Multiomic Analysis of Familial Adenomatous Polyposis Reveals Molecular Pathways Associated With Early Tumorigenesis,” Nature Cancer 5 (2024): 1737-1753, https://doi.org/10.1038/s43018-024-00831-z.

[18]

M. Ciwinska, H. A. Messal, H. R. Hristova, et al., “Mechanisms That Clear Mutations Drive Field Cancerization in Mammary Tissue,” Nature 633 (2024): 198-206.

[19]

S. Ma, B. Zhang, L. M. LaFave, et al., “Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin,” Cell 183 (2020): 1103-1116.e20.

[20]

M. Stoeckius, C. Hafemeister, W. Stephenson, et al., “Simultaneous Epitope and Transcriptome Measurement in Single Cells,” Nature Methods 14 (2017): 865-868.

[21]

M. Dhainaut, S. A. Rose, G. Akturk, et al., “Spatial CRISPR Genomics Identifies Regulators of the Tumor Microenvironment,” Cell 185 (2022): 1223-1239.e20.

[22]

J. G. Baldwin, C. Heuser-Loy, T. Saha, et al., “Intercellular Nanotube-Mediated Mitochondrial Transfer Enhances T Cell Metabolic Fitness and Antitumor Efficacy,” Cell 187 (2024): 6614-6630.e21, https://doi.org/10.1016/j.cell.2024.08.029.

[23]

E. Cambria, M. F. Coughlin, M. A. Floryan, G. S. Offeddu, S. E. Shelton, and R. D. Kamm, “Linking Cell Mechanical Memory and Cancer Metastasis,” Nature Reviews Cancer 24 (2024): 216-228.

[24]

Y. Hou, L. Sun, M. W. LaFleur, et al., “Neuropeptide Signalling Orchestrates T Cell Differentiation,” Nature 635 (2024): 444-452, https://doi.org/10.1038/s41586-024-08049-w.

[25]

M. Hörner, N. Burkard, M. Kelm, et al., “Glial Cell Line Derived Neurotrophic Factor (gdnf) Induces Mucosal Healing via Intestinal Stem Cell Niche Activation,” Cell Proliferation 58 (2024): e13758, https://doi.org/10.1111/cpr.13758.

[26]

Z. Hao, J. Lu, S.-Z. Wang, H. Wu, Y.-T. Zhang, and S.-G. Xu, “Stem Cell-Derived Exosomes: A Promising Strategy for Fracture Healing,” Cell Proliferation 50 (2017): e12359.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/