SIRT1 Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction and Mitochondria-Associated Membrane Dysregulation in Stress Urinary Incontinence

Liying Chen , Jianming Tang , Xiaohu Zuo , Bingshu Li , Cheng Liu , Shasha Hong , Jie Min , Ming Hu , Suting Li , Min Zhou , Mao Chen , Yong He , Ya Xiao , Xiaoyu Huang , Li Hong

Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e70009

PDF
Cell Proliferation ›› 2025, Vol. 58 ›› Issue (5) : e70009 DOI: 10.1111/cpr.70009
ORIGINAL ARTICLE

SIRT1 Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction and Mitochondria-Associated Membrane Dysregulation in Stress Urinary Incontinence

Author information +
History +
PDF

Abstract

The pathogenesis of stress urinary incontinence (SUI), a condition common in women, remains to be fully elucidated. This study revealed that the incidence of SUI is associated with mitochondrial homeostasis dysregulation following oxidative stress in the fibrous connective tissue of the pelvic floor. SIRT1 is an essential factor for maintaining mitochondrial homeostasis; however, its potential role and mechanism of action in SUI pathogenesis remain unclear. Both in vitro and in vivo, we observed that oxidative stress reduced SIRT1 expression to inhibit the PGC-1α/NRF1/TFAM and PINK1/Parkin signalling pathways, eliciting impairment of mitochondrial biogenesis and mitophagy in L929 cells and SUI mice. Decreased SIRT1 levels induced endoplasmic reticulum (ER) stress and altered the structure of mitochondria-associated membranes (MAMs), disrupting ER-mitochondrial calcium homeostasis and exacerbting ROS accumulation. SIRT1 activation can restore mitochondrial function and the structure of MAMs and alleviate ER stress in fibroblasts, promoting anterior vaginal wall repair and improving urodynamic parameters in the SUI model. Our findings provide novel insights into the role and associated mechanism of SIRT1 in ameliorating oxidative stress-induced mitochondrial dysfunction in fibroblasts of the anterior vaginal wall and propose SIRT1 as a potential therapeutic target for SUI.

Keywords

mitochondria-associated membranes / mitochondrial biogenesis / mitophagy / SIRT1 / stress urinary incontinence

Cite this article

Download citation ▾
Liying Chen, Jianming Tang, Xiaohu Zuo, Bingshu Li, Cheng Liu, Shasha Hong, Jie Min, Ming Hu, Suting Li, Min Zhou, Mao Chen, Yong He, Ya Xiao, Xiaoyu Huang, Li Hong. SIRT1 Alleviates Oxidative Stress-Induced Mitochondrial Dysfunction and Mitochondria-Associated Membrane Dysregulation in Stress Urinary Incontinence. Cell Proliferation, 2025, 58(5): e70009 DOI:10.1111/cpr.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. T. de Macedo, L. Castaneda, G. N. Correia, et al., “Functioning and Disability of Premenopausal Women With Urinary Incontinence: An Assessment by Using the World Health Organization Disability Assessment Schedule-Whodas 2.0,” Neurourology and Urodynamics 38, no. 6 (2019): 1767-1774, https://doi.org/10.1002/nau.24073.

[2]

M. Juraskova, P. Piler, L. Kukla, et al., “Association Between Stress Urinary Incontinence and Depressive Symptoms After Birth: The Czech Elspac Study,” Scientific Reports 10, no. 1 (2020): 6233, https://doi.org/10.1038/s41598-020-62589-5.

[3]

H. Pang, J. Lv, T. Xu, et al., “Incidence and Risk Factors of Female Urinary Incontinence: A 4-Year Longitudinal Study Among 24 985 Adult Women in China,” BJOG: An International Journal of Obstetrics and Gynaecology 129, no. 4 (2022): 580-589, https://doi.org/10.1111/1471-0528.16936.

[4]

K. Wang, X. Xu, G. Jia, and H. Jiang, “Risk Factors for Postpartum Stress Urinary Incontinence: A Systematic Review and Meta-Analysis,” Reproductive Sciences 27, no. 12 (2020): 2129-2145, https://doi.org/10.1007/s43032-020-00254-y.

[5]

J. A. Ashton-Miller and J. O. DeLancey, “Functional Anatomy of the Female Pelvic Floor,” Annals of the New York Academy of Sciences 1101 (2007): 266-296, https://doi.org/10.1196/annals.1389.034.

[6]

J. O. DeLancey, “Structural Support of the Urethra as It Relates to Stress Urinary Incontinence: The Hammock Hypothesis,” American Journal of Obstetrics and Gynecology 170, no. 6 (1994): 1713-1720, https://doi.org/10.1016/s0002-9378(94)70346-9.

[7]

B. S. Li, W. J. Guo, L. Hong, et al., “Role of Mechanical Strain-Activated pi3k/Akt Signaling Pathway in Pelvic Organ Prolapse,” Molecular Medicine Reports 14, no. 1 (2016): 243-253, https://doi.org/10.3892/mmr.2016.5264.

[8]

Y. Li, L. Li, B. Li, et al., “Mechanical Stretching Induces Fibroblasts Apoptosis Through Activating Piezo1 and Then Destroying Actin Cytoskeleton,” International Journal of Medical Sciences 20, no. 6 (2023): 771-780, https://doi.org/10.7150/ijms.81666.

[9]

A. Miedel, G. Tegerstedt, M. Maehle-Schmidt, et al., “Nonobstetric Risk Factors for Symptomatic Pelvic Organ Prolapse,” Obstetrics and Gynecology 113, no. 5 (2009): 1089-1097, https://doi.org/10.1097/AOG.0b013e3181a11a85.

[10]

Y. Li, Q. Y. Zhang, B. F. Sun, et al., “Single-Cell Transcriptome Profiling of the Vaginal Wall in Women With Severe Anterior Vaginal Prolapse,” Nature Communications 12, no. 1 (2021): 87, https://doi.org/10.1038/s41467-020-20358-y.

[11]

D. Habes, J. Kestranek, J. Stranik, M. Kacerovsky, and J. Spacek, “Is There an Association Between Pelvic Organ Prolapse and Oxidative Stress? A Systematic Review,” PLoS One 17, no. 8 (2022): e0271467, https://doi.org/10.1371/journal.pone.0271467.

[12]

S. Hong, H. Li, D. Wu, et al., “Oxidative Damage to Human Parametrial Ligament Fibroblasts Induced by Mechanical Stress,” Molecular Medicine Reports 12, no. 4 (2015): 5342-5348, https://doi.org/10.3892/mmr.2015.4115.

[13]

J. Tang, B. Li, C. Liu, et al., “Mechanism of Mechanical Trauma-Induced Extracellular Matrix Remodeling of Fibroblasts in Association With Nrf2/Are Signaling Suppression Mediating Tgf-beta1/smad3 Signaling Inhibition,” Oxidative Medicine and Cellular Longevity 2017 (2017): 8524353, https://doi.org/10.1155/2017/8524353.

[14]

A. J. Kattoor, N. Pothineni, D. Palagiri, et al., “Oxidative Stress in Atherosclerosis,” Current Atherosclerosis Reports 19, no. 11 (2017): 42, https://doi.org/10.1007/s11883-017-0678-6.

[15]

K. Sinha, J. Das, P. B. Pal, et al., “Oxidative Stress: The Mitochondria-Dependent and Mitochondria-Independent Pathways of Apoptosis,” Archives of Toxicology 87, no. 7 (2013): 1157-1180, https://doi.org/10.1007/s00204-013-1034-4.

[16]

B. Zhang, C. Pan, C. Feng, et al., “Role of Mitochondrial Reactive Oxygen Species in Homeostasis Regulation,” Redox Report 27, no. 1 (2022): 45-52, https://doi.org/10.1080/13510002.2022.2046423.

[17]

Y. Lu, Z. Li, S. Zhang, T. Zhang, Y. Liu, and L. Zhang, “Cellular Mitophagy: Mechanism, Roles in Diseases and Small Molecule Pharmacological Regulation,” Theranostics 13, no. 2 (2023): 736-766, https://doi.org/10.7150/thno.79876.

[18]

Q. Wu, C. Liu, D. Liu, et al., “Polystyrene Nanoplastics-Induced Lung Apoptosis and Ferroptosis via Ros-Dependent Endoplasmic Reticulum Stress,” Science of the Total Environment 912 (2024): 169260, https://doi.org/10.1016/j.scitotenv.2023.169260.

[19]

L. Barazzuol, F. Giamogante, and T. Cali, “Mitochondria Associated Membranes (Mams): Architecture and Physiopathological Role,” Cell Calcium 94 (2021): 102343, https://doi.org/10.1016/j.ceca.2020.102343.

[20]

Y. Combot, V. T. Salo, G. Chadeuf, et al., “Seipin Localizes at Endoplasmic-Reticulum-Mitochondria Contact Sites to Control Mitochondrial Calcium Import and Metabolism in Adipocytes,” Cell Reports 38, no. 2 (2022): 110213, https://doi.org/10.1016/j.celrep.2021.110213.

[21]

G. Szabadkai, K. Bianchi, P. Varnai, et al., “Chaperone-Mediated Coupling of Endoplasmic Reticulum and Mitochondrial Ca2+ Channels,” Journal of Cell Biology 175, no. 6 (2006): 901-911, https://doi.org/10.1083/jcb.200608073.

[22]

M. Yuan, M. Gong, J. He, et al., “IP3R1/GRP75/VDAC1 Complex Mediates Endoplasmic Reticulum Stress-Mitochondrial Oxidative Stress in Diabetic Atrial Remodeling,” Redox Biology 52 (2022): 102289, https://doi.org/10.1016/j.redox.2022.102289.

[23]

N. Oanh, Y. Y. Park, and H. Cho, “Mitochondria Elongation Is Mediated Through sirt1-Mediated mfn1 Stabilization,” Cellular Signalling 38 (2017): 67-75, https://doi.org/10.1016/j.cellsig.2017.06.019.

[24]

Y. Sun, Y. M. Yang, Y. Y. Hu, et al., “Inhibition of Nuclear Deacetylase Sirtuin-1 Induces Mitochondrial Acetylation and Calcium Overload Leading to Cell Death,” Redox Biology 53 (2022): 102334, https://doi.org/10.1016/j.redox.2022.102334.

[25]

H. Zhu, X. Li, M. Qiao, X. Sun, and G. Li, “Resveratrol Alleviates Inflammation and Er Stress Through SIRT1/NRF2 to Delay Ovarian Aging in a Short-Lived Fish,” Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 78, no. 4 (2023): 596-602, https://doi.org/10.1093/gerona/glad009.

[26]

D. Xu, L. Liu, Y. Zhao, et al., “Melatonin Protects Mouse Testes From Palmitic Acid-Induced Lipotoxicity by Attenuating Oxidative Stress and Dna Damage in a sirt1-Dependent Manner,” Journal of Pineal Research 69, no. 4 (2020): e12690, https://doi.org/10.1111/jpi.12690.

[27]

X. Wang, W. Zhang, Y. Zhou, et al., “SIRT1 as a Potential Therapeutic Target in Pelvic Organ Prolapse due to Protective Effects Against Oxidative Stress and Cellular Senescence in Human Uterosacral Ligament Fibroblasts,” Neurourology and Urodynamics 43, no. 5 (2024): 1217-1229, https://doi.org/10.1002/nau.25455.

[28]

K. Chandrasekaran, M. Anjaneyulu, J. Choi, et al., “Role of Mitochondria in Diabetic Peripheral Neuropathy: Influencing the NAD(+)-Dependent SIRT1-PGC-1ALPHA-TFAM Pathway,” International Review of Neurobiology 145 (2019): 177-209, https://doi.org/10.1016/bs.irn.2019.04.002.

[29]

J. F. Wang, D. T. Wen, S. J. Wang, et al., “Muscle-Specific Overexpression of ATG2 Gene and Endurance Exercise Delay Age-Related Deteriorations of Skeletal Muscle and Heart Function via Activating the AMPK/SIRT1/PGC-1alpha Pathway in Male Drosophila,” FASEB Journal 37, no. 11 (2023): e23214, https://doi.org/10.1096/fj.202301312R.

[30]

L. Yang, F. Xie, Y. Li, et al., “Chitin-Based Hydrogel Loaded With BFGF and SDF-1 for Inducing Endogenous Mesenchymal Stem Cells Homing to Improve Stress Urinary Incontinence,” Carbohydrate Polymers 319 (2023): 121144, https://doi.org/10.1016/j.carbpol.2023.121144.

[31]

J. Lam, P. Katti, M. Biete, et al., “A Universal Approach to Analyzing Transmission Electron Microscopy With Imagej,” Cells 10, no. 9 (2021): 2177, https://doi.org/10.3390/cells10092177.

[32]

Y. Zhao, J. Zhang, Y. Zheng, et al., “NAD(+) Improves Cognitive Function and Reduces Neuroinflammation by Ameliorating Mitochondrial Damage and Decreasing Ros Production in Chronic Cerebral Hypoperfusion Models Through SIRT1/PGC-1alpha Pathway,” Journal of Neuroinflammation 18, no. 1 (2021): 207, https://doi.org/10.1186/s12974-021-02250-8.

[33]

Q. Zhao, Z. Tian, G. Zhou, et al., “Sirt1-Dependent Mitochondrial Biogenesis Supports Therapeutic Effects of Resveratrol Against Neurodevelopment Damage by Fluoride,” Theranostics 10, no. 11 (2020): 4822-4838, https://doi.org/10.7150/thno.42387.

[34]

A. Kuprasertkul, A. L. Christie, F. Alhalabi, and P. Zimmern, “Very Long-Term Follow-Up of the Anterior Vaginal Wall Suspension Procedure for Incontinence and/or Prolapse Repair,” World Journal of Urology 39, no. 2 (2021): 533-542, https://doi.org/10.1007/s00345-020-03190-3.

[35]

B. Sangsawang and N. Sangsawang, “Stress Urinary Incontinence in Pregnant Women: A Review of Prevalence, Pathophysiology, and Treatment,” International Urogynecology Journal 24, no. 6 (2013): 901-912, https://doi.org/10.1007/s00192-013-2061-7.

[36]

Z. Zhang, P. Xu, Z. Xie, et al., “Downregulation of AQP2 in the Anterior Vaginal Wall is Associated With the Pathogenesis of Female Stress Urinary Incontinence,” Molecular Medicine Reports 16, no. 3 (2017): 3503-3509, https://doi.org/10.3892/mmr.2017.7014.

[37]

C. Liu, Y. Wang, Y. Li, et al., “Dimethyl Fumarate Ameliorates Stress Urinary Incontinence by Reversing ECM Remodeling via the NRF2-TGF-BETA1/SMAD3 Pathway in Mice,” International Urogynecology Journal 33, no. 5 (2022): 1231-1242, https://doi.org/10.1007/s00192-021-05061-w.

[38]

J. N. Peoples, A. Saraf, N. Ghazal, T. T. Pham, and J. Q. Kwong, “Mitochondrial Dysfunction and Oxidative Stress in Heart Disease,” Experimental & Molecular Medicine 51, no. 12 (2019): 1-13, https://doi.org/10.1038/s12276-019-0355-7.

[39]

S. R. Subramaniam and M. F. Chesselet, “Mitochondrial Dysfunction and Oxidative Stress in Parkinson's Disease,” Progress in Neurobiology 106 (2013): 17-32, https://doi.org/10.1016/j.pneurobio.2013.04.004.

[40]

J. Peng, D. Ghosh, J. Pang, L. Zhang, S. Yin, and Y. Jiang, “Intertwined Relation Between the Endoplasmic Reticulum and Mitochondria in Ischemic Stroke,” Oxidative Medicine and Cellular Longevity 2022 (2022): 3335887, https://doi.org/10.1155/2022/3335887.

[41]

Z. Zhang, J. Wu, C. Teng, et al., “Orientin Downregulating Oxidative Stress-Mediated Endoplasmic Reticulum Stress and Mitochondrial Dysfunction Through AMPK/SIRT1 Pathway in Rat Nucleus Pulposus Cells In Vitro and Attenuated Intervertebral Disc Degeneration In Vivo,” Apoptosis 27, no. 11-12 (2022): 1031-1048, https://doi.org/10.1007/s10495-022-01770-9.

[42]

D. K. Wang, H. L. Zheng, W. S. Zhou, et al., “Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration,” Orthopaedic Surgery 14, no. 8 (2022): 1569-1582, https://doi.org/10.1111/os.13302.

[43]

K. A. Hurtado and R. G. Schnellmann, “Mitophagy Regulates Mitochondrial Number Following Pharmacological Induction of Mitochondrial Biogenesis in Renal Proximal Tubule Cells,” Frontiers in Pharmacology 15 (2024): 1344075, https://doi.org/10.3389/fphar.2024.1344075.

[44]

A. Picca, R. T. Mankowski, J. L. Burman, et al., “Mitochondrial Quality Control Mechanisms as Molecular Targets in Cardiac Ageing,” Nature Reviews. Cardiology 15, no. 9 (2018): 543-554, https://doi.org/10.1038/s41569-018-0059-z.

[45]

S. Martucciello, M. Masullo, A. Cerulli, and S. Piacente, “Natural Products Targeting ER Stress, and the Functional Link to Mitochondria,” International Journal of Molecular Sciences 21, no. 6 (2020): 1905, https://doi.org/10.3390/ijms21061905.

[46]

D. Lim, L. Tapella, G. Dematteis, A. A. Genazzani, M. Corazzari, and A. Verkhratsky, “The Endoplasmic Reticulum Stress and Unfolded Protein Response in Alzheimer's Disease: A Calcium Dyshomeostasis Perspective,” Ageing Research Reviews 87 (2023): 101914, https://doi.org/10.1016/j.arr.2023.101914.

[47]

P. Gao, Z. Yan, and Z. Zhu, “Mitochondria-Associated Endoplasmic Reticulum Membranes in Cardiovascular Diseases,” Frontiers in Cell and Development Biology 8 (2020): 604240, https://doi.org/10.3389/fcell.2020.604240.

[48]

S. Li, Q. Huang, and B. He, “SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease,” Lung 201, no. 2 (2023): 201-215, https://doi.org/10.1007/s00408-023-00607-9.

[49]

T. Zhang, L. Wang, X. Duan, et al., “Sirtuins Mediate Mitochondrial Quality Control Mechanisms: A Novel Therapeutic Target for Osteoporosis,” Frontiers in Endocrinology (Lausanne) 14 (2023): 1281213, https://doi.org/10.3389/fendo.2023.1281213.

[50]

D. S. J. Pires, K. Monceaux, A. Guilbert, et al., “SIRT1 Protects the Heart From ER Stress-Induced Injury by Promoting EEF2K/EEF2-Dependent Autophagy,” Cells 9, no. 2 (2020): 426, https://doi.org/10.3390/cells9020426.

[51]

S. O. Abu, T. Arroum, S. Morris, et al., “PGC-1α is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response,” Antioxidants 12, no. 5 (2023): 1075, https://doi.org/10.3390/antiox12051075.

[52]

L. Liu, Y. Li, J. Wang, et al., “Mitophagy Receptor FUNDC1 is Regulated by PGC-1alpha/NRF1 to Fine Tune Mitochondrial Homeostasis,” EMBO Reports 22, no. 3 (2021): e50629, https://doi.org/10.15252/embr.202050629.

[53]

Y. Zhang, X. Xi, Y. Mei, et al., “High-Glucose Induces Retinal Pigment Epithelium Mitochondrial Pathways of Apoptosis and Inhibits Mitophagy by Regulating ROS/PINK1/Parkin Signal Pathway,” Biomedicine & Pharmacotherapy 111 (2019): 1315-1325, https://doi.org/10.1016/j.biopha.2019.01.034.

[54]

T. N. Nguyen, B. S. Padman, and M. Lazarou, “Deciphering the Molecular Signals of PINK1/Parkin Mitophagy,” Trends in Cell Biology 26, no. 10 (2016): 733-744, https://doi.org/10.1016/j.tcb.2016.05.008.

[55]

C. C. Chao, C. L. Huang, J. J. Cheng, et al., “SRT1720 as an SIRT1 Activator for Alleviating Paraquat-Induced Models of Parkinson's Disease,” Redox Biology 58 (2022): 102534, https://doi.org/10.1016/j.redox.2022.102534.

RIGHTS & PERMISSIONS

2025 The Author(s). Cell Proliferation published by Beijing Institute for Stem Cell and Regenerative Medicine and John Wiley & Sons Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/